Dissertations / Theses on the topic 'Multiscale problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Multiscale problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Miller, Mark Andrew. "Multiscale techniques for imaging problems." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613033.
Full textHolst, Henrik. "Multiscale Methods for Wave Propagation Problems." Doctoral thesis, KTH, Numerisk analys, NA, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48072.
Full textSimulering av högfrekventa vågor i heterogena material är viktigt i många tillämpningar, till exempel seismologi, elektromagnetism, akustik och strömningsmekanik. Dessa tillämpningar är exempel på klassiska multiskalproblem och har typiskt en för hög beräkningskostnad, i form av datortid och minne, för en direkt numerisk simulering. De minsta skalorna i problemet måste vara upplösta över ett område som representeras av dom största skalorna och detta innebär en hög beräkningskostnad. Vi har utvecklat och analyserat numeriska metoder för vågekvationer med snabbt oscillerande lösningar $u^{\varepsilon}$ där $\varepsilon$ representerar storleken på den minsta skalan. Metoderna är baserade på ramverket \emph{heterogena multiskalmetoden} (HMM). I dessa metoder approximeras den hastigt oscillerande mikroskalan med små lokala mikroproblem av storleksordning $\varepsilon$ i tids- och rumsriktning. Lösningen till mikroproblemen är kopplade till en global modell på makroskalan i divergensform $u_{tt} = \nabla \cdot F$, där flödet $F$ ges av mikroproblemen. De hastiga oscillationerna kan härröras från snabba variationer i hastighetsfältet, begynnelsevillkor eller randvillkor. Vi har utvecklat algoritmer som kopplar mikro- och makroskalor i bägge fallen. Valet av makroskalvariabler inspireras av de analytiska metoderna homogenisering och geometrisk optik. I det första fallet används lokala medelvärden $u \approx u^{\varepsilon}$ på makroskalnivån. I det andra fallet är fas $\phi$ och energi bra val av makroskalvariabler. Det finns två huvudmål med vår forskning. Ett mål är att utveckla och analysera algoritmer för simulering av vågproblem med multipla skalor med låg beräkningskostnad (om möjligt, oberoende av $\varepsilon$) för problem över begränsad tid. Vi visar numeriska resultat från multiskalproblem i en, två och tre dimensioner. Det andra målet är att att använda vågutbredning som en modell för att bättre förstå HMM ramverket. Ett exempel på detta är simulering med oscillerande hastighetsfält över lång tid. Efter lång tid så uppträder dispersion. Vi har demonstrerat att vår HMM-metod, som ursprungligen var formulerad för begränsad tid, även kan appliceras på detta fall. För att få den rätta dispersionen krävs högre noggrannhetsordning, men metoden ändrar inte form. Detta visar på metodens robusthet.
QC 20111117
Söderlund, Robert. "Finite element methods for multiscale/multiphysics problems." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-42713.
Full textElfverson, Daniel. "Discontinuous Galerkin Multiscale Methods for Elliptic Problems." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960.
Full textSavchuk, Tatyana. "The multiscale finite element method for elliptic problems." Ann Arbor, Mich. : ProQuest, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3245025.
Full textTitle from PDF title page (viewed Mar. 18, 2008). Source: Dissertation Abstracts International, Volume: 67-12, Section: B, page: 7120. Adviser: Zhangxin (John) Chen. Includes bibliographical references.
Kudreyko, Aleksey. "Multiscale wavelet analysis for integral and differential problems." Doctoral thesis, Universita degli studi di Salerno, 2011. http://hdl.handle.net/10556/176.
Full textThe object of the present research is wavelet analysis of integral and differential problems by means of harmonic and circular wavelets. It is shown that circular wavelets constitute a complete basis for L2[0; 1] functions, and form multiresolution analysis. Multiresolution analysis can be briefly considered as a decomposition of L2[0; 1] into a complete set of scale depending subspaces of wavelets. Thus, integral operators, differential operators, and L2(R) functions were investigated as scale depending functions through their projection onto these subspaces of wavelets. In particular: - conditions when a certain wavelet can be applied for solution of integral or differential problem are given; - it is shown that the accuracy of this approach exponentially grows when increasing the number of vanishing moments and scaling parameter; - wavelet solutions of low-dimensional nonlinear partial differential equations are compared with other methods; - wavelet-based approach is applied to low-dimensional Fredholm integral equations and the Galerkin method for two-dimensional Fredholm integral equations.[edited by author]. Oggetto della seguente ricerca `e l’analisi di problemi differenziali e integrali, utilizzando wavelet armoniche e wavelet armoniche periodiche. Si dimostra che le wavelet periodiche costituiscono una base completa per le funzioni L2[0; 1] e formano un’analisi multiscala. L’analisi multirisoluzione pu`o essere brevemente considerata come la decomposizione di L2[0; 1] in un insieme completo di sottospazi di wavelet dipendenti da un fattore di scala. Pertanto gli operatori integrali e differenziali e le funzioni L2(R) vengono studiati come funzioni di scala mediante le corrispondenti proiezioni in questi sottospazi di wavelet. In particolare, vengono sviluppati quattro principali argomenti: - sono state individuate le condizioni per applicare una data famiglia di wavelets alla soluzione di un data problema differenziale o integrale; - si `e dimostrato che la precisione di questo approccio cresce esponenzialmente quando decresce il numero dei momenti nulli e del parametro di scala; - soluzioni wavelet di equazioni differenziali a derivate parziali nonlineari di dimensione bassa sono state confrontate con altri metodi di soluzioni; - l’approccio basato sull’uso delle wavelet `e stato applicato anche per ricerca di soluzioni di alcune equazioni integrali di Fredholm e insieme al metodo di Galerkin per risolvere equazioni integrali Fredholm di dimensioni due.[a cura dell'autore]
IX n.s.
Hellman, Fredrik. "Multiscale and multilevel methods for porous media flow problems." Licentiate thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262276.
Full textParno, Matthew David. "A multiscale framework for Bayesian inference in elliptic problems." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65322.
