Academic literature on the topic 'Multispectral aerial video imagery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multispectral aerial video imagery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multispectral aerial video imagery"
Morozov, A. N., A. L. Nazolin, and I. L. Fufurin. "Optical and Spectral Methods for Detection and Recognition of Unmanned Aerial Vehicles." Radio Engineering, no. 2 (May 17, 2020): 39–50. http://dx.doi.org/10.36027/rdeng.0220.0000167.
Full textMian, O., J. Lutes, G. Lipa, J. J. Hutton, E. Gavelle, and S. Borghini. "ACCURACY ASSESSMENT OF DIRECT GEOREFERENCING FOR PHOTOGRAMMETRIC APPLICATIONS ON SMALL UNMANNED AERIAL PLATFORMS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-3/W4 (March 17, 2016): 77–83. http://dx.doi.org/10.5194/isprs-archives-xl-3-w4-77-2016.
Full textMian, O., J. Lutes, G. Lipa, J. J. Hutton, E. Gavelle, and S. Borghini. "ACCURACY ASSESSMENT OF DIRECT GEOREFERENCING FOR PHOTOGRAMMETRIC APPLICATIONS ON SMALL UNMANNED AERIAL PLATFORMS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-3/W4 (March 17, 2016): 77–83. http://dx.doi.org/10.5194/isprsarchives-xl-3-w4-77-2016.
Full textJayroe, Clinton W., William H. Baker, and Amy B. Greenwalt. "Using Multispectral Aerial Imagery to Evaluate Crop Productivity." Crop Management 4, no. 1 (2005): 1–7. http://dx.doi.org/10.1094/cm-2005-0205-01-rs.
Full textBruce, Robert W., Istvan Rajcan, and John Sulik. "Classification of Soybean Pubescence from Multispectral Aerial Imagery." Plant Phenomics 2021 (August 4, 2021): 1–11. http://dx.doi.org/10.34133/2021/9806201.
Full textYang, Bo, Timothy L. Hawthorne, Hannah Torres, and Michael Feinman. "Using Object-Oriented Classification for Coastal Management in the East Central Coast of Florida: A Quantitative Comparison between UAV, Satellite, and Aerial Data." Drones 3, no. 3 (July 27, 2019): 60. http://dx.doi.org/10.3390/drones3030060.
Full textKramber‡, W. J., A. J. Richardson§, P. R. Nixon§, and K. Lulla†. "Principal component analysis of aerial video imagery†." International Journal of Remote Sensing 9, no. 9 (September 1988): 1415–22. http://dx.doi.org/10.1080/01431168808954949.
Full textZhang, Yanchao, Wen Yang, Ying Sun, Christine Chang, Jiya Yu, and Wenbo Zhang. "Fusion of Multispectral Aerial Imagery and Vegetation Indices for Machine Learning-Based Ground Classification." Remote Sensing 13, no. 8 (April 7, 2021): 1411. http://dx.doi.org/10.3390/rs13081411.
Full textYang, Chenghai, Charles P. C. Suh, and John K. Westbrook. "Early identification of cotton fields using mosaicked aerial multispectral imagery." Journal of Applied Remote Sensing 11, no. 1 (January 12, 2017): 016008. http://dx.doi.org/10.1117/1.jrs.11.016008.
Full textSoni, Ayush, Alexander Loui, Scott Brown, and Carl Salvaggio. "High-quality multispectral image generation using Conditional GANs." Electronic Imaging 2020, no. 8 (January 26, 2020): 86–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.8.imawm-086.
Full textDissertations / Theses on the topic "Multispectral aerial video imagery"
Hodgson, Lucien Guy, and n/a. "Cotton crop condition assessment using arial video imagery." University of Canberra. Applied Science, 1991. http://erl.canberra.edu.au./public/adt-AUC20060725.144909.
Full textGurram, Prudhvi K. "Automated 3D object modeling from aerial video imagery /." Online version of thesis, 2009. http://hdl.handle.net/1850/11207.
