Dissertations / Theses on the topic 'Multiplexing detection'

To see the other types of publications on this topic, follow the link: Multiplexing detection.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Multiplexing detection.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Peng, Wei. "Non-linear detection algorithms for MIMO multiplexing systems." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39558563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peng, Wei, and 彭薇. "Non-linear detection algorithms for MIMO multiplexing systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39558563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Monteiro, Francisco António Taveira Branco Nunes. "Lattices in MIMO spatial multiplexing : detection and geometry." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holguín-Sánchez, Fausto Daniel. "Spectral Shape Division Multiplexing (SSDM): Apparatus, Transmitter, Receiver and Detection." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/800.

Full text
Abstract:
Wireless communication companies require to use the frequency spectrum to operate. Both frequency licenses and infrastructure to reuse frequencies are costly resources subject to increasing demand. This work introduces a novel multiplexing method that saves spectrum called Spectral Shape Division Multiplexing (SSDM). Under certain configurations, SSDM displays higher flexibility and throughput than other spectrally efficient methods. SSDM defines the structure of a wireless multi-carrier by software. It is similar to Orthogonal Frequency Division Multiplexing (OFDM) in that both use overlapped sub-carriers to make efficient use of allocated spectrum. However, SSDM has several advantages. Where OFDM organizes sub-carriers orthogonally, SSDM allows arbitrary frequency steps enabling higher spectral efficiency. Similarly, while OFDM and other spectrally efficient methods use sinusoidal pulse forms, SSDM can use non-standard pulses providing a greater control of the carrier. In this thesis, a SSDM transceiver is implemented to reduce the spectrum utilization. SSDM presents an increase in spectral efficiency of 20% average with respect to OFDM. The cost of this gain is higher computational speed and signal to noise ratio. The mathematical models and possible architecture for an SSDM system with sinusoidal pulses is developed. The modem is compared with other spectrally efficient methods. Similarly, the trade-offs between spectral efficiency, bit-error rates, dimension of the carrier and sub-carrier spacing are subject of analysis.
APA, Harvard, Vancouver, ISO, and other styles
5

Myllylä, M. (Markus). "Detection algorithms and architectures for wireless spatial multiplexing in MIMO-OFDM systems." Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514294334.

