Academic literature on the topic 'Multiscale problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiscale problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiscale problems"
Cohen, Albert, Wolfgang Dahmen, Ronald DeVore, and Angela Kunoth. "Multiscale and High-Dimensional Problems." Oberwolfach Reports 10, no. 3 (2013): 2179–257. http://dx.doi.org/10.4171/owr/2013/39.
Full textCohen, Albert, Wolfgang Dahmen, Ronald DeVore, and Angela Kunoth. "Multiscale and High-Dimensional Problems." Oberwolfach Reports 14, no. 1 (January 2, 2018): 1001–51. http://dx.doi.org/10.4171/owr/2017/17.
Full textWIJESEKERA, NIMAL, GUOGANG FENG, and THOMAS L. BECK. "MULTISCALE ALGORITHMS FOR EIGENVALUE PROBLEMS." Journal of Theoretical and Computational Chemistry 02, no. 04 (December 2003): 553–61. http://dx.doi.org/10.1142/s0219633603000665.
Full textHyman, J. M. "Patch Dynamics for Multiscale Problems." Computing in Science and Engineering 7, no. 3 (May 2005): 47–53. http://dx.doi.org/10.1109/mcse.2005.57.
Full textMålqvist, Axel. "Multiscale Methods for Elliptic Problems." Multiscale Modeling & Simulation 9, no. 3 (July 2011): 1064–86. http://dx.doi.org/10.1137/090775592.
Full textProksch, Katharina, Frank Werner, and Axel Munk. "Multiscale scanning in inverse problems." Annals of Statistics 46, no. 6B (December 2018): 3569–602. http://dx.doi.org/10.1214/17-aos1669.
Full textMålqvist, Axel, and Daniel Peterseim. "Localization of elliptic multiscale problems." Mathematics of Computation 83, no. 290 (June 16, 2014): 2583–603. http://dx.doi.org/10.1090/s0025-5718-2014-02868-8.
Full textKickinger, Ferdinand. "Multiscale Problems; Meshes and Solvers." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 78, S3 (1998): 963–64. http://dx.doi.org/10.1002/zamm.19980781552.
Full textMasud, Arif, and Leopoldo P. Franca. "A hierarchical multiscale framework for problems with multiscale source terms." Computer Methods in Applied Mechanics and Engineering 197, no. 33-40 (June 2008): 2692–700. http://dx.doi.org/10.1016/j.cma.2007.12.024.
Full textSong, Fei, and Weibing Deng. "Multiscale discontinuous Petrov-Galerkin method for the multiscale elliptic problems." Numerical Methods for Partial Differential Equations 34, no. 1 (August 16, 2017): 184–210. http://dx.doi.org/10.1002/num.22191.
Full textDissertations / Theses on the topic "Multiscale problems"
Miller, Mark Andrew. "Multiscale techniques for imaging problems." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613033.
Full textHolst, Henrik. "Multiscale Methods for Wave Propagation Problems." Doctoral thesis, KTH, Numerisk analys, NA, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48072.
Full textSimulering av högfrekventa vågor i heterogena material är viktigt i många tillämpningar, till exempel seismologi, elektromagnetism, akustik och strömningsmekanik. Dessa tillämpningar är exempel på klassiska multiskalproblem och har typiskt en för hög beräkningskostnad, i form av datortid och minne, för en direkt numerisk simulering. De minsta skalorna i problemet måste vara upplösta över ett område som representeras av dom största skalorna och detta innebär en hög beräkningskostnad. Vi har utvecklat och analyserat numeriska metoder för vågekvationer med snabbt oscillerande lösningar $u^{\varepsilon}$ där $\varepsilon$ representerar storleken på den minsta skalan. Metoderna är baserade på ramverket \emph{heterogena multiskalmetoden} (HMM). I dessa metoder approximeras den hastigt oscillerande mikroskalan med små lokala mikroproblem av storleksordning $\varepsilon$ i tids- och rumsriktning. Lösningen till mikroproblemen är kopplade till en global modell på makroskalan i divergensform $u_{tt} = \nabla \cdot F$, där flödet $F$ ges av mikroproblemen. De hastiga oscillationerna kan härröras från snabba variationer i hastighetsfältet, begynnelsevillkor eller randvillkor. Vi har utvecklat algoritmer som kopplar mikro- och makroskalor i bägge fallen. Valet av makroskalvariabler inspireras av de analytiska metoderna homogenisering och geometrisk optik. I det första fallet används lokala medelvärden $u \approx u^{\varepsilon}$ på makroskalnivån. I det andra fallet är fas $\phi$ och energi bra val av makroskalvariabler. Det finns två huvudmål med vår forskning. Ett mål är att utveckla och analysera algoritmer för simulering av vågproblem med multipla skalor med låg beräkningskostnad (om möjligt, oberoende av $\varepsilon$) för problem över begränsad tid. Vi visar numeriska resultat från multiskalproblem i en, två och tre dimensioner. Det andra målet är att att använda vågutbredning som en modell för att bättre förstå HMM ramverket. Ett exempel på detta är simulering med oscillerande hastighetsfält över lång tid. Efter lång tid så uppträder dispersion. Vi har demonstrerat att vår HMM-metod, som ursprungligen var formulerad för begränsad tid, även kan appliceras på detta fall. För att få den rätta dispersionen krävs högre noggrannhetsordning, men metoden ändrar inte form. Detta visar på metodens robusthet.