Full textPage 118 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 112-117).
The Bayesian approach to inference problems provides a systematic way of updating prior knowledge with data. A likelihood function involving a forward model of the problem is used to incorporate data into a posterior distribution. The standard method of sampling this distribution is Markov chain Monte Carlo which can become inefficient in high dimensions, wasting many evaluations of the likelihood function. In many applications the likelihood function involves the solution of a partial differential equation so the large number of evaluations required by Markov chain Monte Carlo can quickly become computationally intractable. This work aims to reduce the computational cost of sampling the posterior by introducing a multiscale framework for inference problems involving elliptic forward problems. Through the construction of a low dimensional prior on a coarse scale and the use of iterative conditioning technique the scales are decouples and efficient inference can proceed. This work considers nonlinear mappings from a fine scale to a coarse scale based on the Multiscale Finite Element Method. Permeability characterization is the primary focus but a discussion of other applications is also provided. After some theoretical justification, several test problems are shown that demonstrate the efficiency of the multiscale framework.
by Matthew David Parno.
S.M.
Biezemans, Rutger. "Multiscale methods : non-intrusive implementation, advection-dominated problems and related topics." Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2023. http://www.theses.fr/2023ENPC0029.
Full textThis thesis is concerned with computational methods for multiscale partial differential equations (PDEs), and in particular the multiscale finite element method (MsFEM). This is a finite element type method that performs a Galerkin approximation of the PDE on a problem-dependent basis. Three particular difficulties related to the method are addressed in this thesis. First, the intrusiveness of the MsFEM is considered. Since the MsFEM uses a problem-dependent basis, it cannot easily be implemented in generic industrial codes and this hinders its adoption beyond academic environments. A generic methodology is proposed that translates the MsFEM into an effective problem that can be solved by generic codes. It is shown by theoretical convergence estimates and numerical experiments that the new methodology is as accurate as the original MsFEM. Second, MsFEMs for advection-dominated problems are studied. These problems cause additional instabilities for naive discretizations. An explanation is found for the instability of previously proposed methods. Numerical experiments show the stability of an MsFEM with Crouzeix-Raviart type boundary conditions enriched with bubble functions. Third, a new convergence analysis for the MsFEM is presented that, for the first time, establishes convergence under minimal regularity hypotheses. This bridges an important gap between the theoretical understanding of the method and its field of application, where the usual regularity hypotheses are rarely satisfied
Litvinenko, Alexander [Verfasser]. "Application of hierarchical matrices for solving multiscale problems / Alexander Litvinenko." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193181313/34.
Full textAlebrand, Sven [Verfasser], and Bernard [Akademischer Betreuer] Haasdonk. "Efficient schemes for parameterized multiscale problems / Sven Alebrand. Betreuer: Bernard Haasdonk." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/106850594X/34.
Full textJohnsen, Pernilla. "Homogenization of Partial Differential Equations using Multiscale Convergence Methods." Licentiate thesis, Mittuniversitetet, Institutionen för matematik och ämnesdidaktik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42036.
Full textSchöps, Sebastian [Verfasser]. "Multiscale Modeling and Multirate Time-Integration of Field/Circuit Coupled Problems / Sebastian Schöps." Wuppertal : Universitätsbibliothek Wuppertal, 2011. http://d-nb.info/1013799690/34.
Full textBeck, Andrea [Verfasser]. "High Order Discontinuous Galerkin Methods for the Simulation of Multiscale Problems / Andrea Beck." München : Verlag Dr. Hut, 2015. http://d-nb.info/1074063082/34.
Full textMiller, Eric Lawrence. "The application of multiscale and stochastic techniques to the solution of inverse problems." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11616.
Full textIncludes bibliographical references (leaves 295-306).
by Eric Lawrence Miller.
Ph.D.
Fieguth, Paul Werner 1968. "Application of multiscale estimation to large scale multidimensional imaging and remote sensing problems." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11409.
Full textVita.
Includes bibliographical references (p. 287-298).
by Paul Werner Fieguth.
Ph.D.
Irving, William W. (William Wood). "Multiscale stochastic realization and model identification with applications to large-scale estimation problems." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11094.
Full textIncludes bibliographical references (p. 187-191).
by William W. Irving.
Ph.D.
Mishra, Sudib Kumar. "DEVELOPMENT OF A MULTISCALE AND MULTIPHYSICS SIMULATION FRAMEWORK FOR REACTION-DIFFUSION-CONVECTION PROBLEMS." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/194088.
Full textMarras, Simone. "Variational multiscale stabilization of finite and spectral elements for dry and moist atmospheric problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/112755.