Full text
Abstract:
Abstract The development of wireless telecommunication systems has been rapid during the last two decades and the data rates as well as the quality of service (QoS) requirements are continuously growing. Multiple-input multiple-output (MIMO) techniques in combination with orthogonal frequency-division multiplexing (MIMO–OFDM) have been identified as a promising approach for high spectral efficiency wideband systems. The optimal detection method for a coded MIMO–OFDM system with spatial multiplexing (SM) is the maximum a posteriori (MAP) detector, which is often too complex for systems with high order modulation. Suboptimal linear detectors, such as the linear minimum mean square error (LMMSE) criterion based detection, offer low complexity solutions, but have poor performance in correlated fading channels. A list sphere detector (LSD) is a tree search based soft output detector that can be used to approximate the MAP detector with a lower computational complexity. The benefits of the more advanced detectors can be realized especially in a low SNR environment by, e.g., increasing the cell coverage. In this thesis, we consider the linear minimum mean square error (LMMSE) criterion based detectors and more advanced LSDs for detection of SM transmission. The LSD algorithms are not as such feasible for hardware implementation. Therefore, we identify the design choices that relate to the performance and implementation complexity of the LSD algorithms. We give guidelines to the LSD algorithm design and propose the proper trade-off solutions for practical wireless systems. The more stringent requirements call for further research on architectures and implementation. In particular, it is important to address the parallelism and pipelining factors in the architecture design to enable an optimal trade-off between used resources and operating speed. We design pipelined systolic array architecture for LMMSE detector algorithms and efficient architectures with given algorithm properties for the LSD algorithms. We consider the VLSI implementation of the algorithms to study the true performance and complexity. The designed architectures are implemented on a field programmable gate array (FPGA) chip and CMOS application specific integrated circuit (ASIC) technology. Finally, we present some measurement results with a hardware testbed to verify the performance of the considered algorithms
Tiivistelmä Langattoman tietoliikenteen kehitys on ollut nopeaa viimeisien vuosikymmenien aikana ja järjestelmiltä vaaditaan yhä suurempia datanopeuksia ja luotettavuutta. Multiple-input multiple-output (MIMO) tekniikka yhdistettynä monikantoaaltomodulointiin (MIMO-OFDM) on tunnistettu lupaavaksi järjestelmäksi, joka mahdollistaa tehokkaan taajuusalueen hyödyntämisen. Optimaalinen ilmaisumenetelmä tilakanavoituun (SM) ja koodattuun MIMO-OFDM järjestelmään on maximum a posteriori (MAP) ilmaisin, joka on tyypillisesti liian kompleksinen toteuttaa laajakaistajärjestelmissä, joissa käytetään korkean asteen modulointia. Alioptimaaliset lineaariset ilmaisimet, kuten pienimpään keskineliövirheeseen (LMMSE) perustuvat ilmaisimet, ovat suhteellisen yksinkertaisia toteuttaa nykyteknologialla, mutta niiden suorituskyky on varsin heikko korreloivassa radiokanavassa. Listapalloilmaisin (LSD) on puuhakualgoritmiin perustuva pehmeän ulostulon ilmaisin, joka pystyy jäljittelemään MAP ilmaisinta sitä pienemmällä kompleksisuudella. Kehittyneemmät ilmaisimet, kuten LSD, voivat parantaa langattoman verkon suorituskykyä erityisesti ympäristössä, jossa on matala signaalikohinasuhde, esimerkiksi mahdollistamalla suuremman toiminta-alueen. Tässä väitöskirjassa on tutkittu kahta LMMSE ilmaisinta ja kolmea LSD ilmaisinta SM lähetyksen ilmaisuun. Yleisesti LSD algoritmit eivät ole sellaisenaan toteutuskelpoisia kaupallisiin järjestelmiin. Väitöskirjassa on tämän vuoksi tutkittu LSD:n toteutukseen liittyviä haasteita ja toteutusmenetelmiä ja annetaan suosituksia LSD algorithmien suunnitteluun sekä ehdotetaan sopivia toteutuskompromisseja käytännön langattomiin järjestelmiin. Haastavammat suorituskyky- ja latenssivaatimukset edellyttävät lisätutkimuksia toteutusarkkitehtuureihin ja toteutuksiin. Erityisesti rinnakkaisten resurssien käyttö ja liukuhihnatekniikka toteutusarkkitehtuureissa mahdollistavat optimaalisen kompromissin löytämisen toteutuksessa käytettyjen resurssien ja laskentanopeuden väliltä. Väitöskirjassa suunnitellaan tehokkaat arkkitehtuurit tutkituille LMMSE ja LSD algoritmeille ottaen huomioon niiden ominaisuudet. Väitöskirjassa tutkitaan algoritmien toteutusta VLSI tekniikalla ja pyritään saamaan realistinen arvio algoritmien kompleksisuudesta ja suorituskyvystä. Algoritmeille suunnitellut arkkitehtuurit on toteutettu sekä FPGA piirille että erillisenä toteutuksena ASIC teknologialla. Väitöskirjassa esitetään myös testilaitteistolla tehtyjä mittaustuloksia ja varmistetaan toteutettujen algoritmien suorituskyky
APA, Harvard, Vancouver, ISO, and other styles
6

He, Lanlan, and 何兰兰. "Data detection for OFDM systems under high mobility." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B45876642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Poudel, Sunil. "Study on Fault Detection andLocalization for Wave length Division Multiplexing Passive Optical Network." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129299.

Full text
Abstract:
Wavelength division multiplexing passive optical network (WDM-PON) can meet growing bandwidth demand in access network by providing high bandwidth to the end users. Failure in the access network is becoming critical as a large volume of traffic might be affected. Therefore, an effective supervision mechanism to detect and localize the fault is required to shorten the service interruption time. Meanwhile, open access provides a certain freedom for end users to choose the service and hence boosts competition among service/network providers. On the other hand, to offer open access in WDM-PON could result in a substantial change on architectural design, e.g., multiple feeder fibers (FFs) instead of a single one may be required to connect different service/network providers. Consequently, the traditional supervision mechanisms don’t work properly in open WDM-PON. To fill in this gap, several fault supervision mechanisms to support open access in WDMPON are proposed in this thesis. They can be applied to both disjoint and co-located FF layout where the choice of providers is done through wavelength selection. The feasibility of such solutions has been validated by evaluating transmission performance. We have carried out simulations in VPItransmissionMaker for different deployment scenarios. The results have confirmed that no significant degradation of the transmission performance is introduced by the proposed monitoring schemes compared to the benchmark, where no any fault supervision method is implemented.
APA, Harvard, Vancouver, ISO, and other styles
8

GETANEH, WORKALEMAHU AGEREKIBRE. "Optical Time Domain Reflectometer based Wavelength Division Multiplexing Passive Optical Network Monitoring." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105149.

