Academic literature on the topic 'Multiscale mechanical characterization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiscale mechanical characterization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiscale mechanical characterization"
Liparoti, S., A. Sorrentino, V. Speranza, and G. Titomanlio. "Multiscale mechanical characterization of iPP injection molded samples." European Polymer Journal 90 (May 2017): 79–91. http://dx.doi.org/10.1016/j.eurpolymj.2017.03.010.
Full textJuliano, Thomas F., Aaron M. Forster, Peter L. Drzal, Tusit Weerasooriya, Paul Moy, and Mark R. VanLandingham. "Multiscale mechanical characterization of biomimetic physically associating gels." Journal of Materials Research 21, no. 8 (August 1, 2006): 2084–92. http://dx.doi.org/10.1557/jmr.2006.0254.
Full textPark, Byung, David Hwang, Dong Kwon, Tae Yoon, and Youn-Woo Lee. "Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies." Nanomaterials 8, no. 8 (July 27, 2018): 575. http://dx.doi.org/10.3390/nano8080575.
Full textAbdelaziz, Amal, Eyad Masad, Amy Epps Martin, and Edith Arámbula Mercado. "Multiscale Characterization of Rejuvenated RAP Binders." Journal of Testing and Evaluation 51, no. 4 (February 16, 2023): 20220229. http://dx.doi.org/10.1520/jte20220229.
Full textReggente, M., M. Natali, D. Passeri, M. Lucci, I. Davoli, G. Pourroy, P. Masson, et al. "Multiscale mechanical characterization of hybrid Ti/PMMA layered materials." Colloids and Surfaces A: Physicochemical and Engineering Aspects 532 (November 2017): 244–51. http://dx.doi.org/10.1016/j.colsurfa.2017.05.011.
Full textPierrat, Baptiste, Nahime Al Abiad, Anicet Le Ruyet, and Stéphane Avril. "Multiscale mechanical characterization of knitted abdominal wall repair meshes." Computer Methods in Biomechanics and Biomedical Engineering 23, sup1 (October 19, 2020): S221—S222. http://dx.doi.org/10.1080/10255842.2020.1815310.
Full textSerino, Gianpaolo, Fabio Distefano, Elisabetta M. Zanetti, Giulia Pascoletti, and Gabriella Epasto. "Multiscale Mechanical Characterization of Polyether-2-ketone (PEKK) for Biomedical Application." Bioengineering 11, no. 3 (February 29, 2024): 244. http://dx.doi.org/10.3390/bioengineering11030244.
Full textBigerelle, M., M. Dalla-Costa, and D. Najjar. "Multiscale similarity characterization of abraded surfaces." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 221, no. 10 (October 1, 2007): 1473–82. http://dx.doi.org/10.1243/09544054jem770.
Full textLiao, Ning Bo, Miao Zhang, and Rui Jiang. "Recent Development in Multiscale Simulation of Mechanical Properties at Material Interface." Advanced Materials Research 146-147 (October 2010): 491–94. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.491.
Full textLejček, Pavel, Jaroslav Čapek, Michaela Roudnická, Orsolya Molnárová, Jan Maňák, Jan Duchoň, Drahomír Dvorský, et al. "Selective laser melting of iron: Multiscale characterization of mechanical properties." Materials Science and Engineering: A 800 (January 2021): 140316. http://dx.doi.org/10.1016/j.msea.2020.140316.
Full textDissertations / Theses on the topic "Multiscale mechanical characterization"
GODENZONI, CARLOTTA. "Multiscale Rheological and Mechanical characterization of Cold Mixtures." Doctoral thesis, Università Politecnica delle Marche, 2017. http://hdl.handle.net/11566/245296.
Full textNowadays, the growing social and political awareness about environmental issues is moving towards the development of low-energy and low-emission technologies. In this context, technologies as cold mixtures may represent a valid alternative to traditional hot mix asphalt for road pavements. Moreover, when materials obtained from the recycling of old pavements are adopted, the consumption of virgin aggregate can be significantly reduced. In the past, the use of cold mixture for structural layers has attracted relatively little attention largely because of problems related to the time required for full strength to be achieved after paving and its susceptibility to early life damage by rainfall. The PhD research aimed at scientifically evaluating advantages and disadvantages of cold mixtures. Besides the traditional laboratory investigations, an original research methodology based on the multiscale characterization of the material, from both physical and rheological point of view. In fact, cold mixture can be considered as an evolutive material because its physical state evolves over time according to moisture loss. In this context, the characterization of cold mixture should be developed at different time during its in-service life (time-scale) and at different level of investigation (size-scale). Optimum correlation was found between results collected from different levels of investigation (size and time-scales); hence demonstrating the scientific validity of the adopted research approach. Based on the overall findings, no elements discourage the use of cold mixtures as support layers for pavement structure. Therefore, materials should be properly designed in terms of aggregate blend, water content and binding agents (type and dosage).