Full textEn esta tesis los métodos de elementos finitos y espectrales (FEM - finite element method y SEM- spectral element method, respectivamente), aplicados a los problemas de simulaciones atmosféricas, se exploran a través del método de estabilización conocidocomo Variational Multiscale Stabilization (VMS). Tres razones fundamentales justifican este esfuerzo: (i) la necesidad de tener nuevos métodos de solución de las ecuaciones diferenciales a las derivadas parciales usando máquinas paralelas de gran escala –un entorno en expansión en muchos campos de la mecánica computacional, dentro de la cual la predicción numérica de la dinámica atmosférica (NWP-numerical weather prediction)representa una aplicación importante. Métodos del tipo basado en elementos(por ejemplo, FEM, SEM, Galerkin discontinuo) presentan grandes ventajas en el desarrollo de códigos paralelos; (ii) la flexibilidad intrínseca de tales métodos respecto a lageometría de la malla computacional hace que esos métodos sean los candidatos ideales para códigos atmosféricos con mallas adaptativas; y (iii) la difusión localizada que VMSintroduce representa una mejora en las soluciones de problemas con física compleja en los cuales la difusión artificial clásica no funcionaría. La aplicación de FEM o SEM con VMS a problemas de simulaciones atmosféricas es una estrategia innovadora en un campo de investigación abierto. En primera instancia, FEM y VMS vienen descritos y derivados para la solución de flujos estratificados a bajo número de Mach en el contexto de la dinámica atmosférica. La validez del método para simular flujos estratificados es verificada por medio de test estándar aceptado por la comunidad dentro del campo deNWP. Los test incluyen simulaciones de flujos térmicos con efectos de gravedad. Se demostrará que la estabilidad del método numérico se preserva dentro de los regímenesde interés y se discutirá una comparación numérica de los resultados frente a aquellos hallados en la literatura. En segunda instancia, la capacidad de VMS para estabilizarmétodos FEM en problemas de advección dominante (i.e. ecuaciones de Euler y ecuaciones de transporte) se implementa además en la solución a elementos espectrales de alto orden en problemas de advección-difusión. Hasta donde el autor sabe, esta es una contribución original a la literatura de métodos basados en elementos espectrales en problemas de transporte atmosférico. El problema de monotonicidad con métodos de alto orden es tratado mediante la combinación de SEM+VMS con una técnica de shockcapturing para un mejor tratamiento de las discontinuidades. Esta es una alternativa a los filtros que normalmente se aplican a SEM para eilminar las oscilaciones de Gibbsque caracterizan las soluciones de alto orden. Como último punto, se implementa un esquema de humedad acoplado con el núcleo en elementos finitos; este es un primer paso hacia simulaciones atmosféricas más realistas. La microfísica de Kessler se emplea para simular la formación de nubes y tormentas cálidas (warm clouds: no permite la formación de hielo). Esta última parte combina la solución de las ecuaciones de Eulerpara atmósferas estratificadas con la solución de un sistema de ecuaciones de transporte de tres estados de agua: vapor, nubes y lluvia. La calidad del método es verificadautilizando simulaciones de tormenta en dos y tres dimensiones.
Millward, Raymond. "A new adaptive multiscale finite element method with applications to high contrast interface problems." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.544505.
Full textWei, Xiupeng. "Multiscale modeling and simulation of material phase change problems: ice melting and copper crystallization." Thesis, University of Iowa, 2010. https://ir.uiowa.edu/etd/904.
Full textPersson, Jens. "Selected Topics in Homogenization." Doctoral thesis, Mittuniversitetet, Institutionen för teknik och hållbar utveckling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-16230.
Full textHuvudsakligt fokus i avhandlingen ligger på homogeniseringen av vissa elliptiska och paraboliska problem. Mer precist så homogeniserar vi: ickeperiodiska linjära elliptiska problem i två dimensioner med homotetisk skalning; två typer av evolutionsmultiskaliga linjära paraboliska problem, en med två mikroskopiska skalor i både rum och tid där de senare ges i form av en tvåparameterfamilj, och en med två mikroskopiska skalor i rum och tre i tid som ges i form av fixa potensfunktioner; samt, slutligen, evolutionsmultiskaliga monotona paraboliska problem med en mikroskopisk skala i rum och ett godtyckligt antal i tid som inte är begränsade till att vara givna i form av potensfunktioner. För att kunna uppnå homogeniseringsresultat för dessa problem så studerar och utvecklar vi teorin för tvåskalekonvergens och besläktade begrepp. Speciellt så utvecklar vi begreppet mycket svag tvåskalekonvergens med generaliseringar, och vi studerar en tillämpningav denna konvergenstyp där den används för att detektera förekomsten av heterogenitetsskalor.
Ferreira, Rita Alexandra Gonçalves. "Spectral and homogenization problems." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/7856.
Full textFundação para a Ciência e a Tecnologia through the Carnegie Mellon | Portugal Program under Grant SFRH/BD/35695/2007, the Financiamento Base 20010 ISFL–1–297, PTDC/MAT/109973/2009 and UTA
Goncalves-Ferreira, Rita Alexandria. "Spectral and Homogenization Problems." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/83.
Full textKronsbein, Cornelia [Verfasser], and Oleg [Akademischer Betreuer] Iliev. "On selected efficient numerical methods for multiscale problems with stochastic coefficients / Cornelia Kronsbein. Betreuer: Oleg Iliev." Kaiserslautern : Technische Universität Kaiserslautern, 2013. http://d-nb.info/1030521409/34.
Full textBeck, Andrea [Verfasser], and Claus-Dieter [Akademischer Betreuer] Munz. "High order discontinuous Galerkin methods for the simulation of multiscale problems / Andrea Beck. Betreuer: Claus-Dieter Munz." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/1075191025/34.
Full textPersson, Jens. "Homogenization of Some Selected Elliptic and Parabolic Problems Employing Suitable Generalized Modes of Two-Scale Convergence." Licentiate thesis, Mid Sweden University, Department of Engineering and Sustainable Development, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-11991.
Full textThe present thesis is devoted to the homogenization of certain elliptic and parabolic partial differential equations by means of appropriate generalizations of the notion of two-scale convergence. Since homogenization is defined in terms of H-convergence, we desire to find the H-limits of sequences of periodic monotone parabolic operators with two spatial scales and an arbitrary number of temporal scales and the H-limits of sequences of two-dimensional possibly non-periodic linear elliptic operators by utilizing the theories for evolution-multiscale convergence and λ-scale convergence, respectively, which are generalizations of the classical two-scale convergence mode and custom-made to treat homogenization problems of the prescribed kinds. Concerning the multiscaled parabolic problems, we find that the result of the homogenization depends on the behavior of the temporal scale functions. The temporal scale functions considered in the thesis may, in the sense explained in the text, be slow or rapid and in resonance or not in resonance with respect to the spatial scale function. The homogenization for the possibly non-periodic elliptic problems gives the same result as for the corresponding periodic problems but with the exception that the local gradient operator is everywhere substituted by a differential operator consisting of a product of the local gradient operator and matrix describing the geometry and which depends, effectively, parametrically on the global variable.
Álamo, Miguel del [Verfasser], Axel [Akademischer Betreuer] Munk, Axel [Gutachter] Munk, and Thorsten [Gutachter] Hohage. "Multiscale Total Variation Estimators for Regression and Inverse Problems / Miguel del Álamo ; Gutachter: Axel Munk, Thorsten Hohage ; Betreuer: Axel Munk." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1189904624/34.