Full text
Abstract:
This project focuses on wavelength division multiplexing passive optical network (WDM-PON) supervision using optical time domain reflectometer (OTDR) for detection and localization of any fault occurred in optical distribution network. The objective is to investigate the impact of OTDR monitoring signal on the data transmission in the WDM-PON based on wavelength re-use system, where the same wavelength is assigned for both upstream and downstream to each end user. Experimental validation has been carried out to measure three different schemes, i.e. back-to-back, WDM-PON with and without OTDR connection by using 1xN and NxN arrayed waveguide gratings. Furthermore, a comprehensive comparison has been made to trace out the effect of the monitoring signal which is transmitted together with the data through the implemented setup. Finally, the result has confirmed that the OTDR supervision signal does not affect the data transmission. The experiment has been carried out at Ericsson AB, Kista.
APA, Harvard, Vancouver, ISO, and other styles
9

Tebben, Daniel James. "Limitations and Improvement of Subcarrier Multiplexed Systems over Optical Fiber." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/26968.

Full text
Abstract:
Optical coherent techniques are used to eliminate the power fading found in optical subcarrier multiplexed systems. In a double-side band optical subcarrier system the signal experiences a periodic power fading that is dependent on the fiber dispersion and subcarrier frequency. This power fading is manifested during the direct detection of the subcarrier system using a square-law photodetector. Using a modified optical local oscillator to coherently detect the subcarrier channel this power fading can be eliminated. An optical local oscillator is centered at the optical carrier in order to perform homodyne detection. However, the local oscillator is modulated by a term equal the subcarrier frequency of interest. This is then a dual-frequency optical local oscillator. By controlling the phases of the local oscillator and the local subcarrier oscillator independently in the homodyne detection scheme, both the phase error and power fading of the detected subcarrier channel can be eliminated. This technique also allows the subcarrier to be selected optically, before the optical-to-electrical conversion. Analytical and simulation results are given to show the benefits of optical coherent detection in double-sideband subcarrier systems. By eliminating the periodic power loss found in the double-sideband subcarrier system the signal becomes dispersion limited and not power limited. A comparison of double-sideband and single-sideband subcarrier systems is presented. Multiple subcarriers and subcarrier spacing are also investigated for both double sideband and single sideband subcarrier systems. Optical phase and modulator noise are also considered in the analysis and simulation of coherent detection using a dual frequency optical local oscillator. Since the implementation used to eliminate the power fading is a phase correction based process, the phase noise of both the source and local oscillator lasers must be considered and the technique compared to typical direct and coherent detection techniques. Also, the effects of modulator nonlinearity are simulated for multichannel subcarrier multiplexed systems and comparisons made between the performance of using the dual-frequency local oscillator and typical detection techniques. It is shown that the advantages of the dual-frequency LO are retained in the presence of both phase noise and modulator nonlinearity.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Ma, Shaodan. "Semi-blind signal detection for MIMO and MIMO-OFDM systems." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36846569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ma, Shaodan, and 馬少丹. "Semi-blind signal detection for MIMO and MIMO-OFDM systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B36846569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Benyahya, Kaoutar. "Mode group division multiplexing for short reach optical communications." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S117.

