Academic literature on the topic 'Multisensory method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multisensory method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multisensory method"
Lin, Tsun-Kuo. "PCA/SVM-Based Method for Pattern Detection in a Multisensor System." Mathematical Problems in Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/6486345.
Full textSemenova, V. A., and E. M. Petrenko. "Identification and Comparative Analysis of Alkaloids by Inversion Voltammetry Method." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 6 (87) (December 2019): 113–21. http://dx.doi.org/10.18698/1812-3368-2019-6-113-121.
Full textSyahputri, Diani. "The Effect of Multisensory Teaching Method on The Students’ Reading Achievement." Budapest International Research and Critics in Linguistics and Education (BirLE) Journal 2, no. 1 (February 26, 2019): 124–31. http://dx.doi.org/10.33258/birle.v2i1.192.
Full textKrauce, Antra. "THE USE OF THE MULTISENSORY METHOD NUMICON IN LEARNING BASIC MATHEMATICAL SKILLS BY STUDENTS WITH MODERATE MENTAL DISABILITIES." Education Reform: Education Content Research and Implementation Problems 2 (December 31, 2019): 72. http://dx.doi.org/10.17770/er2019.2.4232.
Full textAl Adzillina, Nailan, and Henny Uswatun Hasanah. "The Impact of Multisensory Method on Students’ Memorizing Vocabulary at Halimah Kindergarten Prenduan Sumenep." PANYONARA: Journal of English Education 3, no. 2 (September 30, 2021): 155–66. http://dx.doi.org/10.19105/panyonara.v3i2.4317.
Full textKarimi Thani, Parviz, Nasim Koohzad, and Farideh Ahmadi. "Comparison of the Effectiveness of Fernald’s Sensory Method and Educational Games on Writing Disorder in Elementary School Students." Advances in Bioscience and Clinical Medicine 10, no. 1 (January 31, 2022): 1–6. http://dx.doi.org/10.7575/aiac.abcmed.v.10n.1p.1.
Full textDeroy, Ophelia, Yi-Chuan Chen, and Charles Spence. "Multisensory constraints on awareness." Philosophical Transactions of the Royal Society B: Biological Sciences 369, no. 1641 (May 5, 2014): 20130207. http://dx.doi.org/10.1098/rstb.2013.0207.
Full textBasam, Fajri, and Sulfasyah Sulfasyah. "METODE PEMBELAJARAN MULTISENSORI VAKT SEBAGAI UPAYA MENINGKATKAN KEMAMPUAN MEMBACA LANCAR SISWA KELAS II." JRPD (Jurnal Riset Pendidikan Dasar) 1, no. 1 (April 6, 2018): 18–24. http://dx.doi.org/10.26618/jrpd.v1i1.1235.
Full textZulhendri, Zulhendri, and Jhoni Warmansyah. "The effectiveness of the Multisensory Method on Early Reading Ability in 6-7 Years Old Children." Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini 5, no. 1 (June 4, 2020): 257. http://dx.doi.org/10.31004/obsesi.v5i1.568.
Full textUtepov, Ye B. "ASSEMBLING A MULTISENSORY DEVICE FOR MONITORING AND ASSESSING CONCRETE CURING CONDITIONS." Eurasian Physical Technical Journal 19, no. 1 (39) (March 28, 2022): 90–98. http://dx.doi.org/10.31489/2022no1/90-98.
Full textDissertations / Theses on the topic "Multisensory method"
Dalla, Libera Sara <1985>. "Dyslexia and learning English as a foreign language: the phonological/orthographic teaching through the multisensory method." Master's Degree Thesis, Università Ca' Foscari Venezia, 2016. http://hdl.handle.net/10579/7457.
Full textPrajitno, Prawito. "Neuro-fuzzy methods in multisensor data fusion." Thesis, University of Sheffield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251258.
Full textPawlak, Robert James. "Multisensor track initiation method that addresses the missing measurement problem." Diss., Virginia Tech, 1992. http://hdl.handle.net/10919/38631.
Full textKlaus, Ferdinand. "Einführung in Techniken und Methoden der Multisensor-Datenfusion." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971151989.
Full textBorkar, Milind. "A distributed Monte Carlo method for initializing state vector distributions in heterogeneous smart sensor networks." Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22680.
Full textCrow, Mason W. "Multiple sensor credit apportionment." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Jun%5FCrow.pdf.