Full textWang, Xiaojun. "Well-posedness results for a class of complex flow problems in the high Weissenberg number limit." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/27669.
Full textPh. D.
Hellman, Fredrik. "Numerical Methods for Darcy Flow Problems with Rough and Uncertain Data." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-318589.
Full textMadiot, François. "Méthodes éléments finis de type MsFEM pour des problèmes d'advection-diffusion." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1052/document.
Full textThis work essentially deals with the development and the study of multiscale finite element methods for multiscale advection-diffusion problems in the advection-dominated regime. Two types of approaches are investigated: Take into account the advection in the construction of the approximation space, or apply a stabilization method. We begin with advection-dominated advection-diffusion problems in heterogeneous media. We carry on with advection-dominated advection-diffusion problems posed in perforated domains.Here, we focus on the Crouzeix-Raviart type boundary condition for the construction of the multiscale finite elements. We consider two different situations depending on the condition prescribed on the boundary of the perforations: the homogeneous Dirichlet condition or the homogeneous Neumann condition. This study relies on a coercivity assumption.Lastly, we consider a general framework where the advection-diffusion operator is not coercive, possibly in the advection-dominated regime. We propose a Finite Element approach based on the use of an invariant measure associated to the adjoint operator. This approach is unconditionally well-posed in the mesh size. We compare it numerically to a standard stabilization method
Waldspurger, Irène. "Wavelet transform modulus : phase retrieval and scattering." Thesis, Paris, Ecole normale supérieure, 2015. http://www.theses.fr/2015ENSU0036/document.
Full textAutomatically understanding the content of a natural signal, like a sound or an image, is in general a difficult task. In their naive representation, signals are indeed complicated objects, belonging to high-dimensional spaces. With a different representation, they can however be easier to interpret. This thesis considers a representation commonly used in these cases, in particular for theanalysis of audio signals: the modulus of the wavelet transform. To better understand the behaviour of this operator, we study, from a theoretical as well as algorithmic point of view, the corresponding inverse problem: the reconstruction of a signal from the modulus of its wavelet transform. This problem belongs to a wider class of inverse problems: phase retrieval problems. In a first chapter, we describe a new algorithm, PhaseCut, which numerically solves a generic phase retrieval problem. Like the similar algorithm PhaseLift, PhaseCut relies on a convex relaxation of the phase retrieval problem, which happens to be of the same form as relaxations of the widely studied problem MaxCut. We compare the performances of PhaseCut and PhaseLift, in terms of precision and complexity. In the next two chapters, we study the specific case of phase retrieval for the wavelet transform. We show that any function with no negative frequencies is uniquely determined (up to a global phase) by the modulus of its wavelet transform, but that the reconstruction from the modulus is not stable to noise, for a strong notion of stability. However, we prove a local stability property. We also present a new non-convex phase retrieval algorithm, which is specific to the case of the wavelet transform, and we numerically study its performances. Finally, in the last two chapters, we study a more sophisticated representation, built from the modulus of the wavelet transform: the scattering transform. Our goal is to understand which properties of a signal are characterized by its scattering transform. We first prove that the energy of scattering coefficients of a signal, at a given order, is upper bounded by the energy of the signal itself, convolved with a high-pass filter that depends on the order. We then study a generalization of the scattering transform, for stationary processes. We show that, in finite dimension, this generalized transform preserves the norm. In dimension one, we also show that the generalized scattering coefficients of a process characterize the tail of its distribution
Heinlein, Alexander Verfasser], Axel [Gutachter] Klawonn, and Oliver [Gutachter] [Rheinbach. "Parallel Overlapping Schwarz Preconditioners and Multiscale Discretizations with Applications to Fluid-Structure Interaction and Highly Heterogeneous Problems / Alexander Heinlein. Gutachter: Axel Klawonn ; Oliver Rheinbach." Köln : Universitäts- und Stadtbibliothek Köln, 2016. http://d-nb.info/1105645061/34.
Full textKrishnan, Bharath Kumar. "A multiscale approximation algorithm for the cardinality constrained knapsack problem." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34612.
Full textIncludes bibliographical references (leaves 83-86).
I develop a multiscale approximation algorithm for the cardinality constrained knapsack problem. The algorithm consists of three steps: a rounding and reduction step where a hierarchical representation of the problem data ranging from coarse to fine is generated, a solution step where a coarse solution is computed, and a refinement step where the accuracy of the solution is improved by refining the problem representation. I demonstrate that the algorithm is fully polynomial with a runtime complexity that improves upon the previous best known fully polynomial approximation scheme. Through an extensive computational study, I show that the running times of the algorithm is less than or equal to that of a commercial integer programming package with little loss in solution accuracy.
by Bharath Kumar Krishnan.
Ph.D.
Akhtar, Nahid. "A multiscale harmonic spline interpolation method for the inverse spheroidal gravimetric problem." Aachen Shaker, 2009. http://d-nb.info/1000335380/04.
Full textBerkel, Paula. "Multiscale methods for the combined inversion of normal mode and gravity variations." Aachen Shaker, 2009. http://d-nb.info/997085304/04.
Full textAkhtar, Nahid [Verfasser]. "A Multiscale Harmonic Spline Interpolation Method for the Inverse Spheroidal Gravimetric Problem / Nahid Akhtar." Aachen : Shaker, 2010. http://d-nb.info/1124365478/34.
Full textNguyen, Manh Tu. "Identification multi-échelle du champ d'élasticité apparent stochastique de microstructures hétérogènes : application à un tissu biologique." Thesis, Paris Est, 2013. http://www.theses.fr/2013PEST1135/document.
