Academic literature on the topic 'Multiscale surface texturing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiscale surface texturing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiscale surface texturing"
SASAKI, Shinya. "Multiscale Surface Texturing for Controlling Tribological Properties." Journal of the Japan Society for Technology of Plasticity 56, no. 657 (2015): 871–75. http://dx.doi.org/10.9773/sosei.56.871.
Full textTewelde, Fitsum Berhe, Quentin Allen, and Tianfeng Zhou. "Multiscale Texture Features to Enhance Lubricant Film Thickness for Prosthetic Hip Implant Bearing Surfaces." Lubricants 12, no. 6 (May 27, 2024): 187. http://dx.doi.org/10.3390/lubricants12060187.
Full textLiu, Weidong, Yan Luo, Yonghua Zhao, Haipeng Zhou, Sansan Ao, and Yang Li. "Electrochemical Jet Machining of Surface Texture: Improving the Strength of Hot-Pressure-Welded AA6061-CF/PA66 Joints." Journal of Composites Science 8, no. 7 (July 7, 2024): 263. http://dx.doi.org/10.3390/jcs8070263.
Full textAriza, Rocío, Miguel Alvarez-Alegria, Gloria Costas, Leo Tribaldo, Agustin R. Gonzalez-Elipe, Jan Siegel, and Javier Solis. "Multiscale ultrafast laser texturing of marble for reduced surface wetting." Applied Surface Science 577 (March 2022): 151850. http://dx.doi.org/10.1016/j.apsusc.2021.151850.
Full textKlos, Antoine, Xxx Sedao, Tatiana E. Itina, Clémentine Helfenstein-Didier, Christophe Donnet, Sylvie Peyroche, Laurence Vico, Alain Guignandon, and Virginie Dumas. "Ultrafast Laser Processing of Nanostructured Patterns for the Control of Cell Adhesion and Migration on Titanium Alloy." Nanomaterials 10, no. 5 (April 30, 2020): 864. http://dx.doi.org/10.3390/nano10050864.
Full textWang, Xigui, Jiafu Ruan, Yongmei Wang, and Weiqiang Zou. "Analytical and Experimental Research of Lubrication Load-Bearing Characteristics of Microtextured Meshing Interface." Materials 18, no. 4 (February 14, 2025): 845. https://doi.org/10.3390/ma18040845.
Full textFrankiewicz, C., and D. Attinger. "Texture and wettability of metallic lotus leaves." Nanoscale 8, no. 7 (2016): 3982–90. http://dx.doi.org/10.1039/c5nr04098a.
Full textZhang, Yalong, Xinyu Du, Chenchen Wang, and Gangqiang Zhang. "Tribological properties of titanium alloy with micro-nano multiscale texturing against bone under simulated implant contact conditions." Tribology International 194 (June 2024): 109586. http://dx.doi.org/10.1016/j.triboint.2024.109586.
Full textChen, Luanxia, Zhanqiang Liu, Yukui Cai, and Bing Wang. "Tribological Performance of Multiscale Micro-Textured H62 Brass Surface Fabricated by Micro-Milling and Wet Micro-Blasting." Journal of Tribology 144, no. 9 (March 7, 2022). http://dx.doi.org/10.1115/1.4053318.
Full textRebufa, Jocelyn, Fabrice Thouverez, Erick Le Guyadec, and Denis Mazuyer. "Nonlinear Effects of Surface Texturing on the Performance of Journal Bearings in Flexible Rotordynamic Systems." Journal of Tribology 139, no. 5 (May 26, 2017). http://dx.doi.org/10.1115/1.4034765.
Full textDissertations / Theses on the topic "Multiscale surface texturing"
Cunha, Alexandre. "Multiscale femtosecond laser surface texturing of titanium and titanium alloys for dental and orthopaedic implants." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0030/document.