QC 20111117
Söderlund, Robert. "Finite element methods for multiscale/multiphysics problems." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-42713.
Full textElfverson, Daniel. "Discontinuous Galerkin Multiscale Methods for Elliptic Problems." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960.
Full textSavchuk, Tatyana. "The multiscale finite element method for elliptic problems." Ann Arbor, Mich. : ProQuest, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3245025.
Full textTitle from PDF title page (viewed Mar. 18, 2008). Source: Dissertation Abstracts International, Volume: 67-12, Section: B, page: 7120. Adviser: Zhangxin (John) Chen. Includes bibliographical references.
Kudreyko, Aleksey. "Multiscale wavelet analysis for integral and differential problems." Doctoral thesis, Universita degli studi di Salerno, 2011. http://hdl.handle.net/10556/176.
Full textThe object of the present research is wavelet analysis of integral and differential problems by means of harmonic and circular wavelets. It is shown that circular wavelets constitute a complete basis for L2[0; 1] functions, and form multiresolution analysis. Multiresolution analysis can be briefly considered as a decomposition of L2[0; 1] into a complete set of scale depending subspaces of wavelets. Thus, integral operators, differential operators, and L2(R) functions were investigated as scale depending functions through their projection onto these subspaces of wavelets. In particular: - conditions when a certain wavelet can be applied for solution of integral or differential problem are given; - it is shown that the accuracy of this approach exponentially grows when increasing the number of vanishing moments and scaling parameter; - wavelet solutions of low-dimensional nonlinear partial differential equations are compared with other methods; - wavelet-based approach is applied to low-dimensional Fredholm integral equations and the Galerkin method for two-dimensional Fredholm integral equations.[edited by author]. Oggetto della seguente ricerca `e l’analisi di problemi differenziali e integrali, utilizzando wavelet armoniche e wavelet armoniche periodiche. Si dimostra che le wavelet periodiche costituiscono una base completa per le funzioni L2[0; 1] e formano un’analisi multiscala. L’analisi multirisoluzione pu`o essere brevemente considerata come la decomposizione di L2[0; 1] in un insieme completo di sottospazi di wavelet dipendenti da un fattore di scala. Pertanto gli operatori integrali e differenziali e le funzioni L2(R) vengono studiati come funzioni di scala mediante le corrispondenti proiezioni in questi sottospazi di wavelet. In particolare, vengono sviluppati quattro principali argomenti: - sono state individuate le condizioni per applicare una data famiglia di wavelets alla soluzione di un data problema differenziale o integrale; - si `e dimostrato che la precisione di questo approccio cresce esponenzialmente quando decresce il numero dei momenti nulli e del parametro di scala; - soluzioni wavelet di equazioni differenziali a derivate parziali nonlineari di dimensione bassa sono state confrontate con altri metodi di soluzioni; - l’approccio basato sull’uso delle wavelet `e stato applicato anche per ricerca di soluzioni di alcune equazioni integrali di Fredholm e insieme al metodo di Galerkin per risolvere equazioni integrali Fredholm di dimensioni due.[a cura dell'autore]
IX n.s.
Hellman, Fredrik. "Multiscale and multilevel methods for porous media flow problems." Licentiate thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262276.
Full textParno, Matthew David. "A multiscale framework for Bayesian inference in elliptic problems." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65322.
Full textPage 118 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 112-117).
The Bayesian approach to inference problems provides a systematic way of updating prior knowledge with data. A likelihood function involving a forward model of the problem is used to incorporate data into a posterior distribution. The standard method of sampling this distribution is Markov chain Monte Carlo which can become inefficient in high dimensions, wasting many evaluations of the likelihood function. In many applications the likelihood function involves the solution of a partial differential equation so the large number of evaluations required by Markov chain Monte Carlo can quickly become computationally intractable. This work aims to reduce the computational cost of sampling the posterior by introducing a multiscale framework for inference problems involving elliptic forward problems. Through the construction of a low dimensional prior on a coarse scale and the use of iterative conditioning technique the scales are decouples and efficient inference can proceed. This work considers nonlinear mappings from a fine scale to a coarse scale based on the Multiscale Finite Element Method. Permeability characterization is the primary focus but a discussion of other applications is also provided. After some theoretical justification, several test problems are shown that demonstrate the efficiency of the multiscale framework.
by Matthew David Parno.