Miri, Ramsheh Amir Kamal. "Mechanical characterization of vocal folds using a multiscale study." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119585.
Full textLes cordes vocales sont des membranes de tissus mous situées à l'intérieur du larynx. Pendant la phonation, elles sont soumises à des oscillations auto-entretenues. Certains troubles de la voix répandus sont connus pour résulter de contraintes mécaniques excessives au sein de la muqueuse des cordes vocales. Les propriétés viscoélastiques des cordes vocales pathologiques diffèrent de celles dont les tissus sont sains. L'objectif global de cette étude est de mieux comprendre la relation entre le chargement mécanique et la réponse des tissus des cordes vocales. Les propriétés mécaniques de compression des cordes vocales ont tout d'abord été étudiées à l'aide d'essai de traction et d'un rhéomètre à cisaillement. Ces méthodes ont servi à quantifier les paramètres mécaniques de cordes vocales porcines. Un modèle linéaire, isotrope transverse a été utilisé pour la relation entre les contraintes et les déformations. La condition d'incompressibilité a permis de réduire le nombre de paramètres indépendants. Les effets de déshydratation, induite par le potentiel de pression osmotique, sur les propriétés des tissus des cordes vocales ont été étudiés. Des essais de traction uniaxiaux ont servi pour imposer des extensions cycliques à faible vitesse sur des cordes vocales porcines pendant qu'une solution hypertonique absorbait le fluide interstitiel des tissus. Le module élastique et le facteur de perte ont été calculés pour des tissus normaux et déshydratés. Un modèle d'hyperélasticité non linéaire à huit chaînes a servi pour décrire la relation entre les contraintes et les déformations du tissu biphasique. Des variations de masse significatives ont été observées à la suite des essais de traction. La mécanique des cordes vocales a été étudiée à l'aide de conditions de poroélasticité linéaire. Les fluides interstitiels sont supposés libres de mouvement au sein des matrices extra-cellulaires des protéines. Le problème de consolidation à une dimension a servi à la modélisation du contact entre les tissus mous et une indentation sphérique. Les données d'entrée du modèle étaient obtenues par la microscopie à force atomique basée sur des données d'indentation utilisant des signaux de rampe ou d'oscillations dynamiques. Des caractéristiques viscoélastiques furent mises en valeur à partir de la réponse des cordes vocales aux oscillations, dont le déplacement était contrôlé en fréquence, avec une amplitude de 30 à 50 nm. La microscopie optique non linéaire a permis la visualisation de la morphologie des matrices extra-cellulaires des protéines au sein de cordes vocales humaines et porcines. Un microscope non linéaire multimodale a été conçu pour scanner les protéines fibreuses de cordes vocales humaines et porcines. Le collagène et l'élastine ont été imagés respectivement à l'aide de la génération de second harmonique et de la fluorescence sous excitation à deux photons. L'introduction d'un protocole expérimental a servi à caractériser les propriétés géométriques des fibres de collagène. Cette méthode d'imagerie a ensuite été utilisée pour étudier le remodelage de cordes vocales de rats cicatrisées. Ceci a permis de montrer que la fraction volumique de collagène était 12% plus importante dans les tissus de cordes vocales cicatrisées 12 mois après la blessure.Les images du microscope à force atomique suggèrent que des fibres de collagène avec une structure de corde sont présentes dans les cordes vocales. Une théorie hyperélastique a été développée pour des tissus mous supportés par le collagène, ainsi que la formulation adaptée pour les calculs éléments finis. Le modèle capture le rôle de la structure hélicoïdale des fibres de collagène d'après la réponse non linéaire des cordes vocales soumises à un chargement.
El, Azhari Idriss. "Multiscale mechanical and microstrutural characterization of titanium and zirconium carbonitride hard coatings." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2020. http://hdl.handle.net/10803/669821.