Full textMaurer, Andreas. "Methods for Multisensory Detection of Light Phenomena on the Moon as a Payload Concept for a Nanosatellite Mission." Thesis, Luleå tekniska universitet, Rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80785.
Full textCazenave, Quitterie. "Development and evaluation of multisensor methods for EarthCare mission based on A-Train and airborne measurements." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV020/document.
Full textThe impact of ice clouds on the water cycle and radiative budget is still uncertain due to the complexity of cloud processes that makes it difficult to acquire adequate observations of ice cloud properties and parameterize them into General Circulation Models. Passive and active remote sensing instruments, radiometers, radars and lidars, are commonly used to study ice clouds. Inferring cloud microphysical properties (extinction, ice water content, effective radius, ...) can be done from one instrument only, or from the synergy of several. The interest of using instrumental synergies to retrieve cloud properties is that it can reduce the uncertainties due to the shortcomings of the different instruments taken separately. The A-Train constellation of satellites has considerably improved our knowledge of clouds. Since 2006, the 532nm backscattering lidar CALIOP on board the satellite CALIPSO and the 94GHz cloud radar CPR on board the satellite CloudSat have acquired cloud vertical profiles globally and many lidar-radar synergetic methods have been adapted to CloudSat and CALIPSO data. In 2021 will be launched a new satellite, EarthCARE, boarding state of the art remote sensing instrumentation, in particular ATLID, a High Spectral Resolution Lidar (HSRL) at 355nm and a Doppler cloud radar at 94 GHz. The main mission of this satellite is to quantify interactions between clouds, aerosols and the Earth's radiation budget in order to improve weather prediction and climate models. Thanks to its advanced instrumentation mounted on a single platform, this new mission is expected to provide unprecedented observations of clouds from space. However, to do so, the synergistic algorithms that were developed for A-Train measurements have to be adapted to this new instrumental configuration. During my PhD, I focused on the Varcloud algorithm that was developed in 2007 by Delanoë and Hogan, based on a variational technique. The first part of the work consisted in adapting some parameters of the microphysical model of the algorithm to recent studies of a large dataset of in-situ measurements. In particular, the questions of a parameterization of the lidar extinction-to-backscatter ratio and the choice of the mass-size relationship for ice crystals were addressed. The second part of my work consisted in adapting the Varcloud retrieval algorithm to airborne platforms. Airborne platforms are ideal to prepare and validate space missions, allowing for direct underpasses of spaceborne instruments. Moreover, German and French aircraft, respectively HALO and French Falcon 20 have very complementary payloads and are perfectly designed for the preparation, the calibration and the validation of EarthCare. Both aircraft board a high spectral resolution lidar (355 nm on the French Falcon and 532 nm on the HALO) and a Doppler radar at 36 GHz (HALO) and 95 GHz (Falcon). In fall 2016 a field campaign related to the NAWDEX project took place in Iceland, Keflavik with both aircraft involved. The measurements collected during this campaign provide an interesting dataset to characterize cloud microphysics and dynamics in the North Atlantic, which are of high interest regarding the Cloudsat-CALIPSO and EarthCARE missions. In addition, a series of common legs with the same cloud scene observed by both platforms were performed, providing data to study the influence of the instrumental configuration on the retrieved ice cloud properties
Paris, Claudia. "Novel Methods based on the Fusion of Multisensor Remote Sensing Data for Accurate Forest Parameter Estimation." Doctoral thesis, Università degli studi di Trento, 2016. https://hdl.handle.net/11572/367897.
Full textWatanabe, Emerson Ferrell. "A Quasi-Experimental Study of the Effect of Experience Staging Techniques on Engagement." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7555.
Full textBooks on the topic "Multisensory method"
Schupack, Helaine. Reading, writing and spelling: The multisensory structured language approach. 2nd ed. Baltimore, Md: International Dyslexia Association, 2001.
Find full text1958-, Franco Lynda, ed. Language first!: A multisensory program for English language development : Travel. Emeryville, CA: LeapFrog Schoolhouse, 2002.
Find full textDuBard, Etoile. Teaching language-deficient children: Theory and application of the association method for multisensory teaching. Cambridge, Mass: Educators Pub. Service, 1994.
