Academic literature on the topic 'Multiscale flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiscale flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiscale flow"
Sindeev, S. V., S. V. Frolov, D. Liepsch, and A. Balasso. "MODELING OF FLOW ALTERATIONS INDUCED BY FLOW-DIVERTER USING MULTISCALE MODEL OF HEMODYNAMICS." Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 23, no. 1 (2017): 025–32. http://dx.doi.org/10.17277/vestnik.2017.01.pp.025-032.
Full textKoumoutsakos, Petros. "MULTISCALE FLOW SIMULATIONS USING PARTICLES." Annual Review of Fluid Mechanics 37, no. 1 (January 2005): 457–87. http://dx.doi.org/10.1146/annurev.fluid.37.061903.175753.
Full textSHENG, MAO, GENSHENG LI, SHOUCENG TIAN, ZHONGWEI HUANG, and LIQIANG CHEN. "A FRACTAL PERMEABILITY MODEL FOR SHALE MATRIX WITH MULTI-SCALE POROUS STRUCTURE." Fractals 24, no. 01 (March 2016): 1650002. http://dx.doi.org/10.1142/s0218348x1650002x.
Full textZhou, Hui, and Hamdi A. Tchelepi. "Operator-Based Multiscale Method for Compressible Flow." SPE Journal 13, no. 02 (June 1, 2008): 267–73. http://dx.doi.org/10.2118/106254-pa.
Full textLiu, Zhongqiu. "Numerical Modeling of Metallurgical Processes: Continuous Casting and Electroslag Remelting." Metals 12, no. 5 (April 27, 2022): 746. http://dx.doi.org/10.3390/met12050746.
Full textZhou, H., S. H. H. Lee, and H. A. A. Tchelepi. "Multiscale Finite-Volume Formulation for the Saturation Equations." SPE Journal 17, no. 01 (December 12, 2011): 198–211. http://dx.doi.org/10.2118/119183-pa.
Full textCui, Zhanyou, Gaoli Chen, Bing Liu, and Deguang Li. "A Multiscale Symbolic Dynamic Entropy Analysis of Traffic Flow." Journal of Advanced Transportation 2022 (March 30, 2022): 1–10. http://dx.doi.org/10.1155/2022/8389229.
Full textBazilevs, Yuri, Kenji Takizawa, and Tayfun E. Tezduyar. "Computational analysis methods for complex unsteady flow problems." Mathematical Models and Methods in Applied Sciences 29, no. 05 (May 2019): 825–38. http://dx.doi.org/10.1142/s0218202519020020.
Full textMäkipere, Krista, and Piroz Zamankhan. "Simulation of Fiber Suspensions—A Multiscale Approach." Journal of Fluids Engineering 129, no. 4 (August 18, 2006): 446–56. http://dx.doi.org/10.1115/1.2567952.
Full textLorenz, Eric, and Alfons G. Hoekstra. "Heterogeneous Multiscale Simulations of Suspension Flow." Multiscale Modeling & Simulation 9, no. 4 (October 2011): 1301–26. http://dx.doi.org/10.1137/100818522.
Full textDissertations / Theses on the topic "Multiscale flow"
Rycroft, Christopher Harley. "Multiscale modeling in granular flow." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41557.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 245-254).
Granular materials are common in everyday experience, but have long-resisted a complete theoretical description. Here, we consider the regime of slow, dense granular flow, for which there is no general model, representing a considerable hurdle to industry, where grains and powders must frequently be manipulated. Much of the complexity of modeling granular materials stems from the discreteness of the constituent particles, and a key theme of this work has been the connection of the microscopic particle motion to a bulk continuum description. This led to development of the "spot model", which provides a microscopic mechanism for particle rearrangement in dense granular flow, by breaking down the motion into correlated group displacements on a mesoscopic length scale. The spot model can be used as the basis of a multiscale simulation technique which can accurately reproduce the flow in a large-scale discrete element simulation of granular drainage, at a fraction of the computational cost. In addition, the simulation can also successfully track microscopic packing signatures, making it one of the first models of a flowing random packing. To extend to situations other than drainage ultimately requires a treatment of material properties, such as stress and strain-rate, but these quantities are difficult to define in a granular packing, due to strong heterogeneities at the level of a single particle. However, they can be successfully interpreted at the mesoscopic spot scale, and this information can be used to directly test some commonly-used hypotheses in modeling granular materials, providing insight into formulating a general theory.
by Christopher Harley Rycroft.
Ph.D.
