Academic literature on the topic 'Multiscale flow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiscale flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Multiscale flow"

1

Rycroft, Christopher Harley. "Multiscale modeling in granular flow." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41557.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2007.<br>This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Includes bibliographical references (p. 245-254).<br>Granular materials are common in everyday experience, but have long-resisted a complete theoretical description. Here, we consider the regime of slow, dense granular flow, for which there is no general model, representing a considerable hurdle to industry, where grains and powders must frequently be manipulat
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Mayank Ph D. Massachusetts Institute of Technology. "Multiscale CFD simulations of entrained flow gasification." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69495.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references.<br>The design of entrained flow gasifiers and their operation has largely been an experience based enterprise. Most, if not all, industrial scale gasifiers were designed before it was practical to apply CFD models. Moreover, gasification CFD models developed over the years may have lacked accuracy or have not been tested over a wide range of operating conditions, gasifier geometries and feedstock compositions. One reason
APA, Harvard, Vancouver, ISO, and other styles
3

Basu, Debashis. "Hybrid Methodologies for Multiscale Separated Turbulent Flow Simulations." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1147362291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hauge, Vera Louise. "Multiscale Methods and Flow-based Gridding for Flow and Transport In Porous Media." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12132.

Full text
Abstract:
The topic of this thesis is fast and accurate simulation techniques used for simulations of flow and transport in porous media, in particular petroleum reservoirs. Fast and accurate simulation techniques are becoming increasingly important for reservoir management and development, as the geological models increase in size and level of detail and require more computational resources to be utilized. The multiscale framework is a promising approach to facilitate simulation of detailed geological models. In contrast to traditional upscaling approaches, the multiscale methods have the detailed geol
APA, Harvard, Vancouver, ISO, and other styles
5

Lamponi, Daniele. "One dimensional and multiscale models for blood flow circulation /." [S.l.] : [s.n.], 2004. http://library.epfl.ch/theses/?nr=3006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moragues, Ginard Margarida. "Variational multiscale stabilization and local preconditioning for compressible flow." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/384841.

Full text
Abstract:
This thesis is about the stabilization of the numerical solution of the Euler and Navier- Stokes equations of compressible flow. When simulating numerically the flow equations, if no stabilization is added, the solution presents non-physical (but numerical) oscillations. For this reason the stabilization of partial differential equations and of the fluid dynamics equations is of great importance. In the framework of the so-called variational multiscale stabilization, we present here a stabilization method for compressible flow. The method assessment is done first of all on a batch of academica
APA, Harvard, Vancouver, ISO, and other styles
7

Hellman, Fredrik. "Multiscale and multilevel methods for porous media flow problems." Licentiate thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262276.

Full text
Abstract:
We consider two problems encountered in simulation of fluid flow through porous media. In macroscopic models based on Darcy's law, the permeability field appears as data. The first problem is that the permeability field generally is not entirely known. We consider forward propagation of uncertainty from the permeability field to a quantity of interest. We focus on computing p-quantiles and failure probabilities of the quantity of interest. We propose and analyze improved standard and multilevel Monte Carlo methods that use computable error bounds for the quantity of interest. We show that subs
APA, Harvard, Vancouver, ISO, and other styles
8

Dub, Francois-Xavier. "A locally conservative variational multiscale method for the simulation of porous media flow with multiscale source terms." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44874.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.<br>Includes bibliographical references (p. 75-78).<br>Multiscale phenomena are ubiquitous to flow and transport in porous media. They manifest themselves through at least the following three facets: (1) effective parameters in the governing equations are scale dependent; (2) some features of the flow (especially sharp fronts and boundary layers) cannot be resolved on practical computational grids; and (3) dominant physical processes may be different at different scales. Numerical methods should therefo
APA, Harvard, Vancouver, ISO, and other styles
9

Gravemeier, Volker. "The variational multiscale method for laminar and turbulent incompressible flow." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11051842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Mingtian, and 許明田. "Multiscale transport of mass, momentum and energy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B3124497X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!