Find full textRubtsov, Nickolai, Mikhail Alymov, Alexander Kalinin, Alexey Vinogradov, Alexey Rodionov, and Kirill Troshin. Remote studies of combustion and explosion processes based on optoelectronic methods. au: AUS PUBLISHERS, 2022. http://dx.doi.org/10.26526/monography_62876066a124d8.04785158.
Full textB, Sridhar, and Ames Research Center, eds. A parallel implementation of a multisensor feature-based range-estimation method. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1993.
Find full textB, Sridhar, and Ames Research Center, eds. A parallel implementation of a multisensor feature-based range-estimation method. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1993.
Find full textNetworked multisensor decision and estimation fusion: Based on advanced mathematical methods. Boca Raton, FL: Taylor & Francis, 2012.
Find full text1954-, Docampo D., Figueiras-Vidal A. R, and Pérez-González F. 1967-, eds. Intelligent methods in signal processing and communications. Boston: Birkhäuser, 1997.
Find full textStone, Celia. Reading Success 4: A Multisensory Reading Intervention Program. LDA, 2001.
Find full textNorthrup, Peggy S. The Literacy Link: A Multisensory Approach to Sound-Symbol Connections. Thinking Publications, 2002.
Find full textBook chapters on the topic "Multisensory method"
Rubtsov, Nickolai, Mikhail Alymov, Alexander Kalinin, Alexey Vinogradov, Alexey Rodionov, and Kirill Troshin. "Investigation of the instabilities arising from the hydrogen and hydrocarbon flames propagation by the method of high-speed filming." In Remote studies of combustion and explosion processes based on optoelectronic methods, 46–102. au: AUS PUBLISHERS, 2022. http://dx.doi.org/10.26526/chapter_62876066b8c340.88097326.
Full textGanis, Giorgio, and Haline E. Schendan. "Cognitive Neuroscience of Mental Imagery: Methods and Paradigms." In Multisensory Imagery, 283–98. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5879-1_15.
Full textRubtsov, Nickolai, Mikhail Alymov, Alexander Kalinin, Alexey Vinogradov, Alexey Rodionov, and Kirill Troshin. "Methods and means of remote sensing in the optical range." In Remote studies of combustion and explosion processes based on optoelectronic methods, 18–28. au: AUS PUBLISHERS, 2022. http://dx.doi.org/10.26526/chapter_62876066b31e97.40925202.
Full textRubtsov, Nickolai, Mikhail Alymov, Alexander Kalinin, Alexey Vinogradov, Alexey Rodionov, and Kirill Troshin. "Optoelectronic devices and methods for studying combustion and explosion processes." In Remote studies of combustion and explosion processes based on optoelectronic methods, 29–45. au: AUS PUBLISHERS, 2022. http://dx.doi.org/10.26526/chapter_62876066b5f307.71425279.
Full textBloch, I. "Fusion of Information under Imprecision and Uncertainty, Numerical Methods, and Image Information Fusion." In Multisensor Fusion, 267–93. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0556-2_11.
Full textHolena, M. "Statistical, Logic Based, and Neural Network Based Methods for Mining Rules from Data." In Multisensor Fusion, 511–32. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0556-2_23.
Full textRubtsov, Nickolai, Mikhail Alymov, Alexander Kalinin, Alexey Vinogradov, Alexey Rodionov, and Kirill Troshin. "The use of high-speed optical multidimensional technique to determine the characteristics of ignition and combustion of 40% H2 - air mix in the presence of platinum metal." In Remote studies of combustion and explosion processes based on optoelectronic methods, 126–51. au: AUS PUBLISHERS, 2022. http://dx.doi.org/10.26526/chapter_62876066bef2a8.05945792.
Full textRubtsov, Nickolai, Mikhail Alymov, Alexander Kalinin, Alexey Vinogradov, Alexey Rodionov, and Kirill Troshin. "Study of the combustion of hydrogen-air and hydrogen-hydrocarbon (C1- C6) -air mixtures over the surface of palladium metal with the combined use of a hyperspectral sensor and high-speed color filming." In Remote studies of combustion and explosion processes based on optoelectronic methods, 202–36. au: AUS PUBLISHERS, 2022. http://dx.doi.org/10.26526/chapter_62876066c51665.20097229.
Full textRubtsov, Nickolai, Mikhail Alymov, Alexander Kalinin, Alexey Vinogradov, Alexey Rodionov, and Kirill Troshin. "Detecting the regularities of propagation of an unstable flame front using optical 4D spectroscopy and color high-speed filming." In Remote studies of combustion and explosion processes based on optoelectronic methods, 103–25. au: AUS PUBLISHERS, 2022. http://dx.doi.org/10.26526/chapter_62876066bbdb05.08303225.