Full textIn the framework of linear elasticity 3D for complex microstructures that cannot be simply described in terms of components such as biological tissues, we propose, in this research work, a methodology for multiscale experimental identification of the apparent elasticity random field of the microstructure at mesoscopic scale using displacement field measurements at macroscopic scale and mesoscopic scale. We can then use this methodology in the case of changing scale to obtain the mechanical properties at macroscale. In this context, the major issue is the experimental identification by solving a statistical inverse problem of the stochastic modeling introduced for the apparent elasticity random field at mesoscale. This experimental identification allows to validate the modeling and makes it useful for existing materials with complex microstructures. This research work is proposed in this context in which experimentation and experimental validation based on simultaneous measurements of field imaging at macroscale and mesoscale are made on the cortical bonemakes it useful for existing materials with complex microstructures. This research work is proposed in this context in which experimentation and experimental validation based on simultaneous measurements of field imaging at macroscale and mesoscale are made on the cortical bone
Santesarti, Gianluca. "Simulazioni agli elementi finti per problemi di interazione fluido-struttura con approccio multiscala." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textMarzi, Emanuela. "Controllo ottimo di problemi di interazione fluido-struttura multiscala attraverso simulazioni agli elementi finiti." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textPont, Ribas Arnau. "Numerical simulation of aeroacoustics using the variational multiscale method : application to the problem of human phonation." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/461955.
Full textLa solució del problema de la veu humana des de la mecànica computacional és objecte d'estudi per part de diverses disciplines, com per exemple la Dinàmica de Fluids Computacional (CFD), la biomecànica o l'acústica. En la present tesi s'encara el problema des de l'Aeroacústica Computacional (CAA) i el primer objectiu consisteix en desenvolupar mètodes numèrics d'aplicació general que puguin ser part de la solució, amb un cost computacional raonable, de qualsevol escenari relacionat amb la fonació humana. En aquest sentit, només les equacions de flux compressible de Navier-Stokes aconsegueixen descriure totes les escales alhora, tant les dinàmiques com les acústiques, sense recórrer a cap modelització, conegut com a Simulació Numèrica Directa (DNS), però el seu cost computacional és normalment inassumible. Fins i tot en el cas d'una Large Eddy Simulation (LES), on les escales petites són modelades, el cost pot resultar excessiu a causa de la complexitat del problema. Aquest fet encara és més accentuat en el règim de baix nombre de Mach donada la gran disparitat entre la velocitat del fluid i la del so i el conseqüent mal condicionament del sistema d'equacions, sobretot en esquemes conservatius. Per tant, tenint en compte les baixes velocitats de l'aire al tracte vocal, té sentit recórrer a l'aproximació de flux incompressible. Els fluids incompressibles no inclouen la part acústica, de manera que cal calcular un segon problema que descrigui la propagació de les fonts de so. Aquests són els anomenats mètodes híbrids, que permeten un millor condicionament del problema gràcies a la segregació de les escales acústiques de les dinàmiques. S'ha pres l'analogia de Lighthill com a punt de partida, però la seva restricció a casos en camp obert ha motivat l'extensió del mètode cap a geometries arbitràries i fluxos no uniformes. El primer desenvolupament en aquesta direcció consisteix en la divisió de l'analogia de Lighthill en una component quadrupolar i una altra de dipolar, fet que no altera el problema original però que permet analitzar la contribució de cossos sòlids en la generació de so. El segon pas consisteix en el desenvolupament d'una formulació estabilitzada en elements finits (FEM) de les Acoustic Perturbation Equations (APE), que incorporen la propagació en fluxos no uniformes i que realitzen un filtrat complet de les escales acústiques. El pas final assumeix la compressibilitat del fluid però omet l'equació d'energia, i per tant considera la dinàmica i l'acústica fenòmens isentròpics. En aquest cas el solver és unificat i per tant s'ha desenvolupat un mètode per imposar condicions de contorn compatibles entre ambdues escales del fluid. Finalment, les formulacions numèriques han estat adaptades a casos de fonació dinàmica mitjançant una referència Arbitrària Lagrangiana Euleriana (ALE). A més, es presenta una estratègia de remallat amb interpolació conservativa entre malles. En l'últim capítol es presenta un cas de fonació humana que suposa un repte per la seva complexitat i que ha servit per validar les formulacions numèriques presentades: la fricativa sorda /s/. A diferència de les vocals, que són sons sonors definits per unes poques freqüències característiques, les fricatives no poden ser simulades com la propagació d'una funció analítica coneguda (pols glotal) perquè les fonts de so corresponen a un rang ampli d'escales turbulents. Per tant és necessària una simulació CFD per tal de capturar-les. El problema se soluciona amb un model de turbulència LES amb el mètode d'estabilització Variational Multiscale. L'anàlisi se centra en la representació numèrica de la turbulència i en el senyal acústic al camp llunyà, tot comparant-lo amb dades experimentals. Finalment, s'avalua la contribució dels incisius superiors en la generació del so fricatiu sord /s/. Totes les simulacions han estat realitzades amb el codi FEM multi-físic en paral·lel FEMUSS, basat en programació orientada a objectes en FORTRAN i en OpenMPI.
Cai, Xiran. "Multiscale investigation of the elastic properties of human cortical bone measured by resonant ultrasound spectroscopy." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS059/document.