Full text
Abstract:
La demande croissante du trafic de données sera alimentée par des technologies révolutionnaires telles que la réalité virtuelle (VR), la réalité augmentée (AR) et l’Internet des objets (IoT). Par conséquent, les réseaux optiques devraient répondre aux besoins de ces services en termes de débit, faible temps de réponse et grande fiabilité. En effet, les hauts débits représentent un besoin critique pour les systèmes de communication à fibre optique déployés dans les réseaux locaux ainsi que dans les centres de données. Pour ces deux applications, les systèmes basés sur la modulation d'intensité et la détection directe de cette dernière sont très attractifs en raison de leur faible coût et de leur compatibilité avec les applications à courte distance. Dans le cadre de cette thèse, nous répondons à la nécessité d’augmenter les débits pour les systèmes de communication optiques à courte distance basés sur le multiplexage de groupe de modes et la détection directe. Tout d'abord, nous visons à augmenter la capacité des fibres multimodes standard déjà déployées dans les réseaux locaux et à l’intérieur des centres de données où la distance est inférieure à 5 km. Deuxièmement, nous étendons notre solution aux applications avec des distances de déploiement plus longues telles que les connexions entre les centres de données. Dans les deux cas, les architectures des liens optiques, y compris les émetteurs, les récepteurs et les fibres optiques, sont analysées. De plus, les formats de modulation adaptés aux systèmes basés sur la détection directe tels que le format de modulation mono-porteuse 4-PAM et celui multi-porteuse DMT sont comparés dans le contexte de la transmission basée sur le multiplexage spatial. Nous avons démontré les avantages du multiplexage de groupes de modes combiné à la détection directe pour augmenter le débit transmit sur une seule fibre. Premièrement, 5 Tb / s ont été démontré sur 2,2 km de fibre multimode conventionnelle (OM2). Deuxièmement, un record de transmission de 14,5 Tb / s sur fibre OM2 est démontré au moment correspondant à sa réalisation. Enfin, 200 Gb / s sur 20 km de fibre faiblement multimode (FMF) a été démontré, ce qui étend les avantages du multiplexage par groupes de modes aux applications à longue distance par rapport aux réseaux LAN où la distance maximale est limitée à 5 km
The ever-growing demand of data traffic will be fuelled by revolutionary technologies such as virtual reality (VR), augmented reality (AR) and Internet of things (IoT). Therefore, optical networks should support the requirements of these services in terms of high capacity, low latency and high reliability. In fact, large scale capacity is a critical need for fiber optic communication systems deployed in local area networks as well as in datacenters. For both applications, systems relying on intensity modulation and direct detection (IMDD) are highly demanded due to their low cost and compatibility with short range applications. In this thesis, we address the need of increasing the data rates for short reach optical communication systems based on mode group division multiplexing and direct detection schemes. Firstly, we focus on increasing the capacity of already deployed standard multimode fibers in local area networks and intra-datacenters communication where the distance is shorter than 5 km. Secondly, we extend our solution to longer reach applications such as inter-datacenter interconnects. In both cases, optical link architectures, including transmitters, receivers and the optical fibers are analysed. Moreover, modulation formats adapted to IMDD systems such as single carrier 4-PAM and multicarrier DMT are compared in the context of space division multiplexing transmission. In this work we demonstrated the achievable benefit of mode group multiplexing combined with IMDD schemes. First, 5 Tb/s has been achieved over 2.2 km of conventional multimode fiber (OM2). Secondly, transmission record at the corresponding time of its realization of 14.5 Tb/s over OM2 fiber is demonstrated. Finally, 200 Gb/s over 20 km of FMF has been achieved which extend the benefit of mode group multiplexing to longer reach applications compared to LAN and intra-datacenter where the maximum distance is limited to 5 km
APA, Harvard, Vancouver, ISO, and other styles
13

Mmbaga, Paul Fahamuel. "Study, analysis and application of optical OFDM, Single Carrier (SC) and MIMO in Intensity Modulation Direct Detection (IM/DD)." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15952.