S.M.
Biezemans, Rutger. "Multiscale methods : non-intrusive implementation, advection-dominated problems and related topics." Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2023. http://www.theses.fr/2023ENPC0029.
Full textThis thesis is concerned with computational methods for multiscale partial differential equations (PDEs), and in particular the multiscale finite element method (MsFEM). This is a finite element type method that performs a Galerkin approximation of the PDE on a problem-dependent basis. Three particular difficulties related to the method are addressed in this thesis. First, the intrusiveness of the MsFEM is considered. Since the MsFEM uses a problem-dependent basis, it cannot easily be implemented in generic industrial codes and this hinders its adoption beyond academic environments. A generic methodology is proposed that translates the MsFEM into an effective problem that can be solved by generic codes. It is shown by theoretical convergence estimates and numerical experiments that the new methodology is as accurate as the original MsFEM. Second, MsFEMs for advection-dominated problems are studied. These problems cause additional instabilities for naive discretizations. An explanation is found for the instability of previously proposed methods. Numerical experiments show the stability of an MsFEM with Crouzeix-Raviart type boundary conditions enriched with bubble functions. Third, a new convergence analysis for the MsFEM is presented that, for the first time, establishes convergence under minimal regularity hypotheses. This bridges an important gap between the theoretical understanding of the method and its field of application, where the usual regularity hypotheses are rarely satisfied
Litvinenko, Alexander [Verfasser]. "Application of hierarchical matrices for solving multiscale problems / Alexander Litvinenko." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193181313/34.
Full textBooks on the topic "Multiscale problems"
Graham, Ivan G., Thomas Y. Hou, Omar Lakkis, and Robert Scheichl, eds. Numerical Analysis of Multiscale Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22061-6.
Full textSymposium, LMS Durham, ed. Numerical analysis of multiscale problems. Heidelberg: Springer, 2012.
Find full textBlanc, Xavier, and Claude Le Bris. Homogenization Theory for Multiscale Problems. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-21833-0.
Full textAntonić, Nenad, C. J. van Duijn, Willi Jäger, and Andro Mikelić, eds. Multiscale Problems in Science and Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56200-6.
Full textBanasiak, Jacek, Mark A. J. Chaplain, and Jacek Miękisz. Multiscale Problems in the Life Sciences. Edited by Vincenzo Capasso and Mirosław Lachowicz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78362-6.
Full textMadureira, Alexandre L. Numerical Methods and Analysis of Multiscale Problems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50866-5.
Full textBramble, James H., Albert Cohen, and Wolfgang Dahmen. Multiscale Problems and Methods in Numerical Simulations. Edited by Claudio Canuto. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/b13466.
Full textFrom multiscale modeling to metamodeling of geomechanics problems. [New York, N.Y.?]: [publisher not identified], 2019.
Find full textEberhard, Peter, ed. IUTAM Symposium on Multiscale Problems in Multibody System Contacts. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5981-0.
Full textAxel, Voigt, ed. Multiscale modeling in epitaxial growth. Basel: Birkhäuser, 2005.
Find full textBook chapters on the topic "Multiscale problems"
Pechstein, Clemens. "Multiscale Problems." In Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems, 157–213. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23588-7_3.
Full textFreeden, Willi, and Volker Michel. "Satellite Problems." In Multiscale Potential Theory, 333–99. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2048-0_5.
Full textChung, Eric, Yalchin Efendiev, and Thomas Y. Hou. "GMsFEM for nonlinear problems." In Multiscale Model Reduction, 397–411. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20409-8_14.
Full textFreeden, Willi, and Volker Michel. "Boundary-Value Problems of Elasticity." In Multiscale Potential Theory, 267–329. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2048-0_4.
Full textFreeden, Willi, and Volker Michel. "Boundary-Value Problems of Potential Theory." In Multiscale Potential Theory, 71–266. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2048-0_3.
Full textCristiani, Emiliano, Benedetto Piccoli, and Andrea Tosin. "Problems and Simulations." In Multiscale Modeling of Pedestrian Dynamics, 29–52. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06620-2_2.
Full textMichel, Volker. "Tomography: Problems and Multiscale Solutions." In Handbook of Geomathematics, 949–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01546-5_32.