Full textBone as an important organ in human body is an extraordinary material which exhibits highly optimized properties, strong yet light weight, stiff yet flexible. Its distinct mechanical properties which fascinates not only scientists but also engineers are the results of the highly hierarchized and organized structure and the compositional properties spanning over several lengths from the nanoscale to the macroscale. Hence, a deep understanding of the parameters affecting bone mechanical behavior is necessary to better predict and treat bone diseases, improve orthopedic implants design, and engineer bio-inspired materials. In this work, a special focus is placed on human cortical bone elastic properties both at the millimeter and micrometer scales. Based on a multimodal approach (resonant ultrasound spectroscopy, synchrotron radiation micro-computed tomography, Fourier transform infrared microspectroscopy and biochemistry experiments) involving an exhaustive amount of microstructural and compositional properties, our results provide strong evidence that intra-cortical porosity and degree of mineralization are the most important determinants of bone stiffness at millimeter scale in an elderly population. Further, the other microstructure characteristics independent of porosity have non measurable effects on bone stiffness at this level. At the micrometer scale, a novel inverse homogenization approach is introduced in this work which can evaluate bone matrix anisotropic elastic properties with a good accuracy for all the stiffness constants. Based on the determined bone matrix elasticity data, we investigated the possible range of the magnitude of microstrain experienced by bone matrix. This work opens a way to better evaluate and understand bone mechanical behaviour at the micrometer level, such as the microstrain that can be sensed by osteocytes and builds the bridge to comprehensively investigate the connections between bone anisotropic properties at the millimeter and micrometer scale, and between the anisotropic microelastic properties and the characteristics at the nanometer scale
Rocca, Layza Vladimir Jaime 1987. "Uso de técnicas de recuperação de imagens para o problema de reidentificação de pessoas." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275548.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-27T11:52:06Z (GMT). No. of bitstreams: 1 RoccaLayza_VladimirJaime_M.pdf: 7769260 bytes, checksum: a60ae46083facfc74cd79a4ab0c83c23 (MD5) Previous issue date: 2015
Resumo: Vários sistemas de vigilância baseados no uso de múltiplas câmeras têm sido propostos recentemente. No entanto, a identificação de pessoas em sequências de vídeos obtidas por várias câmeras com vistas não sobrepostas, comumente conhecida como reidentificação de pessoas, é um problema em aberto. As razões para que este problema seja considerado desafiador referem-se principalmente às restrições nas quais o problema deve ser resolvido. Estas restrições são definidas a partir das características do cenário e dos objetos de interesse (as pessoas): primeiro, as características biométricas de pessoas não podem ser utilizadas como características discriminantes; segundo, a aparência das pessoas muda drasticamente em virtude de variações na posição, iluminação e parâmetros de câmera. Tais restrições fazem com que uma mesma pessoa possa ser observada por múltiplas câmeras como uma pessoa diferente para cada uma delas. Nesta pesquisa, busca-se investigar alternativas para a criação de sistemas de vigilância visando à reidentificação de pessoas. Foram empregadas técnicas de recuperação de imagens por conteúdo tais como descritores de imagens tradicionais e propostos recentemente, análise multiescala, e técnicas de rank aggregation. Os experimentos realizados consideram a utilização de quatro bases de dados comumente utilizadas na avaliação de sistemas de reidentificação de pessoas. Os resultados obtidos mostraram que as técnicas de recuperação de imagens por conteúdo são promissoras para a reidentificação de pessoas, obtendo resultados comparáveis aos métodos do estado da arte
Abstract: Several surveillance systems based on the use of multiple cameras have been proposed recently. However, the identification of people in video sequences obtained from several cameras with non-overlapping views, commonly known as the person reidentification problem, is still an open problem. Person reidentification is a challenging problem due to the constraints under which the problem should be solved. These constraints come from the characteristics of the scenario and the objects of interest (people): first, biometric features may not be used as discriminant information; second, appearance is dramatically modified by changes in position, lighting conditions, and camera parameters. Therefore, in these conditions a unique person can be ''seen'' as a distinct person by different cameras. This research is focused on the investigation of alternatives for the creation of surveillance systems aiming at person reidentification. We intend to use content-based image retrieval techniques, such as traditional and recently proposed image descriptors, multiscale analysis, and rank aggregation approaches. Conducted experiments considered the use of four different datasets, commonly used in the evaluation of person reidentification systems. Obtained results show that the content-based image retrieval techniques are promising to reidentify people, producing equivalent results to the state-of-the-art methods
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
Quintela, Bárbara de Melo. "Implementação computacional paralela da homogeneização por expansão assintótica para análise de problemas mecânicos em 3D." Universidade Federal de Juiz de Fora (UFJF), 2011. https://repositorio.ufjf.br/jspui/handle/ufjf/3536.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T20:15:36Z (GMT) No. of bitstreams: 1 barbarademeloquintela.pdf: 17938706 bytes, checksum: 9ab0cb4d4226bdefe7051c92e73feec9 (MD5)
Made available in DSpace on 2017-03-06T20:15:36Z (GMT). No. of bitstreams: 1 barbarademeloquintela.pdf: 17938706 bytes, checksum: 9ab0cb4d4226bdefe7051c92e73feec9 (MD5) Previous issue date: 2011-01-31
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
A Homogeneização por Expansão Assintótica (HEA) é uma técnica multiescala empregada ao cálculo de propriedades efetivas de meios contínuos com estrutura periódica. As principais vantagens desta técnica são a redução do tamanho do problema a resolver e a possibilidade de se empregar uma propriedade homogeneizada que guarda informações da microestrutura heterogênea. Quando associada ao Método dos Elementos Finitos (MEF), a HEA demanda o emprego de malhas que permitam a imposição de condições de contorno periódicas – sendo portanto necessário especificar tal particularidade quando da geração dos modelos em MEF. Tais modelos representam as células periódicas, que são volumes representativos do meio heterogêneo e, em alguns casos, apresentam uma complexidade geométrica e física que torna imprescindível o emprego de malhas com alto grau de refinamento – levando a um custo computacional significativo. Este trabalho tem por objetivo a obtenção de um programa em Elementos Finitos para a aplicação da HEA à Elasticidade em 3D, empregando técnicas de programação paralela. Foram desenvolvidas versões do programa em 2D: uma sequencial em C e duas paralelas empregando OpenMP e CUDA. Foi implementado com sucesso o programa HEA3D em uma versão sequencial, em linguagem FORTRAN e uma paralela, empregando OpenMP. Para validação dos programas, foram analisadas células periódicas bifásicas e os resultados apresentaram boa concordância com valores experimentais e numéricos disponíveis na literatura. A versão paralela obteve expressivos ganhos de desempenho, com acelerações de desempenho de até 5.3 vezes em relação a versão sequencial.