Full textEn esta tesis doctoral se presenta una investigación extensa y detallada, desde la escala macroscópica hasta la atómica, de recubrimientos industriales - duros y resistentes al desgaste - depositados por CVD sobre carburos cementados para su aplicación como herramientas de corte. El estudio se realizó en dos sistemas recubiertos empleando diferentes capas cerámicas - Ti(C,N) y Zr(C,N) - pero sin variar el carburo cementado empleado como sustrato. Los mecanismos de deformación de ambos sistemas se evaluaron mediante ensayos de micro-compresión de pilares, así como de indentación esférica (con bolas de radios milimétricos), estos últimos buscando inducir daño de forma controlada a nivel superficial y subsuperficial. El sistema recubierto con la capa de Zr(C,N) exhibió una vida útil superior al más convencional - Ti(C,N). El estudio incluyó la implementación de varias técnicas de caracterización: microscopía confocal, microscopía electrónica de barrido, haz de iones focalizados, difracción de electrones retrodispersados, sincrotrón de rayos X, y tomografía con sonda atómica. Se encontró que la elevada integridad estructural remanente relacionada con la ausencia de fisuración interconectada en el caso de Zr(C,N) – justo después de ser depositado – es alguna de las principales razones para explicar el mayor rendimiento de este sistema recubierto en operaciones de mecanizado que involucran corte interrumpido. La adecuación del coeficiente de expansión térmica, relativo al que exhibe el sustrato, la capacidad de absorber deformación plástica, y la relevante resistencia cohesiva en los bordes de granos (lo que proporciona una mayor tenacidad) son factores que contribuyen no sólo a preservar la integridad estructural, sinó también a prolongar la vida útil de la herramienta durante condiciones de servicio que conlleven corte interrumpido.
Die vorliegende Dissertation ist eine eingehende Untersuchung vom makrobis zu der atomaren Skala von industrieller verschleißfester CVD-Hartschichten auf Hartmetallschneidwerkzeugen abgeschieden. Mikrodruckversuche und Kontaktschädigung ausgelöst durch millimetergenaue Kugel Eindruck wurden eingesetzt, um Verformungsmechanismen von zwei Systemen, bestehend aus einem definierten Hartmetallsubstrat, das mit zwei verschiedenen Schichten beschichtet ist: Ti(C,N) und Zr(C,N). Letzteres System zeigt eine höhere Standzeit als das herkömmliche Ti(C,N). Es wurden eine Vielzahl von Charakterisierungstechniken eingesetzt: Konfokale Mikroskopie, Rasterelektronenmikroskopie, fokussierter Ionenstrahl, Elektronenrückstreubeugung, Synchrotron und Atomsonden- Tomographie. Es wurde festgestellt, dass die erhaltene strukturelle Integrität in Bezug auf das Fehlen eines ausgedehnten Rissnetzwerks für Zr(C,N) - im abgeschiedenen Zustand - einer der Hauptgründe ist, der die bessere Leistung beim unterbrochenen Schnitt Verfahren erklären könnte. Angepasste Wärmeausdehnungskoeffizienten entgegen das Substrat, plastische Verformung und bessere Korngrenzen-Kohäsion (was zu mehr Zähigkeit führt) sind Faktoren, die nicht nur zu dieser erhaltenen strukturellen Integrität beitragen, sondern auch zu einer verlängerten Standzeit beim Fräsen im Einsatz.
El, Azhari Idriss [Verfasser]. "Multiscale mechanical and microstructural characterization of titanium and zirconium carbonitride hard coatings / Idriss El Azhari." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2019. http://d-nb.info/1216503494/34.
Full textTehrani, Mehran. "Next Generation Multifunctional Composites for Impact, Vibration and Electromagnetic Radiation Hazard Mitigation." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/49547.
Full textIt is of great importance to comprehend the reasons for and against using the methods involving mixing of the CNTs directly with the polymer matrix, to either fabricate nanocomposites or three-phase FRPs. Hence, chapter 2 is devoted to the characterization of CNTs-epoxy nanocomposites at different thermo-mechanical environments via the nanoindentation technique. Improvements in hardness and stiffness of the CNTs-reinforced epoxy are reported. Long duration (45 mins) nanocreep tests were conducted to study the viscoelastic behavior of the CNT-nanocomposites. Finally, the energy absorption of these nanocomposites is measured via novel nanoimpact testing module.