Full textIn the present thesis the surface texturing of Ti alloys using femtosecond laser direct writing method is explored as a potential technique to enhance the wettability of dental and orthopaedic implants by biological fluids and matrix mineralisation (bone formation), while reducing bacteria adhesion and biofilmformation. The surface texture was combined with biofunctionalisation by covalent grafting of a RGD peptide sequence as well. The surface textures can be classified as follows: (a) Laser-Induced Periodic Surface Structures-LIPSS; (b) nanopillars arrays(NP); (c) arrays of microcolumns covered with LIPSS (MC-LIPSS), forming a bimodal roughness distribution. Laser texturing enhances surface wettability by water andHank‟s balanced salt solution (HBSS) and introduces wetting anisotropy, crucial incontrolling the wetting behaviour. Matrix mineralisation is observed for all surfaces of both Ti alloys when human mesenchymal stem cells (hMSCs) are cultured in osteogenic medium. Matrix mineralisation and formation of bone-like nodules are significantly enhanced on LIPSS and NP textured surfaces. On the contrary, Staphylococcus aureusadhesion and biofilm formation are significantly reduced for LIPSS and NP textured surfaces. The biofunctionalisation of the laser textured surfaces of cp Ti is sucessfully achieved. In general, these results suggest that surface texturing of Ti alloys using femtosecond laser direct writing is a promising method for enhancing surface wettability of dental and orthopaedic implants by biological fluids and their osseointegration (osteoblastic differentiation and matrix mineralisation), while reducing Staphylococcus aureus adhesion and biofilm formation. Finally, the combination of laser texturing and covalent grafting of a RGD peptide sequence may be potentially useful for increasing cell adhesion and facilitating bone formation
Bami, Chatenet Yann. "Modélisation analytique du mouillage sur des topographies multi-échelles complexes pour le design biomimétique de surfaces superhydrophobes." Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0053.
Full textA drop of water rolls on the sacred lotus leaf but stay fiercely anchored onto a rose petal. Both surfaces display a complex morphology at the micrometric and nanometric scales. Therefore, one could ask: how are their wettability and their morphology related? The purpose of this dissertation is to carry out a biomimetic approach in order to conceive superhydrophobic surfaces and to better understand nature’s strategies. In a first part, vegetal surfaces have been characterized by directly observing the wetting state they produce with the help of confocal microscopy. We demonstrate the fact that the sacred lotus produces a metastable mixed-state wetting that is characterized by a finite equilibrium anchorage depth of triple lines. On the other hand, a Wenzel-Wenzel hierarchical wetting state is observed on the rose petal, in spite of what literature suggests. From these experiments, key questions have been highlighted and confronted to the current models available within the literature. In a second part, two approaches to capillary phenomena have been adapted to the study of a composite wetting state produced by a multiscale topography. We introduce a complete parameterization allowing us to tackle the problem of the mixed-state wetting and its stability, to predict the value of the equilibrium anchorage depth on the sacred lotus leaf and to identify the contribution of its nanoscale topography to its wetting. Then, we thoroughly describe the mechanisms underlying the advancing and receding motions of triple lines and their recursive propagation across every topographical scale constituting a surface by introducing the notion of precursor motion. We highlight the effect of the equilibrium anchorage depth on the contact angle hysteresis and the role played by topographical subscales on the robustness of the composite wetting state. Through the experimental study of model surfaces manufactured by photolithography, we compare our predictions to reality. Eventually, in a third part, the conclusions drawn from our model are transposed into technical specifications for the conception of robust superhydrophobic surfaces, the strategy of the sacred lotus leaf is thoroughly described and two promising manufacturing processes are proposed through the recrystallization of natural wax and two-photon polymerization
Conference papers on the topic "Multiscale surface texturing"
Geng, Yu, Li Chen, Heng Liu, Shemiao Qi, Yi Liu, Rui Zhou, Rongfeng Zhang, Bowen Fan, Yinsi Chen, and Yuan Li. "Numerical Methods for Improving the Optimization Efficiency of Textured Surfaces." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-111458.
Full text