Kumar, Mayank Ph D. Massachusetts Institute of Technology. "Multiscale CFD simulations of entrained flow gasification." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69495.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
The design of entrained flow gasifiers and their operation has largely been an experience based enterprise. Most, if not all, industrial scale gasifiers were designed before it was practical to apply CFD models. Moreover, gasification CFD models developed over the years may have lacked accuracy or have not been tested over a wide range of operating conditions, gasifier geometries and feedstock compositions. One reason behind this shortcoming is the failure to incorporate detailed physics and chemistry of the coupled non-linear phenomena occurring during solid fuel gasification. In order to accurately predict some of the overall metrics of gasifier performance, like fuel conversion and syngas composition, we need to first gain confidence in the sub-models of the various physical and chemical processes in the gasifier. Moreover, in a multiphysics problem like gasification modeling, one needs to balance the effort expended in any one submodel with its effect on the accuracy of predicting some key output parameters. Focusing on these considerations, a multiscale CFD gasification model is constructed in this work with special emphasis on the development and validation of key submodels including turbulence, particle turbulent dispersion and char consumption models. The integrated model is validated with experimental data from various pilot-scale and laboratory-scale gasifier designs, further building confidence in the predictive capability of the model. Finally, the validated model is applied to ascertain the impact of changing the values of key operating parameters on the performance of the MHI and GE gasifiers. The model is demonstrated to provide useful quantitative estimates of the expected gain or loss in overall carbon conversion when critical operating parameters such as feedstock grinding size, gasifier mass throughput and pressure are varied.
by Mayank Kumar.
Ph.D.
Basu, Debashis. "Hybrid Methodologies for Multiscale Separated Turbulent Flow Simulations." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1147362291.
Full textHauge, Vera Louise. "Multiscale Methods and Flow-based Gridding for Flow and Transport In Porous Media." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12132.
Full textLamponi, Daniele. "One dimensional and multiscale models for blood flow circulation /." [S.l.] : [s.n.], 2004. http://library.epfl.ch/theses/?nr=3006.
Full textMoragues, Ginard Margarida. "Variational multiscale stabilization and local preconditioning for compressible flow." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/384841.
Full textAquesta tesi tracta sobre l'estabilització de la solució numèrica de les equacions d'Euler i Navier-Stokes de flux compressible. Quan es simulen numèricament les equacions que governen els fluids, si no s'afegeix cap estabilització, la solució presenta oscil·lacions no físiques sinó numèriques. Per aquest motiu l'estabilització de les equacions en derivades parcials i de les equacions de la mecànica de fluids és de gran importància. Dins del marc de l'anomenada estabilització de multiescales variacionals, presentem aquí un mètode d'estabilització per flux compressible. L'evaluació del mètode es realitza primer en varis exemples acadèmics per diferents nombres de Mach, per flux viscós, inviscid, estacionari i transitori. Després el mètode s'aplica a simulacions de flux atmosfèric. Per això, resolem les equacions d'Euler per flux atmosfèric sec i humit. En presència d'humitat, també s'ha de resoldre un grup d'equacions de transport d'espècies d'aigua. Aquest domini d'aplicació representa un desafiament des del punt de vista de l'estabilització, donat que s'ha d'afegir la quantitat adequada d'estabilització per tal de preservar les propietats físiques del flux atmosfèric. Arribat aquest punt, per tal de millorar el nostre mètode, ens interessem pels precondicionadors locals. Els precondicionadors locals permeten reduir els problemes de rigidesa que presenten les equacions dels fluids i que són causa d'una pitjor i més lenta convergència cap a la solució. Amb aquest propòsit en ment, combinem el nostre mètode d'estabilització amb els precondicionadors locals i presentem un mètode d'estabilització per les equacions de Navier-Stokes de flux compressible, anomenem aquest màtode P-VMS. Aquest mètode es evaluat per mitjà de varis exemples per diferents nombres de Mach i demostra una millora sustancial no només pel que fa la convergència cap a la solució, sinó també en la precisió i robusteza del mètode. Finalment els beneficis del P-VMS es demostren teòricament a través de l'anàlisi d'estabilitat de Fourier. Com a resultat d'aquest anàlisi, sorgeix una modificació en el càlcul del pas de temps que millora un cop més la convergència del mètode
Hellman, Fredrik. "Multiscale and multilevel methods for porous media flow problems." Licentiate thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262276.
Full textDub, Francois-Xavier. "A locally conservative variational multiscale method for the simulation of porous media flow with multiscale source terms." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44874.