Chapter 3 elucidates a study on the fabrication and characterization of a three phase CNT-epoxy system reinforced with woven carbon fibers. Tensile test, high velocity impact (~100 ms-1), and dynamic mechanical analysis (DMA) were employed to examine the response of the hybrid composite and compare it with the reference CFRP with no CNTs. Quasi-static shear punch tests (QSSPTs) were also performed to determine the toughening and damage mechanisms of both the CNTs-modified and the reference CFRP composites during transverse impact loading.
The synthesis of CNTs at 550 C via GSD is the focus of chapter 4. The GSD technique was adjusted to grow Palladium-catalyzed carbon filaments over carbon fibers. However, these filaments were revealed to be amorphous (turbostratic) carbon. Plasma sputtering was utilized to sputter nickel nano-films on the surface of the substrate carbon fibers. These films were later fragmented into nano-sized nickel islands from which CNTs were grown utilizing the GSD technique. The structure and morphology of the CNTs are evaluated and compared to CNTs grown via catalytic chemical vapor deposition (CCVD) over the same carbon fibers.
Chapter 5 embodies the mechanical characterization of composites based on carbon fibers with various surface treatments including, but not limited to, surface grown CNTs. Fibers with and without sizing were subjected to different treatments such as heat treatment similar to those encountered during the GSD process, growing CNTs on fabrics via GSD and CCVD techniques, sputtering of the fibers with a thin thermal shield film of SiO2 prior to CNT growth, selective growth of CNTs following checkerboard patterns, etc.
The effects of the various surface treatments (at the ply interfaces) on the on-axis and off-axis tensile properties of the corresponding composites are discussed in this chapter. In addition, the DMA and impact resistance of the hybrid CNT-CFRP composites are measured and compared to the values obtained for the reference CFRP samples. While the GSD grown CNTs accounted for only 0.05 wt% of the composites, the results of this chapter contrasts the advantages of the GSD technique over other methods that incorporate CNTs into a CFRP (i.e. direct growth via CCVD and mixing of CNTs with the matrix).
Understanding the behavior of the thin CFRPs under impact loadings and the ability to model their response under ballistic impact is essential for designing CFRP structures. A precise simulation of impact phenomenon should account for progressive damage and strain rate dependent behavior of the CFRPs. In chapter 6, a novel procedure to calibrate the state-of-the-art MAT162 material model of the LS-DYNA finite element simulation package is proposed. Quasi-static tensile, compression, through thickness tension, and in-plane Isopescu shear tests along with quasi-static shear punch tests (QSSPTs) employing flat cylindrical and spherical punches were performed on the composite samples to find 28 input parameters of MAT162. Finally, the capability of this material model to simulate a transverse ballistic impact of a spherical impactor with the thin 5-layers CFRP is demonstrated.
It is hypothesized that the high electrical conductivities of CNTs will span the multifunctionality of the hybrid composites by facilitating electromagnetic interference (EMI) shielding. Chapter 6 is devoted to characterizing the electrical properties of hybrid CNT-fiberglass FRPs modified via GSD method. Using a slightly modified version of the GSD, denser and longer CNTs were grown on fiberglass fabrics. The EMI shielding performance of the composites based on these fabrics was shown to be superior to that for reference composites based on fiberglass and epoxy. To better apprehend the effect of the surface grown CNTs on the electrical properties of the resulting composites, the electrical resistivities of the hybrid and the reference composites were measured along different directions and some interesting results are highlighted herein.
The work outlined in this dissertation will enable significant advancement in protection methods against different hazards including impact, vibrations and EMI events.
Ph. D.
Valiveti, Dakshina M. "INTEGRATED MULTISCALE CHARACTERIZATION AND MODELING OF DUCTILE FRACTURE IN HETEROGENEOUS ALUMINUM ALLOYS." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1253035787.
Full textRubin, Matthew Aaron. "Multiscale characterization of the ultrastructure of trabecular bone in osteoporotic and normal humans and in two inbred strains of mice." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/18949.
Full textGotti, Carlo. "Development and mechanical characterization of a biostable Nylon6.6 electrospun nanofibrous multiscale device for tendon and ligament replacement and simulation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15708/.
Full textResidori, Sara. "FABRICATION AND CHARACTERIZATION OF 3D PRINTED METALLIC OR NON-METALLIC GRAPHENE COMPOSITES." Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/355324.
