Academic literature on the topic 'Multiplicative Hilbert Matrix'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiplicative Hilbert Matrix.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiplicative Hilbert Matrix"
Brevig, Ole Fredrik, Karl-Mikael Perfekt, Kristian Seip, Aristomenis G. Siskakis, and Dragan Vukotić. "The multiplicative Hilbert matrix." Advances in Mathematics 302 (October 2016): 410–32. http://dx.doi.org/10.1016/j.aim.2016.07.019.
Full textPerfekt, Karl-Mikael, and Alexander Pushnitski. "On the spectrum of the multiplicative Hilbert matrix." Arkiv för Matematik 56, no. 1 (2018): 163–83. http://dx.doi.org/10.4310/arkiv.2018.v56.n1.a10.
Full textWu, Yuqing, and Isao Noda. "Extension of Quadrature Orthogonal Signal Corrected Two-Dimensional (QOSC 2D) Correlation Spectroscopy I: Principal Component Analysis Based QOSC 2D." Applied Spectroscopy 61, no. 10 (October 2007): 1040–44. http://dx.doi.org/10.1366/000370207782217761.
Full textAmson, J. C., and N. Gopal Reddy. "A Hilbert algebra of Hilbert-Schmidt quadratic operators." Bulletin of the Australian Mathematical Society 41, no. 1 (February 1990): 123–34. http://dx.doi.org/10.1017/s0004972700017913.
Full textCrane, Daniel K., and Mark S. Gockenbach. "The Singular Value Expansion for Arbitrary Bounded Linear Operators." Mathematics 8, no. 8 (August 12, 2020): 1346. http://dx.doi.org/10.3390/math8081346.
Full textLi, Yucheng, Hao Chen, and Wenhua Lan. "On Similarity and Reducing Subspaces of the n-Shift plus Certain Weighted Volterra Operator." Journal of Function Spaces 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/8370139.
Full textDuggal, Bhagwati, and In-Hyoun Kim. "Structure of Iso-Symmetric Operators." Axioms 10, no. 4 (October 14, 2021): 256. http://dx.doi.org/10.3390/axioms10040256.
Full textDuggal, Bhagwati, and In-Hyoun Kim. "Structure of Iso-Symmetric Operators." Axioms 10, no. 4 (October 14, 2021): 256. http://dx.doi.org/10.3390/axioms10040256.
Full textPeng, Wujian, and Qun Lin. "A Non-Krylov Subspace Method for Solving Large and Sparse Linear System of Equations." Numerical Mathematics: Theory, Methods and Applications 9, no. 2 (May 2016): 289–314. http://dx.doi.org/10.4208/nmtma.2016.y14014.
Full textLONG, YINXIANG, DAOWEN QIU, and DONGYANG LONG. "AN EFFICIENT SEPARABILITY CRITERION FOR n-PARTITE ARBITRARILY DIMENSIONAL QUANTUM STATES." International Journal of Quantum Information 09, no. 04 (June 2011): 1101–12. http://dx.doi.org/10.1142/s0219749911007514.
Full textDissertations / Theses on the topic "Multiplicative Hilbert Matrix"
Benyamine, Charif Abdallah. "Sections finies d'inégalités multiplicatives de Hilbert et multiplicateurs de l'espace de Dirichlet." Thesis, Bordeaux, 2022. http://www.theses.fr/2022BORD0187.
Full textWe study two problems. The first one concerns finite sections of the Hilbert multiplicative inequality. We give the asymptotic behaviour of the best constant $lambda_n$ in the inequality$$Big|sum_{i,j=2}^{n}frac{a_ioverline{a_j}}{ijlog(ij)}Big|leq lambda_n sum_{i=2}^n|a_i|^2.$$We also give the asymptotic behaviour of the $ell^p$ version of the finite sections of the Hilbert multiplicative inequality.The second problem concerns the membership of the multiplier algebra of the Dirichlet space of so-called distance functions, namely outer functions whose boundary values depend only on distance to a closed subset of measure zero. We establish an estimate for the Dirichlet integral of such function to belong to the multiplier algebras of the Dirichlet space
Book chapters on the topic "Multiplicative Hilbert Matrix"
Yzelman, Albert-Jan N., and Rob H. Bisseling. "A Cache-Oblivious Sparse Matrix–Vector Multiplication Scheme Based on the Hilbert Curve." In Mathematics in Industry, 627–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25100-9_73.
Full text