Full textMichel, Volker. "Tomography: Problems and Multiscale Solutions." In Handbook of Geomathematics, 2087–119. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-54551-1_32.
Full textParés, C. "Minisymposium “Multiscale Problems in Materials”." In Progress in Industrial Mathematics at ECMI 2006, 340. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71992-2_48.
Full textCarpio, A. "Minisymposium “Multiscale Problems in Materials”." In Progress in Industrial Mathematics at ECMI 2006, 366–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71992-2_54.
Full textConference papers on the topic "Multiscale problems"
Graglia, Roberto D., Andrew F. Peterson, Paolo Petrini, and Ladislau Matekovits. "Hierarchical functions for multiscale problems." In 2016 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2016. http://dx.doi.org/10.1109/compem.2016.7588623.
Full textBrož, P. "Multiscale interpretation of contact problems." In CONTACT AND SURFACE 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/secm110101.
Full textBrick, Yaniv, Jackson Massey, Kai Yang, and Ali E. Yilmaz. "All multiscale problems are hard, some are harder: A nomenclature for classifying multiscale electromagnetic problems." In 2016 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2016. http://dx.doi.org/10.1109/usnc-ursi.2016.7588504.
Full textKim, Jong-Han, Matthew West, Sanjay Lall, Eelco Scholte, and Andrzej Banaszuk. "Stochastic multiscale approaches to consensus problems." In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739252.
Full textGeiser, Jurgen. "Iterative Splitting Methods for Multiscale Problems." In 2013 12th International Symposium on Distributed Computing and Applications to Business, Engineering & Science (DCABES). IEEE, 2013. http://dx.doi.org/10.1109/dcabes.2013.7.
Full textFrese, Thomas, Charles A. Bouman, and Ken D. Sauer. "Multiscale models for Bayesian inverse problems." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Michael A. Unser, Akram Aldroubi, and Andrew F. Laine. SPIE, 1999. http://dx.doi.org/10.1117/12.366832.
Full textTao, Wen-Quan, and Ya-Ling He. "Multiscale Simulations of Heat Transfer and Fluid Flow Problems." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23408.
Full textHe, Xinbo, Bing Wei, and Kaihang Fan. "An Effective FDTD Method for Multiscale Problems." In 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES). IEEE, 2019. http://dx.doi.org/10.23919/aces48530.2019.9060619.
Full textErdogan, Fazil, Glaucio H. Paulino, Marek-Jerzy Pindera, Robert H. Dodds, Fernando A. Rochinha, Eshan Dave, and Linfeng Chen. "Mixed Boundary Value Problems in Mechanics of Materials “Some Reflections on Forty Years of Solving Mixed Boundary Value Problems in Inhomogeneous Elasticity”." In MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896880.
Full textGraglia, Roberto D., Paolo Petrini, Ladislau Matekovits, and Andrew F. Peterson. "Singular and hierarchical vector functions for multiscale problems." In 2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2016. http://dx.doi.org/10.1109/aps.2016.7695828.
Full textReports on the topic "Multiscale problems"
Berlyand, Leonid. Finite Dimensional Approximations for Continuum Multiscale Problems. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1340478.
Full textMiller, Eric, and Alan Willsky. A Multiscale Approach to Solving One Dimensional Inverse Problems. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada459602.
Full textEfendiev, Yalchin, Maria Vasilyeva, and Bani Mallick. Scalable Multilevel Uncertainty Quantification Concepts for Extreme-Scale Multiscale Problems. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1485812.
Full textMiller, Eric L., and Alan S. Willsky. A Multiscale, Statistically-Based Inversion Scheme for Linearized Inverse Scattering Problems. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada458526.
Full textOden, J. T. Modeling and Computational Analysis of Multiscale Phenomena in Fluid-Structure Interaction Problems. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada248723.
Full textDonald Estep, Michael Holst, and Simon Tavener. A Posteriori Analysis of Adaptive Multiscale Operator Decomposition Methods for Multiphysics Problems. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/971515.
Full textDoyle III, Francis J. Multiscale Problems in Circadian Systems Biology: From Gene to Cell to Performance. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada570943.
Full textShu, Chi-Wang. High Order Accurate Algorithms for Shocks, Rapidly Changing Solutions and Multiscale Problems. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada583317.
Full textShu, Chi-Wang. High Order Accurate Algorithms for Shocks, Rapidly Changing Solutions and Multiscale Problems. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada617663.
Full textMiller, Eric L., and Alan S. Willsky. A Multiscale Approach to Sensor Fusion and the Solution of Linear Inverse Problems. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada458527.
Full text