The Asymptotic Expansion Homogenization (AEH) is a multiscale technique applied to estimate the effective properties of heterogeneous media with periodical structure. The main advantages of this technique are the reduction of the problem size to be solved and the ability to employ an homogenized property that keeps information from the heterogeneous microstructure. In association with the Finite Element Method (FEM), the AEH requires the application of periodic boundary conditions, which must be taken into account during the generation of FE meshes. Such models represent periodic cells, which are representative volumes for heterogeneous media and, in some cases, present a geometric and physics complexity that demands refined meshes, leading to a significant computational cost. The aim of this work is to develop a parallel program that applies both FEM and AEH to estimate the elasticity properties of 3D bodies. A sequential version of the 2D program using C, and parallel versions using OpenMP and CUDA were implemented. A sequential version of the program, called HEA3D, was successfully implemented using FORTRAN. Also, a parallel version of the code was implemented using OpenMP. The validation of the codes consisted of comparisons of the numerical results obtained, with numerical and experimental data available in the literature, showing good agreement. Significant speedups were obtained by the parallel version of the code, achieving speedups up to 5.3 times over its sequential version.
Pacquaut, Guillaume. "Couplage Stokes/Darcy dans un cadre Level-set en grandes déformations pour la simulation des procédés d'élaboration par infusion de résine." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2010. http://tel.archives-ouvertes.fr/tel-00609670.
Full textLelièvre, Tony. "Modèles multi-échelles pour les fluides viscoélastiques." Marne-la-vallée, ENPC, 2004. https://hal.science/tel-00006797.
Full textThe most important part of this work deals with the mathematical analysis of multiscale models of polymeric fluids. These models couple, at the microscopic level, a molecular description of the evolution of the polymer chains (in terms of stochastic differential equations) and, at the macroscopic level, the mass conservation and momentum equations for the solvent (which are partial differential equations). In Chapter 1, we introduce the models and give the main results obtained. In Chapters 2, 4, 5 and 7 we make precise the mathematical meaning and the well-posedness of the equations in either homogeneous flows or plane shear flows for some specific models of polymer chains. In Chapters 2, 3, 6 and 7, we analyse and prove convergence of some numerical schemes. Finally, in Chapter 8, we deal with the longtime behaviour of the coupled system. A second part of this document concerns a magnetohydrodynamic (MHD) problem coming from industry. In Chapter 9, we introduce the problem and the numerical methods used. We present a new test-case in MHD in Chapter 10. Finally, we give a stability analysis of the scheme in Chapter 11
Ferraz, Paola Cunha 1988. "Implementação de um algoritmo multi-escala para sistemas de equações lineares de grande porte mal condicionados provenientes da discretização de problemas elípticos em dinâmica de fluidos em meios porosos." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307022.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T22:28:13Z (GMT). No. of bitstreams: 1 Ferraz_PaolaCunha_M.pdf: 6535346 bytes, checksum: 5f9c9ba53cd3e63fc60c09c90ad2c625 (MD5) Previous issue date: 2015
Resumo: O foco deste trabalho é aproximação numérica de problemas envolvendo equações diferenciais parciais (EDPs), de natureza elíptica, no contexto de aplicações em dinâmica de fluidos em meios porosos. Especificamente, a dissertação pretende contribuir com uma implementação de um algoritmo multiescala e multigrid, recentemente introduzido na literatura, para resolução aproximada de sistemas de equações lineares de grande porte e mal condicionados, proveniente dessa classe de EDPs, tipicamente associada a problemas de Poisson de pressão-velocidade com condições de contornos típicas de fluxo em meios porosos. O problema concreto de Poisson discutido neste trabalho será desacoplado do sistema de transporte de EDPs de convecção-difusão, com convecção dominante, e linearizado por meio do emprego de uma técnica de decomposição de operadores. A metodologia para a discretização do problema elíptico de Poisson é elementos finitos mistos híbridos. A resolução numérica do sistema linear resultante deste procedimento será realizado via um método do tipo Gradientes Conjugados com Pré-condicionamento (PCG) multiescala e multigrid. Combinamos as metodologias multi-escala e multigrid de modo a capturar os distintos comprimentos de onda associados aos diferentes comprimentos de onda do operador diferencial auto-adjunto de Poisson, fortemente influenciado pela heterogeneidade das propriedades geológicas do meio poroso, em particular da permeabilidade absoluta, que pode exibir flutuações em várias ordens de grandeza. Experimentos computacionais em aplicações de problemas de dinâmica de fluidos em meios porosos são apresentados e discutidos para verificação dos resultados obtidos
Abstract: The focus of this work is the numerical approximation of differential problems involving partial differential equations (PDE's) of elliptic nature, in the context of modelling and simulation in fluid dynamics in porous media. The dissertation aims to contribute with an implementation of a multiscale multigrid algorithm, recently introduced in the literature, designed for solving ill-conditioned large linear systems of equations derived from those classes of PDE's, typically associated with Poisson problems of pressure-velocity with boundary conditions typical of flow in porous media. The Poisson problem discussed here is identified from the coupled convection-diffusion transport system counterpart of PDE's, with dominated convection, and by a linearization by means the use of an operator splitting approach. The methodology used for the discretization of the Poisson elliptic problem is by mixed hybrid finite elements. The numerical solution of the resulting linear system will be addressed by a multiscale multigrid preconditioned conjugate gradient (PCG) method. We combine both methodologies in order to capture the distinct wavelengths associated with the different wavelengths from the assosiated self-adjoint Poisson operator, strongly influenced by the heterogeneity of the geological properties of the porous media, in particular to the absolute permeability tensor, which in turn might exhibit very large fluctuations of orders of magnitude. Numerical experiments in applications of fluid dynamics problems in porous media are presented and discussed for a verification of the results obtained by direct numerical simulations with the multiscale multigrid algorithm under consideration
Mestrado
Matematica Aplicada
Mestra em Matemática Aplicada
Nguepedja, Nankep Mac jugal. "Modélisation stochastique de systèmes biologiques multi-échelles et inhomogènes en espace." Thesis, Rennes, École normale supérieure, 2018. http://www.theses.fr/2018ENSR0012/document.