Full textSalmon, Summer Anne. "A New Technique for Measuring Runup Variation Using Sub-Aerial Video Imagery." The University of Waikato, 2008. http://hdl.handle.net/10289/2511.
Full textWolkesson, Henrik. "Realtime Mosaicing of Video Stream from µUAV." Thesis, Linköpings universitet, Datorseende, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-76357.
Full textPotter, Thomas Noel 1959. "The use of multispectral aerial video to determine land cover for hydrological simulations in small urban watersheds." Thesis, The University of Arizona, 1993. http://hdl.handle.net/10150/291381.
Full textMaier, Kathrin. "Direct multispectral photogrammetry for UAV-based snow depth measurements." Thesis, KTH, Geoinformatik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254566.
Full textPå grund av klimatförändringar och naturliga meteorologiska händelser i arktis behövs mer exakta snökvalitetsprognoser för att stödja samernas rensköttsamhällen i norra Sverige som har problem med att anpassa sig till det snabbt föränderliga arktiska klimatet. Rumslig snödjupsfördelning är en avgörande parameter för att inte bara bedöma snökvaliteten utan även för flera miljöforskning och sociala markanvändningsändamål. Detta står i motsats till den nuvarande tillgången till överkomliga och effektiva metoder för snöövervakning för att uppskatta sådan extremt varierande parameter i tid och rum. I detta arbete presenteras och testas en ny metod för att bestämma rumslig snödjupssdistribution i utmanande alpin terräng under en fältstudie som genomfördes i Tarfala i norra Sverige i april 2019. Via fotogrammetrisk bildbehandlingsteknik hämtades snöytemodeller i 3D med hjälp av en multispektral kamera monterad på en liten obemannad drönare. En viktig fördel, i jämförelse med konventionella fotogrammetriska undersökningar, är användningen av exakt RTK-positioneringsteknik som möjliggör direkt georeferencing och eliminerar behovet av markkontrollpunkter. Den kontinuerliga snödjupfördelningen hämtas genom att ytmodellerna delas upp i snöfria respektive snötäckta undersökningsområden. En omfattande felsökning som baseras på markmätningar utförs, inklusive en analys av effekten av multispektrala bilder. Resultaten från denna studie visar att den famtagna metoden kan producera högupplösta snötäckta höjdmodeller i 3D (< 7 cm/pixel) av alpina områden på upp till 8 hektar på ett snabbt, pålitligt och kostnadseffektivt sätt. Den övergripande RMSE för det beräknade snödjupet är 7,5 cm för data som förvärvats under idealiska undersökningsförhållanden. Som ett led i det svenska projektet “Snow4all” används resultaten från projektet för att förbättra och validera storskaliga snömodeller för att bättre förutse snökvaliteten i norra Sverige.
Apostolopoulos, Andreas K. Tisdale Riley O. "Dissemination and storage of tactical unmanned aerial vehicle digital video imagery at the Army Brigade Level /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1999. http://handle.dtic.mil/100.2/ADA374041.
Full text"September 1999". Thesis advisor(s): Orin E. Marvel, William Haga, Brad Naegle. Includes bibliographical references (p. 159-162). Also avaliable online.
Apostolopoulos, Andreas K., and Riley O. Tisdale. "Dissemination and storage of tactical unmanned aerial vehicle digital video imagery at the Army Brigade Level." Thesis, Monterey, California. Naval Postgraduate School, 1999. http://hdl.handle.net/10945/26490.