Full textIncludes bibliographical references (p. 75-78).
Multiscale phenomena are ubiquitous to flow and transport in porous media. They manifest themselves through at least the following three facets: (1) effective parameters in the governing equations are scale dependent; (2) some features of the flow (especially sharp fronts and boundary layers) cannot be resolved on practical computational grids; and (3) dominant physical processes may be different at different scales. Numerical methods should therefore reflect the multiscale character of the solution. We concentrate on the development of simulation techniques that account for the heterogeneity present in realistic reservoirs, and have the ability to solve for coupled pressure-saturation problems (on coarse grids). We present a variational multiscale mixed finite element method for the solution of Darcy flow in porous media, in which both the permeability field and the source term display a multiscale character. The formulation is based on a multiscale split of the solution into coarse and subgrid scales. This decomposition is invoked in a variational setting that leads to a rigorous definition of a (global) coarse problem and a set of (local) subgrid problems. One of the key issues for the success of the method is the proper definition of the boundary conditions for the localization of the subgrid problems. We identify a weak compatibility condition that allows for subgrid communication across element interfaces, something that turns out to be essential for obtaining high-quality solutions. We also remove the singularities due to concentrated sources from the coarse-scale problem by introducing additional multiscale basis functions, based on a decomposition of fine-scale source terms into coarse and deviatoric components.
(cont.) The method is locally conservative and employs a low-order approximation of pressure and velocity at both scales. We illustrate the performance of the method on several synthetic cases, and conclude that the method is able to capture the global and local flow patterns accurately.
by Francois-Xavier Dub.
S.M.
Gravemeier, Volker. "The variational multiscale method for laminar and turbulent incompressible flow." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11051842.
Full textXu, Mingtian, and 許明田. "Multiscale transport of mass, momentum and energy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B3124497X.
Full textBooks on the topic "Multiscale flow"
Abdol-Hamid, Khaled Sayed. Multiscale turbulence effects in supersonic jets exhausting into still air. Hampton, Va: Langley Research Center, 1987.
Find full textLi, Jun. Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26466-6.
Full textPanasenko, Grigory, and Konstantin Pileckas. Multiscale Analysis of Viscous Flows in Thin Tube Structures. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54630-3.
Full textZhao, T. S., and Ao Xu. Multiscale Modelling and Simulation of Flow Batteries. Elsevier Science & Technology Books, 2022.
Find full textZhao, T. S., and Ao Xu. Multiscale Modelling and Simulation of Flow Batteries. Elsevier Science & Technology, 2023.
Find full textMultiscale Thermal Transport in Energy Systems. Nova Science Publishers, Incorporated, 2016.
Find full textLi, Jun. Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation: Applications to Porous Media and MEMS. Springer, 2019.
Find full textLi, Jun. Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation: Applications to Porous Media and MEMS. Springer International Publishing AG, 2020.
Find full textVerma, Mahendra K. Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives. Cambridge University Press, 2019.
Find full textPileckas, Konstantinas. Multiscale Analysis of Viscous Flows in Thin Tube Structures. Springer Basel AG, 2024.
Find full textBook chapters on the topic "Multiscale flow"
Florack, Luc. "Multiscale Optic Flow." In Computational Imaging and Vision, 175–203. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8845-4_6.
Full textLi, Jun. "Multiscale LBM Simulations." In Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation, 119–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26466-6_4.
Full textKassinos, S. C., J. H. Walther, E. Kotsalis, and P. Koumoutsakos. "Flow of Aqueous Solutions in Carbon Nanotubes." In Multiscale Modelling and Simulation, 215–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18756-8_16.
Full textVassilicos, John Christos. "Fractal/Multiscale Wake Generators." In Fractal Flow Design: How to Design Bespoke Turbulence and Why, 157–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33310-6_5.
Full textKayumov, Rashit A., and Farid R. Shakirzyanov. "Large Deflections and Stability of Low-Angle Arches and Panels During Creep Flow." In Multiscale Solid Mechanics, 237–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54928-2_18.
Full textVincent, Stéphane, Jean-Luc Estivalézes, and Ruben Scardovelli. "Multiscale Euler–Lagrange Coupling." In Small Scale Modeling and Simulation of Incompressible Turbulent Multi-Phase Flow, 263–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09265-7_9.
Full textBagchi, Prosenjit. "Large-Scale Simulation of Blood Flow in Microvessels." In Multiscale Modeling of Particle Interactions, 321–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470579831.ch11.