Full text
Abstract:
With the rapid growth of wireless data demands and saturation of radio frequency (RF) capacity, visible light communication (VLC) has become a promising candidate to complement conventional RF communication, especially for indoor short range applications. However the performance of the system depends on the propagation and type of system used. An optical Orthogonal Frequency Division Multiplexing (O-OFDM) together with multiple input multiple output (MIMO) in different scenario and modulation techniques are studied in the thesis. A novel optical wireless communication (OWC) multi-cell system with narrow field of view (FOV) is studied. In this system the intensity modulated beam from four light sources are used for communication. The system allows beams to be concentrated in specific areas of the room to serve multiple mobile devices with low interference and hence increase system capacity. The performance of asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM), direct current biased optical OFDM (DCO-OFDM) and single carrier (SC) modulation are then compared in this system considering single user and multiusers scenarios. The performance of the multi-cell is compared with single cell with wide FOV. It is shown that the capacity for multi-cell system increases with the number of users to 4 times the single user capacity. Also the findings show that multi-cell system with narrow beams can outperform a single wide beam system in terms of coverage area and hence average throughput of about 2.7 times the single wide beam system capacity. One of the impairments in line of sight (LOS) OWC systems is coverage which degrades the performance. A mobile receiver with angular diversity detectors in MIMO channels is studied. The objective is to improve the rank of the channel matrix and hence system throughput. Repetition coding (RC), spatial multiplexing (SMP) and spatial modulation (SM) concepts are used to evaluate throughput across multiple locations in a small room scenario. A novel adaptive spatial modulation (ASM) which is capable of combating channel rank deficiency is devised. Since the receiver is mobile, the channel gains are low in some locations of the room due to the lack of LOS paths between transmitters and receivers. To combat the situation adaptive modulation and per antenna rate control (PARC) is employed to maximise spectral efficiency. The throughputs for fixed transmitters and receivers are compared with the oriented/inclined detectors for different cases. Angular diversity detectors offer a better throughput improvement than the state of the art vertical detectors, for example in ASM angular diversity receiver gives throughput of about 1.6 times that of vertical detectors. Also in SMP the angular detectors offer throughput about 1.4 times that of vertical detectors. SMP gives the best performance compared to RC, SM and ASM, for example SMP gives throughput about 2.5 times that of RC in both vertical detectors and angular diversity receivers. Again SMP gives throughput about 6 times that of SM in both vertical detectors and angular diversity receivers. Also SMP provides throughput about 2 times that of ASM in both vertical detectors and angular diversity receivers. ASM exhibit improvement in throughput about average factor of 3.5 times SM performance in both vertical detectors and angular diversity detectors. As the performance of the system may be jeopardized by obstructions, specular and diffuse reflection models for indoor OWC systems using a mobile receiver with angular diversity detectors in MIMO channels are considered. The target is to improve the MIMO throughput compared to vertically oriented detectors by exploiting reflections from different reflecting surfaces in the room. The throughput across multiple locations in the small room by using RC, SMP and SM approaches is again evaluated. The results for LOS only channels against LOS with specular or diffuse reflection conditions, for both vertical and angular oriented receivers are then compared. The results show that exploiting specular and diffuse reflections provide significant improvements in link performance. For example the reflection coefficient (α) of 0.9 and the antenna separation of 0.6 m, RC diffuse model shows throughput improvement of about 1.8 times that of LOS for both vertical detectors and angular diversity receivers. SM diffuse model shows throughput improvement of about 3 times that of LOS for both vertical detectors and angular diversity receivers. ASM diffuse model shows throughput improvement of about 2 times that of LOS for both vertical detectors and angular diversity receivers. SMP diffuse model shows throughput improvement of about 1.5 times that of LOS for both vertical detectors and angular diversity receiver.
APA, Harvard, Vancouver, ISO, and other styles
14

Lo, Ernest Sze-Yuen. "Differential OFDM with iterative detection and signal space diversity for broadband wireless communication /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202002%20LO.

Full text
Abstract:
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2002.
Includes bibliographical references (leaves 67-69). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
15

Tsai, Chiou-Wei, Richard E. Cagley, and Ronald A. Iltis. "JOINT INTERFERENCE SUPPRESSION AND QRD-M DETECTION FOR SPATIAL MULTIPLEXING MIMO SYSTEMS IN A RAYLEIGH FADING CHANNEL." International Foundation for Telemetering, 2006. http://hdl.handle.net/10150/604390.

Full text
Abstract:
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California
Spatial multiplexing (SM) systems have received significant attention because the architecture offers high spectral efficiency. However, relatively little research exists on optimization of SM systems in the presence of jamming. In a spatially uncoded SM system, such as V-BLAST, the channel state information is assumed to be unavailable a priori at both transmitter and receiver. Here, Kalman filtering is used to estimate the Rayleigh fading channel at the receiver. The spatial correlation of the jammer plus noise is also estimated, and spatial whitening to reject the jammers is employed in both the Kalman channel estimator and detector. To avoid the exponential complexity of maximum-likelihood (ML) detection, the QRD-M algorithm is employed. In contrast to sphere decoding, QRD-M has fixed decoding complexity of order O(M), and is thus attractive for hardware implementation. The performance of the joint Kalman filter channel estimator, spatial whitener and QRD-M detector is verfied by simulations.
APA, Harvard, Vancouver, ISO, and other styles
16

Du, Yu. "Multiuser Detection in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing Systems by Blind Signal Separation Techniques." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/630.