Full textRubtsov, Nickolai, Mikhail Alymov, Alexander Kalinin, Alexey Vinogradov, Alexey Rodionov, and Kirill Troshin. "Determination of the features of combustion of nanopowders and their compacted samples by the methods of visible and infrared filming." In Remote studies of combustion and explosion processes based on optoelectronic methods, 237–61. au: AUS PUBLISHERS, 2022. http://dx.doi.org/10.26526/chapter_62876066c82414.05714648.
Full textConference papers on the topic "Multisensory method"
Oktafianto, Kurnia, Siti Masitoh, and Hendratno Hendratno. "The Effect of Multisensory Method on Children Language Development." In Proceedings of the 2nd International Conference on Education Innovation (ICEI 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icei-18.2018.61.
Full textShtun, Sergei, Alexander Senkov, Oleg Abramenko, Mickhail Rakitin, Vener Nagimov, Alexander Trusov, and Alexander Frolov. "Sustained Annulus Pressure Diagnostics in Offshore Wells by Multisensory Spectral Acoustics." In SPE Russian Petroleum Technology Conference. SPE, 2021. http://dx.doi.org/10.2118/206629-ms.
Full textLi, Hongliang, Zhiwei Zhong, Weiwei Kong, and Daibing Zhang. "A fast calibration method for autonomous landing of UAV with ground-based multisensory fusion system." In 2015 IEEE International Conference on Information and Automation (ICIA). IEEE, 2015. http://dx.doi.org/10.1109/icinfa.2015.7279815.
Full textBordegoni, Monica, Marina Carulli, and Elena Spadoni. "Multisensory VR for Delivering Training Content to Machinery Operators." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-69974.
Full textJia, Dawei, Asim Bhatti, and Saeid Nahavandi. "User-Centered Design and Evaluation of an Interactive Visual-Haptic-Auditory Interface: A User Study on Assembly." In ASME 2011 World Conference on Innovative Virtual Reality. ASMEDC, 2011. http://dx.doi.org/10.1115/winvr2011-5562.
Full textOsinski, Dominik, Patrycja Bizon, Helene Midtfjord, Michał Wierzchon, and Dag Roar Hjelme. "Designing Auditory Color Space for Color Sonification Systems." In ICAD 2019: The 25th International Conference on Auditory Display. Newcastle upon Tyne, United Kingdom: Department of Computer and Information Sciences, Northumbria University, 2019. http://dx.doi.org/10.21785/icad2019.076.
Full textAlirezaee, Parisa, Roger Girgis, TaeYong Kim, Joseph J. Schlesinger, and Jeremy R. Cooperstock. "Did You Feel That? Developing Novel Multimodal Alarms for High Consequence Clinical Environments." In The 23rd International Conference on Auditory Display. Arlington, Virginia: The International Community for Auditory Display, 2017. http://dx.doi.org/10.21785/icad2017.066.
Full textWei Xiong, Jing-Wei Zhang, You He, and Zhen-Yu Song. "A New Multisensor Particle Filter Method." In Proceedings of 2005 International Conference on Machine Learning and Cybernetics. IEEE, 2005. http://dx.doi.org/10.1109/icmlc.2005.1527017.
Full textRapo, Mark, Chong Whang, and Philemon Chan. "Blast Event Recognition Method for Multisensor Data." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88936.
Full textHenderson, Thomas C., Gwen Knight, and Edward Grant. "Multisensor methods to estimate thermal diffusivity." In 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2012). IEEE, 2012. http://dx.doi.org/10.1109/mfi.2012.6343037.
Full textReports on the topic "Multisensory method"
Butler, Dwain K., Ernesto R. Cespedes, Cary B. Cox, and Paul J. Wolfe. Multisensor Methods for Buried Unexploded Ordnance Deteciton, Discrimination, and Identification. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada354124.
Full textPawlak, Robert J., and Ron A. Stapleton. Nonparametric Multisensor Track Initiation Method for Nonuniform Nonstationary Environments Part II: A Comparison of M/N and ANMSTI Track Initiation Techniques Applied to the Wallops Island Multisensor Integration Experiment. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada309319.
Full text