Full textReda, Ali. "A multiscale mechanical study of flax stems and fibres for the development of an in-the-field tool capable of predicting optimum retting." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILN055.
Full textAgriculture 4.0, also known under several aliases such as ‘digital agriculture', ‘smart farming', and ‘e-farming' is currently developing rapidly in terms of research, development, and commercial applications. As with Agriculture 1.0, 2.0, and 3.0, the objective of Agriculture 4.0 is the use of technology to improve all areas of agriculture. In Agriculture 4.0 it is the application of microelectronics and microtechnologies. Unlike before, these technologies bring things such as the internet-of-things, big data, telecommunications, novel sensing, rapid feedback, data analysis, connectivity, artificial intelligence etc. In principle, all these areas should result in a massive modernization of farming in terms of organisation, yield, efficiency, and quality of produce. However, Agriculture 4.0 is so vast that if one is to contribute to it, even in a minor way, one has to choose a specific area to contribute. The area chosen for the study in this PhD was flax fibre production. Flax fibres are naturally strong fibres which can be extracted from flax stems. The flax stems have evolved to have robust micrometre-diameter fibres running the length of the outside of the stem, and held in place in the external tissue of the stem. Once extracted and isolated, flax fibres have numerous applications ranging from textiles to composite materials. In order to facilitate the mechanical extraction of flax fibres from their parent stems, the stems undergo a process known as ‘retting'. Retting leads to the breakdown of the external tissue between the fibres. A common form of retting is known as ‘dew retting'. In dew retting, natural processes such as bacteria and fungi result in enzymes which break down the middle lamella and gradually separate fibre bunches and fibres from bunches. The length of dew retting depends heavily on the weather. Too little retting results in difficult fibre extraction in the factory, too much retting can result in a compromise in fibre quality. It has long been known that there is an optimum retting point-even the ancients knew this. Certain skilled artisan farmers are able to judge this point via a combination of manual manipulation of the stems, observation of damage caused to the external tissue via this manoeuvre, and also observing the colour and the smell of the stems during this very skilled, but artisanal, testing. It is clear that the artisan is performing rudimentary laboratory tests quite literally ‘in-the-field'. It would seem logical therefore to try to quantify such tests and see if a reliable tool can be made to help the artisan. And indeed, this is exactly what others have attempted. The introduction of the PhD gives examples of attempts to make optimal-retting tools in the 1980s and after. Inspired by this early work, the work of this PhD attempts a full multiscale mechanical characterization of flax stems and fibres during a retting cycle (summer 2022) and, somewhat ambitiously, performed in real time-to our knowledge for the first time. The mechanical characterization involved macroscopic mechanical tests (bending, crushing, and twisting), as well as novel microscopic mechanical testing of single flax fibres using novel methods inspired by MEMS. In addition, the nanoscopic mechanical properties of the primary cell wall of retting flax fibres was characterised using nanoindentation AFM. As the experimental work, analysis via analytical modelling, and interpretation descends in scale from macro, through micro, to nano, we learn a little more of how the retting affects the stems, their properties, and their fibres. In addition to simply learning, a very positive outcome of the PhD is that one is able to suggest a mechanically-induced damage mechanism in stems which could be the basis for a tool. One can note however, that the uncontrollable multiparameter nature of the subject, e.g. the weather, means that several studies would be needed to confirm beyond doubt observations from a single retting cycle
Books on the topic "Multiscale mechanical characterization"
Ahzi, S. IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials: Proceedings of the IUTAM Symposium held in Marrakech, Morocco, 20-25 October 2002. Dordrecht: Springer Netherlands, 2004.
Find full text(Editor), S. Ahzi, M. Cherkaoui (Editor), M. A. Khaleel (Editor), H. M. Zbib (Editor), M. A. Zikry (Editor), and B. LaMatina (Editor), eds. IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials (Solid Mechanics and Its Applications). Springer, 2004.
Find full textBook chapters on the topic "Multiscale mechanical characterization"
Tomar, Vikas, Tao Qu, Devendra K. Dubey, Devendra Verma, and Yang Zhang. "Nanomechanics Experiments: A Microscopic Study of Mechanical Property Scale Dependence and Microstructure of Crustacean Thin Films as Biomimetic Materials." In Multiscale Characterization of Biological Systems, 21–36. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3453-9_3.