Full text
Abstract:
This dissertation introduces three novel multiuser detection approaches in Multiple Input Multiple Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems by blind signal separation (BSS) techniques. The conventional methodologies for multiuser detection have to retransmit channel state information (CSI) constantly from the transmitter in MIMO ODFM systems at the cost of economic efficiency, because they require more channel resources to improve the communication quality. Compared with the traditional methodologies, the proposed BSS methods are relatively efficient approaches without the unnecessary retransmission of channel state information. The current methodologies apply the space-time coding or the spatial multiplexing to implement an MIMO OFDM system, which requires relatively complex antenna design and allocation in the transmitter. The proposed Spatial Division Multiple Access (SDMA) method enables different mobile users to share the same bandwidth simultaneously in different geographical locations, and this scheme requires only one antenna for each mobile user. Therefore, it greatly simplifies the antenna design and allocation. The goal of this dissertation is to design and implement three blind multiuser detection schemes without knowing the channel state information or the channel transfer function in the SDMA-based uplink MIMO OFDM system. The proposed scenarios include: (a) the BSS-only scheme, (b) the BSS-Minimum Mean Square Error (MMSE) scheme, and (c) the BSS-Minimum Bit Error Ratio (MBER) scheme. The major contributions of the dissertation include: (a) the three proposed schemes save the commercially expensive cost of channel resources; (b) the proposed SDMA-based uplink MIMO OFDM system simplifies the requirements of antennas for mobile users; (c) the three proposed schemes obtain high parallel computing efficiency through paralleled subcarriers; (d) the proposed BSS-MBER scheme gains the best BER performance; (e) the proposed BSS-MMSE method yields the best computational efficiency; and (f) the proposed BSS-only scenario balances the BER performance and computational complexity.
APA, Harvard, Vancouver, ISO, and other styles
17

Matthé, Maximilian [Verfasser], Gerhard [Gutachter] Fettweis, and Helmut [Gutachter] Bölcskei. "Multiple-Input Multiple-Output Detection Algorithms for Generalized Frequency Division Multiplexing / Maximilian Matthé ; Gutachter: Gerhard Fettweis, Helmut Bölcskei." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://d-nb.info/1226811272/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Matthé, Maximilian [Verfasser], Gerhard Gutachter] Fettweis, and Helmut [Gutachter] [Bölcskei. "Multiple-Input Multiple-Output Detection Algorithms for Generalized Frequency Division Multiplexing / Maximilian Matthé ; Gutachter: Gerhard Fettweis, Helmut Bölcskei." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://d-nb.info/1226811272/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wicks, Arriel. "Luminescent Quantum Dot and Protein Composite Nanoparticles for Bioanalytical Applications." ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1149.

Full text
Abstract:
The first project focused on the preparation, characterization, and application of dual emission quantum dot encoded mesoporous silica microparticles. The quantum dots were added in precisely controlled ratios and were stably encapsulated within the pores of the silica. Several experiments were performed to test the superior stability of the quantum dot-silica composites over dye-loaded silica particles. The composite particles exhibited very high fluorescence, were functionalized with antibodies, and were used as signal transducers for the detection of a protein expressed by breast cancer cells. The second project focused in more detail on the detection capabilities of the quantum dot-silica composites. Three different types of quantum dot-silica composites were prepared. Each type was loaded with a separate type of quantum dot with distinct emission wavelengths and was functionalized with separate antibodies for detection of three different breast cancer biomarkers. These three composite sensors were used together for the simultaneous detection of each of the breast cancer markers. The initial strategy utilized the direct detection method in which the antigen is nonspecifically adsorbed to a glass plate. An improved second strategy was more sensitive and used a capture antibody which was covalently bound to a glass plate to immobilize the antigen. The third project focused on the preparation and application of magnetic, fluorescent human serum albumin nanoparticle composites. A fluorescent drug analogue and iron oxide nanoparticles were encapsulated into 100 nm human serum albumin nanoparticles. The advantage of these composite particles is that they could be used as a theranostic tool which could target, detect, and treat diseased tissue in a single application. Release of the drug analogue from the nanocomposites was achieved by addition of proteolytic enzymes that are expressed or overexpressed in cancer cells. The temporal release of the fluorescent drug analogue was measured as a function of enzyme concentration. The amount of drug released was directly proportional to enzyme concentration.
APA, Harvard, Vancouver, ISO, and other styles
20

Born, Kenton P. "Combating client fingerprinting through the real-time detection and analysis of tailored web content." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13277.