Full textThe Department of Defense Joint Technical Architecture has mandated a migration from analog to digital technology in the Command, Control, Communication, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) community. The Tactical Unmanned Aerial Vehicle (TUAV) and Tactical Control System (TCS) are two brigade imagery intelligence systems that the Army will field within the next three years to achieve information superiority on the modern digital battlefield. These two systems provide the brigade commander with an imagery collection and processing capability never before deployed under brigade control. The deployment of the Warfighter Information Network (WIN), within three to five years, will ensure that a digital dissemination network is in place to handle the transmission bandwidth requirements of large digital video files. This thesis examines the storage and dissemination capabilities of this future brigade imagery system. It calculates a minimum digital! storage capacity requirement for the TCS Imagery Product Library, analyzes available storage media based on performance, and recommends a high capacity storage architecture based on modern high technology fault tolerance and performance. A video streaming technique is also recommended that utilizes the digital interconnectivity of the WIN for dissemination of video imagery throughout the brigade.
Heiner, Benjamin Kurt. "Construction of Large Geo-Referenced Mosaics from MAV Video and Telemetry Data." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/1804.
Full textAndersen, Evan D. "A Surveillance System to Create and Distribute Geo-Referenced Mosaics Using SUAV Video." BYU ScholarsArchive, 2008. https://scholarsarchive.byu.edu/etd/1679.
Full textBooks on the topic "Multispectral aerial video imagery"
Apostolopoulos, Andreas K. Dissemination and storage of tactical unmanned aerial vehicle digital video imagery at the Army Brigade Level. Monterey, Calif: Naval Postgraduate School, 1999.
Find full textKing, Douglas John. Development of a multispectral aerial video system and its application in forest and land cover type analysis. 1988.
Find full textDissemination and Storage of Tactical Unmanned Aerial Vehicle Digital Video Imagery at the Army Brigade Level. Storming Media, 1999.
Find full textBook chapters on the topic "Multispectral aerial video imagery"
Brauchle, Jörg, Steven Bayer, and Ralf Berger. "Automatic Ship Detection on Multispectral and Thermal Infrared Aerial Images Using MACS-Mar Remote Sensing Platform." In Image and Video Technology, 382–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92753-4_30.
Full textMessina, Gaetano, Vincenzo Fiozzo, Salvatore Praticò, Biagio Siciliani, Antonio Curcio, Salvatore Di Fazio, and Giuseppe Modica. "Monitoring Onion Crops Using Multispectral Imagery from Unmanned Aerial Vehicle (UAV)." In New Metropolitan Perspectives, 1640–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48279-4_154.
Full textChen, Liang-Chien, Tee-Ann Teo, Chi-Heng Hsieh, and Jiann-Yeou Rau. "Reconstruction of Building Models with Curvilinear Boundaries from Laser Scanner and Aerial Imagery." In Advances in Image and Video Technology, 24–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949534_3.
Full textVasile, Alexandru N., Luke J. Skelly, Karl Ni, Richard Heinrichs, and Octavia Camps. "Efficient City-Sized 3D Reconstruction from Ultra-High Resolution Aerial and Ground Video Imagery." In Advances in Visual Computing, 347–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24028-7_32.
Full textKuhnert, Lars, Markus Ax, Matthias Langer, Duong Nguyen Van, and Klaus-Dieter Kuhnert. "Absolute High-Precision Localisation of an Unmanned Ground Vehicle by Using Real-Time Aerial Video Imagery for Geo-referenced Orthophoto Registration." In Autonome Mobile Systeme 2009, 145–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10284-4_19.
Full text"Benthic Habitats and the Effects of Fishing." In Benthic Habitats and the Effects of Fishing, edited by T. D. Clayton, J. C. Brock, and C. W. Wright. American Fisheries Society, 2005. http://dx.doi.org/10.47886/9781888569605.ch21.
Full textRango, Albert, and Jerry Ritchie. "Applications of Remotely Sensed Data from the Jornada Basin." In Structure and Function of a Chihuahuan Desert Ecosystem. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195117769.003.0019.
Full textMathews, Adam J. "A Practical UAV Remote Sensing Methodology to Generate Multispectral Orthophotos for Vineyards." In Unmanned Aerial Vehicles, 271–94. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8365-3.ch012.
Full textMathews, Adam J. "A Practical UAV Remote Sensing Methodology to Generate Multispectral Orthophotos for Vineyards." In Geospatial Intelligence, 298–322. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8054-6.ch014.