Full textThe growing needs of precise predictions for complex systems lead to introducing stronger mathematical models, taking into account an increasing number of parameters added to time: space, stochasticity, scales of dynamics. Combining these parameters gives rise to spatial --or spatially inhomogeneous-- multiscale stochastic models. However, such models are difficult to study and their simulation is extremely time consuming, making their use not easy. Still, their analysis has allowed one to develop powerful tools for one scale models, among which are the law of large numbers (LLN) and the central limit theorem (CLT), and, afterward, to derive simpler models and accelrated algorithms. In that deduction process, the so-called hybrid models and algorithms have arisen in the multiscale case, but without any prior rigorous analysis. The question of hybrid approximation then shows up, and its consistency is a particularly important motivation of this PhD thesis.In 2012, criteria for hybrid approximations of some homogeneous regulation gene network models were established by Crudu, Debussche, Muller and Radulescu. The aim of this PhD thesis is to complete their work and generalize it afterward to a spatial framework.We have developed and simplified different models. They all are time continuous pure jump Markov processes. The approach points out the conditions allowing on the the one hand deterministic approximations by solutions of evolution equations of type reaction-advection-diffusion, and, on the other hand, hybrid approximations by hybrid stochastic processes. In the field of biochemical reaction networks, we establish a CLT. It corresponds to a hybrid approximation of a simplified homogeneous model (due to Crudu et al.). Then a LLN is obtained for a spatial model with two time scales. Afterward, a hybrid approximation is established, for a two time-space scales spatial model. Finally, the asymptotic behaviour in large population and long time are respectively presented for a model of cholera epidemic, through a LLN followed by the upper bound for compact sets, in the context of a corresponding large deviation principle (LDP).Interesting future works would be, among others, to study other spatial geometries, to generalize the CLT, to complete the LDP estimates, and to study complex systems from other fields
Moreau, Antoine. "Calcul des propriétés homogénéisées de transfert dans les matériaux poreux par des méthodes de réduction de modèle : Application aux matériaux cimentaires." Thesis, La Rochelle, 2022. http://www.theses.fr/2022LAROS024.
Full textIn this thesis, we manage to combine two existing tools in mechanics: periodic homogenization, and reduced-order modelling, to modelize corrosion of reinforced concrete structures. Indeed, chloride and carbonate diffusion take place their pores and eventually oxydate their steel skeleton. The simulation of this degradation is difficult to afford because of both the material heterogenenity, and its microstructure variability. Periodic homogenization provides a multiscale model which takes care of the first of these issues. Nevertheless, it assumes the existence of a representative elementary volume (REV) of the material at the microscopical scale. I order to afford the microstructure variability, we must solve the equations which arise from periodic homogenization in a reduced time. This motivates the use of model order reduction, and especially the POD. In this work we design geometrical transformations that transport the original homogenization equations on the fluid domain of a unique REV. Indeed, the POD method can’t be directly performed on a variable geometrical space like the material pore network. Secondly, we adapt model order reduction to the Poisson-Boltzmann equation, which is strongly nonlinear, and which rules ionic electro diffusion at the Debye length scale. Finally, we combine these new methods to other existing tools in model order reduction (ITSGM interpolatin, MPS method), in order to couple the micro- and macroscopic components of periodic homogenization
Zhang, Tianyu. "Problème inverse statistique multi-échelle pour l'identification des champs aléatoires de propriétés élastiques." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC2068.
Full textWithin the framework of linear elasticity theory, the numerical modeling and simulation of the mechanical behavior of heterogeneous materials with complex random microstructure give rise to many scientific challenges at different scales. Despite that at macroscale such materials are usually modeled as homogeneous and deterministic elastic media, they are not only heterogeneous and random at microscale, but they often also cannot be properly described by the local morphological and mechanical properties of their constituents. Consequently, a mesoscale is introduced between macroscale and microscale, for which the mechanical properties of such a random linear elastic medium are represented by a prior non-Gaussian stochastic model parameterized by a small or moderate number of unknown hyperparameters. In order to identify these hyperparameters, an innovative methodology has been recently proposed by solving a multiscale statistical inverse problem using only partial and limited experimental data at both macroscale and mesoscale. It has been formulated as a multi-objective optimization problem which consists in minimizing a (vector-valued) multi-objective cost function defined by three numerical indicators corresponding to (scalar-valued) single-objective cost functions for quantifying and minimizing distances between multiscale experimental data measured simultaneously at both macroscale and mesoscale on a single specimen subjected to a static test, and the numerical solutions of deterministic and stochastic computational models used for simulating the multiscale experimental test configuration under uncertainties. This research work aims at contributing to the improvement of the multiscale statistical inverse identification method in terms of computational efficiency, accuracy and robustness by introducing (i) an additional mesoscopic numerical indicator allowing the distance between the spatial correlation length(s) of the measured experimental fields and the one(s) of the computed numerical fields to be quantified at mesoscale, so that each hyperparameter of the prior stochastic model has its own dedicated single-objective cost-function, thus allowing the time-consuming global optimization algorithm (genetic algorithm) to be avoided and replaced with a more efficient algorithm, such as the fixed-point iterative algorithm, for solving the underlying multi-objective optimization problem with a lower computational cost, and (ii) an ad hoc stochastic representation of the hyperparameters involved in the prior stochastic model of the random elasticity field at mesoscale by modeling them as random variables, for which the probability distributions can be constructed by using the maximum entropy principle under a set of constraints defined by the available and objective information, and whose hyperparameters can be determined using the maximum likelihood estimation method with the available data, in order to enhance both the robustness and accuracy of the statistical inverse identification method of the prior stochastic model. Meanwhile, we propose as well to solve the multi-objective optimization problem by using machine learning based on artificial neural networks. Finally, the improved methodology is first validated on a fictitious virtual material within the framework of 2D plane stress and 3D linear elasticity theory, and then illustrated on a real heterogenous biological material (beef cortical bone) in 2D plane stress linear elasticity