Full text
Abstract:
Doctor of Philosophy
Department of Computing Science
David Gustafson
The web is no longer composed of static resources. Technology and demand have driven the web towards a complex, dynamic model that tailors content toward specific client fingerprints. Servers now commonly modify responses based on the browser, operating system, or location of the connecting client. While this information may be used for legitimate purposes, malicious adversaries can also use this information to deliver misinformation or tailored exploits. Currently, there are no tools that allow a user to detect when a response contains tailored content. Developing an easily configurable multiplexing system solved the problem of detecting tailored web content. In this solution, a custom proxy receives the initial request from a client, duplicating and modifying it in many ways to change the browser, operating system, and location-based client fingerprint. All of the requests with various client fingerprints are simultaneously sent to the server. As the responses are received back at the proxy, they are aggregated and analyzed against the original response. The results of the analysis are then sent to the user along with the original response. This process allowed the proxy to detect tailored content that was previously undetectable through casual browsing. Theoretical and empirical analysis was performed to ensure the multiplexing proxy detected tailored content at an acceptable false alarm rate. Additionally, the tool was analyzed for its ability to provide utility to open source analysts, cyber analysts, and reverse engineers. The results showed that the proxy is an essential, scalable tool that provides capabilities that were not previously available.
APA, Harvard, Vancouver, ISO, and other styles
21

Israelsen, Nathan. "Surface-Enhanced Raman Spectroscopy-Based Biomarker Detection for B-Cell Malignancies." DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4605.

Full text
Abstract:
This thesis presents a light scattering-based method for biomarker detection, which could potentially be used for the quantification of multiple biomarkers specific to B-cell malignancies. This method uses fabricated gold nanoparticle probes to amplify inelastic light scattering in a process referred to as surface-enhanced Raman scattering. These gold nanoparticle probes were conjugated to antibodies for specific and targeted molecular binding. The spectrum of the amplified inelastic light scattering was detected using a spectrometer and a detector. To detect the light scattering signal from the gold nanoparticle probes, several commercial Raman spectrometer instruments were evaluated. Initial results from these evaluations are presented in this thesis. After system evaluation, a custom Raman microscope system was designed, built, and tested. This system was used for the development of a surface-enhanced Raman spectroscopy-based immunoassay. The development of this assay confirms the successful design of gold nanoparticle probes for the specific targeting and detection of immunoglobulins. The immunoassay also shows promise for the simultaneous detection of multiple biomarkers specific to B-cell malignancies.
APA, Harvard, Vancouver, ISO, and other styles
22

Ma, Jun. "Channel estimation and signal detection for wireless relay." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37082.

Full text
Abstract:
Wireless relay can be utilized to extend signal coverage, achieve spatial diversity by user cooperation, or shield mobile terminals from adverse channel conditions over the direct link. In a two-hop multi-input-multi-output (MIMO) amplify-and-forward (AF) relay system, the overall noise at the destination station (DS) consists of the colored noise forwarded from the relay station (RS) and the local white noise. We propose blind noise correlation estimation at the DS by utilizing statistics of the broadband relay channel over the RS-DS hop, which effectively improves signal detection at the DS. For further performance improvement, we also propose to estimate the two cascaded MIMO relay channels over the source-RS and the RS-DS links at the DS based on the overall channel between the source and the DS and the amplifying matrix applied at the RS. To cancel cross-talk interference at a channel-reuse-relay-station (CRRS), we utilize the random forwarded signals of the CRRS as equivalent pilots for local coupling channel estimation and achieve a much higher post signal-to-interference ratio (SIR) than the conventional dedicated pilots assisted cancellers without causing any in-band interference at the DS. When an OFDM-based RS is deployed on a high-speed train to shield mobile terminals from the high Doppler frequency over the direct link, inter-subchannel interference (ICI) mitigation is required at the RS. By utilizing statistics of the channel between the base station and the train, we develop both full-rate and reduced-rate OFDM transmission with inherent ICI self-cancellation via transmit and/or receive preprocessing, which achieve significant performance improvement over the existing ICI self-cancellation schemes.
APA, Harvard, Vancouver, ISO, and other styles
23

Gemechu, Wasyhun Asefa. "Comparison of nonlinear frequency division multiplexing and OFDM for optical fiber transmissions." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT021/document.