Full textEssa, Almabrok, Paheding Sidike, and Vijayan K. Asari. "Efficient Key Frame Selection Approach for Object Detection in Wide Area Surveillance Applications." In Censorship, Surveillance, and Privacy, 609–23. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7113-1.ch032.
Full textConference papers on the topic "Multispectral aerial video imagery"
Chai, Dengfeng, and Qunsheng Peng. "Spatiotemporal alignment of multi-sensor aerial video sequences." In MIPPR 2005 SAR and Multispectral Image Processing, edited by Liangpei Zhang, Jianqing Zhang, and Mingsheng Liao. SPIE, 2005. http://dx.doi.org/10.1117/12.654910.
Full textSalvado, Ana Beatriz, Ricardo Mendonca, Andre Lourenco, Francisco Marques, J. P. Matos-Carvalho, Luis Miguel Campos, and Jose Barata. "Semantic Navigation Mapping from Aerial Multispectral Imagery." In 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). IEEE, 2019. http://dx.doi.org/10.1109/isie.2019.8781301.
Full textFitzgerald, G. J., D. J. Hunsaker, E. M. Barnes, T. R. Clarke, R. Roth, and P. J. Pinter, Jr. "Estimating Cotton Crop Water Use from Multispectral Aerial Imagery, 2003." In World Water and Environmental Resources Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40792(173)525.
Full textWilliams, Elmer, Michael A. Pusateri, and David Siviter. "Multicamera-multispectral video library - An algorithm development tool." In 2008 37th IEEE Applied Imagery Pattern Recognition Workshop. IEEE, 2008. http://dx.doi.org/10.1109/aipr.2008.4906477.
Full textHassan-Esfahani, Leila, Alfonso Torres-Rua, Andres M. Ticlavilca, Austin Jensen, and Mac McKee. "Topsoil moisture estimation for precision agriculture using unmmaned aerial vehicle multispectral imagery." In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6947175.
Full textRottensteiner, F., J. Trinder, S. Clode, K. Kubik, and B. Lovell. "Building detection by Dempster-Shafer fusion of LIDAR data and multispectral aerial imagery." In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1334203.
Full textVasu, Bhavan, Faiz Ur Rahman, and Andreas Savakis. "Aerial-CAM: Salient Structures and Textures in Network Class Activation Maps of Aerial Imagery." In 2018 IEEE 13th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). IEEE, 2018. http://dx.doi.org/10.1109/ivmspw.2018.8448567.
Full textViguier, Raphael, Chung Ching Lin, Hadi AliAkbarpour, Filiz Bunyak, Sharathchandra Pankanti, Guna Seetharaman, and Kannappan Palaniappan. "Automatic Video Content Summarization Using Geospatial Mosaics of Aerial Imagery." In 2015 IEEE International Symposium on Multimedia (ISM). IEEE, 2015. http://dx.doi.org/10.1109/ism.2015.124.
Full textLoveland, Rohan C., and Edward Rosten. "Acquisition and registration of aerial video imagery of urban traffic." In Optical Engineering + Applications, edited by Andrew G. Tescher. SPIE, 2008. http://dx.doi.org/10.1117/12.796785.
Full textAl-Arab, Manal, Alfonso Torres-Rua, Andres Ticlavilca, Austin Jensen, and Mac McKee. "Use of high-resolution multispectral imagery from an unmanned aerial vehicle in precision agriculture." In IGARSS 2013 - 2013 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2013. http://dx.doi.org/10.1109/igarss.2013.6723419.
Full textReports on the topic "Multispectral aerial video imagery"
Cooke, B., and A. Saucier. Correction of Line Interleaving Displacement in Frame Captured Aerial Video Imagery. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1995. http://dx.doi.org/10.2737/so-rn-380.
Full textBecker, Sarah, Megan Maloney, and Andrew Griffin. A multi-biome study of tree cover detection using the Forest Cover Index. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42003.
Full text