Full textOñate, Eugenio, Facundo J. Bellomo, Virginia Monteiro, Sergio Oller, and Liz G. Nallim. "Characterization of Mechanical Properties of Biological Tissue: Application to the FEM Analysis of the Urinary Bladder." In Multiscale Simulations and Mechanics of Biological Materials, 283–300. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118402955.ch15.
Full textPuydt, Quentin, Sylvain Flouriot, Sylvain Ringeval, Guillaume Parry, Frédéric De Geuser, and Alexis Deschamps. "Multiscale Characterization and Mechanical Modelling of an Al-Zn-Mg Electron Beam Weld." In ICAA13: 13th International Conference on Aluminum Alloys, 801–6. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495292.ch118.
Full textPuydt, Quentin, Sylvain Flouriot, Sylvain Ringeval, Guillaume Parry, Frédéric De Geuser, and Alexis Deschamps. "Multiscale characterization and mechanical modeling of an Al-Zn-Mg electron beam weld." In ICAA13 Pittsburgh, 801–6. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-319-48761-8_118.
Full textDaniel, Isaac M., and Jeong-Min Cho. "Multiscale Hybrid Nano/Microcomposites–Processing, Characterization, and Analysis." In Solid Mechanics and Its Applications, 161–72. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3467-0_12.
Full textTomita, Y., and Y. Higa. "Multiscale Characterization of Deformation Behavior of Particulate-Reinforced Metal-Matrix Composite." In IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, 259–68. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0297-3_23.
Full textFulcher, J. T., H. E. Karaca, G. P. Tandon, D. C. Foster, and Y. C. Lu. "Multiscale Characterization of Water-, Oil- and UV-Conditioned Shape-Memory Polymer under Compression." In Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 3, 97–103. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0213-8_14.
Full textConference papers on the topic "Multiscale mechanical characterization"
Zhang, Dongxiao, Junliang Zhao, Tianhao Wu, Haoyu Tang, Qihan Xuan, and Zheng Jiang. "Multiscale Approach to Mechanical Characterization of Shale." In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.183.
Full textHsiao, Kuang-Ting, James Ryals, Peter H. Wu, and Ming C. Liu. "Mechanical Property Characterization of Multiscale Carbon Fibers and Carbon Nanofibers Reinforced Polymer Matrix Composite." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12937.
Full textShah, Sachin B., Colleen Witzenburg, Mohammad F. Hadi, Hallie P. Wagner, Janna Goodrich, and Victor H. Barocas. "Dissection of Porcine Ascending Aortic Media: Mechanical Characterization and Multiscale Model." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14610.
Full textZhai, Yingnan, Jose A. Colmenarez, Valentina O. Mendoza, Pengfei Dong, Kenia Nunes, Donny Suh, and Linxia Gu. "Multiscale Mechanical Characterization of Cornea With AFM, SEM, and Uniaxial Tensile Test." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-113394.
Full textPark, Sang-Hyun, Ji-Hun Kang, Yeon-Gil Jung, Ungyu Paik, Glaucio H. Paulino, Marek-Jerzy Pindera, Robert H. Dodds, Fernando A. Rochinha, Eshan Dave, and Linfeng Chen. "Fabrication and Mechanical Characterization of Al[sub 2]O[sub 3]∕ZrO[sub 2] Layered Composites with Graded Microstructure." In MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896789.
Full textAktas, Levent, Sudha Dharmavaram, and M. Cengiz Altan. "Multiscale Characterization of Nanocomposites Fabricated by Copulverization of Epoxy Resin and Nanoclay." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80380.
Full textRubin, Matthew A., and Iwona Jasiuk. "Multiscale Characterization of the Ultrastructure of Normal and Osteoporotic Human Trabecular Bone." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32591.
Full textChokhandre, Snehal, Craig Bennetts, Jason Halloran, Robb Colbrunn, Tara Bonner, Morgan H. Jones, and Ahmet Erdemir. "Comprehensive Identification of Tibiofemoral Joint Anatomy and Mechanical Response: Pathway to Multiscale Characterization." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80200.
Full textXuan, Yue, and Wei Tong. "Mechanical Characterization of Biological Tissue: Finite Element Modeling." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13320.
Full textJohnston, Joel, and Aditi Chattopadhyay. "Stochastic Multiscale Modeling and Damage Progression for Composite Materials." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66566.
Full text