Full textSeoud, R. E. E., and J. C. Vassilicos. "Passive Multiscale Flow Control by Fractal Grids." In IUTAM Symposium on Flow Control and MEMS, 421–25. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6858-4_53.
Full textBuehler, Markus J., Farid F. Abraham, and Huajian Gao. "Stress and energy flow field near a rapidly propagating mode I crack." In Multiscale Modelling and Simulation, 143–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18756-8_10.
Full textEwing, R. E., M. Espedal, and M. Celia. "Solution Methods for Multiscale Porous Media Flow." In Computational Methods in Water Resources X, 449–56. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9204-3_55.
Full textConference papers on the topic "Multiscale flow"
Ramakrishnan, Srinivas, and Samuel Collis. "Variational Multiscale Modeling for Turbulence Control." In 1st Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3280.
Full textPeña-Monferrer, C., J. L. Muñoz-Cobo, G. Monrós-Andreu, and S. Chiva. "Development of a multiscale solver with sphere partitioning tracking." In MULTIPHASE FLOW 2015. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/mpf150221.
Full textMatsumoto, Yoichiro, and Kohei Okita. "Multiscale Analysis on Cavitating Flow." In 6th AIAA Theoretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-4044.
Full textGrinberg, Leopold, Mingge Deng, Huan Lei, Joseph A. Insley, and George Em Karniadakis. "Multiscale simulations of blood-flow." In the 1st Conference of the Extreme Science and Engineering Discovery Environment. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2335755.2335829.
Full textTelea, Alexandru, and Robert Strzodka. "Multiscale image based flow visualization." In Electronic Imaging 2006, edited by Robert F. Erbacher, Jonathan C. Roberts, Matti T. Gröhn, and Katy Börner. SPIE, 2006. http://dx.doi.org/10.1117/12.640425.
Full textChalla, Sivakumar R., Richard Truesdell, Peter Vorobieff, Andrea Mammoli, Frank van Swol, Glaucio H. Paulino, Marek-Jerzy Pindera, et al. "Shear Flow on Super-Hydrophobic Surfaces." In MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896904.
Full textLie, K. A., S. Krogstad, and B. Skaflestad. "Mixed Multiscale Methods for Compressible Flow." In ECMOR XIII - 13th European Conference on the Mathematics of Oil Recovery. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20143240.
Full textDing, Wei, Jinming Zhang, Hamed Setoodeh, Dirk Lucas, and Uwe Hampel. "Multiscale Approach for Boiling Flow Simulation." In 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20). Illinois: American Nuclear Society, 2023. http://dx.doi.org/10.13182/nureth20-40132.
Full textTao, Wen-Quan, and Ya-Ling He. "Multiscale Simulations of Heat Transfer and Fluid Flow Problems." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23408.
Full textLaizet, Sylvain, and John Christos Vassilicos. "PASSIVE SCALAR STIRRING BY MULTISCALE-GENERATED TURBULENCE." In Seventh International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2011. http://dx.doi.org/10.1615/tsfp7.1120.
Full textReports on the topic "Multiscale flow"
Patnaik, Soumya S., Eugeniya Iskrenova-Ekiert, and Hui Wan. Multiscale Modeling of Multiphase Fluid Flow. Fort Belvoir, VA: Defense Technical Information Center, August 2016. http://dx.doi.org/10.21236/ad1016834.
Full textRichard W. Johnson. Dynamic Multiscale Averaging (DMA) of Turbulent Flow. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1057682.
Full textHou, Thomas, Yalchin Efendiev, Hamdi Tchelepi, and Louis Durlofsky. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1254120.
Full textTchelepi, Hamdi. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1164145.
Full textHolm, D. D., A. Aceves, J. S. Allen, M. Alber, R. Camassa, H. Cendra, S. Chen, et al. Self-Consistent Multiscale Theory of Internal Wave, Mean-Flow Interactions. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/763237.
Full textLuettgen, Mark R., W. C. Karl, and Alan S. Willsky. Efficient Multiscale Regularization with Applications to the Computation of Optical Flow. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada459986.
Full textMiller, Cass T., and William G. Gray. SISGR: Multiscale Modeling of Multiphase Flow, Transport, and Reactions in Porous Medium Systems. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1345027.
Full textAnh Bui, Nam Dinh, and Brian Williams. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1110336.
Full textYortsos, Y. C. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes. Office of Scientific and Technical Information (OSTI), May 2001. http://dx.doi.org/10.2172/781148.
Full textYortsos, Yanis C. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/784112.
Full text