Full text
Abstract:
La capacité ultime du canal dans les systèmes de transmission optique à longue distance est limitée par les effets non linéaires liés à la propagation dans les fibres optiques. Des techniques de compensation des effets non-linéaires, tel que la DBP (Digital Back Propagation), ont été proposées pour surmonter ces limitations et accroître la capacité. Compte tenu de leur complexité d’implémentation, leur gain en performance reste très limité. Cela a déclenché très récemment la recherche de nouvelles techniques de communication prenant en compte la non-linéarité de la fibre. Une nouvelle méthode de communication en régime non-linéaire, basée sur la théorie de la transformation spectrale inverse (IST pour Inverse Spectral Transform), a été proposée pour surmonter la limitation induite par ces effets. Cette méthode, proposée à l'origine par Hasegawa en 1993, encore appelée communication aux valeurs propres (ou multi-solitons), est basée sur l'observation fondamentale selon laquelle le spectre non linéaire d'un signal optique est invariant (à l'exception d'un déphasage linéaire trivial) lors de la propagation dans la fibre optique, comme décrit par l’équation non linéaire de Schrödinger (NLSE pour Non-Linear Schrödinger Equation). Cela signifie que si la transformée spectrale directe (DST) (également appelée NFT pour Nonlinear Fourier Transform) du signal reçu peut être calculée, le spectre de valeurs propres peut être entièrement récupéré.Cette thèse porte sur une technique de communication de type NFT connue sous le nom de multiplexage non linéaire en fréquence (NFDM pour Non-Linear Fourier Transform). Différentes configurations de systèmes optiques NFDM ont été évalués numériquement et validés expérimentalement. Dans un premier temps, la structure d’un système NFDM en mono-polarisation utilisant le spectre continu des fréquences non-linéaires dans une fibre en régime de dispersion normale est décrite. Pour ce faire, une forme NFT du vecteur NLSE, encore appelé système de Manakov, a été développé numériquement. Sur la base de ces algorithmes, la méthode NFDM a été étendue aux systèmes multiplexés par division de polarisation (PMD) et validée expérimentalement pour la première fois en utilisant le spectre continu. Finalement, l’expérience a été répliquée en régime de dispersion anormale. Afin d'étudier les contraintes de mise en œuvre, des études numériques supplémentaires ont été effectués pour la transmission de signaux NFDM utilisant la modulation du spectre continu
Nonlinear effects in optical fiber set the ultimate limit to the channel capacity in long-haul optical transmission systems. Advanced nonlinear compensation techniques such as digital backpropagation (DBP) have been proposed as a solution to overcome the channel capacity crunch. However, given theircomputational complexity, in a practical environment their performance gainremains very limited. This triggered a search for a novel communication system design that takes fiber nonlinearity into consideration. A new nonlinearcommunication method, based on the theory of the inverse spectral transform, has been proposed to overcome the nonlinear capacity crunch. Thismethod, originally proposed by Hasegawa in 1993 and called eigenvalue (ormulti-soliton) communication, is based on the fundamental observation thatthe nonlinear spectrum of an optical signal is invariant (except for a triviallinear phase shift) upon propagation in the fiber channel, as described bythe nonlinear Schrödinger equation (NLSE). This means that if the directspectral transform (also known as nonlinear Fourier transform (NFT)) ofthe received signal can be computed, the eigenvalue spectrum can be fullyrecovered.This thesis focuses on a NFT-based communication technique known as nonlinear frequency division multiplexing (NFDM). The NFDM optical systemis numerically assessed and experimentally demonstrated. First, the structure of the proposed single-polarization NFDM system using the continuousspectrum in the normal dispersion regime is presented. To that end, theNFT of the vector NLSE, or Manakov system, was numerically developed.Based on these algorithms the NFDM method was extended to polarizationdivision multiplexed (PMD) systems, and experimentally validated for thefirst time using the continuous spectrum. Finally, the experiment will bereplicated in the anomalous dispersion regime.Additional numerical studies are presented, in order to investigate the implementation challenges of the proposed NFDM techniques for the continuousspectrum modulation
APA, Harvard, Vancouver, ISO, and other styles
24

Min, Rui, and 闵瑞. "Channel estimation and data detection of OFDM systems under unknown channel order doppler frequency: from point-to-point to relaying systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47323930.

Full text
Abstract:
Recently, there has been an increasing demand for OFDM system operating in high mobility environment. In such situation, wireless channel is both frequency-selective and time-varying, a.k.a. doubly-selective, making it hard for the receiver to keep track of the channel state information (CSI). Moreover, the statistical information of channel, e.g., tap positions, channel length, Doppler shifts and noise power, is generally unknown to the receiver. In this thesis, two kinds of mobile OFDM systems are investigated for data detection and channel estimation. Different from previous works, which highly depend on the statistical information of the doubly selective channel to deliver accurate channel estimation and data detection results, we focus on more practical scenarios with unknown channel orders and Doppler frequencies. Firstly, point-to-point OFDM system with high mobility is considered. Due to the unknown channel characteristics, we formulate the channel using GCE-BEM with a large oversampling factor. The resulted GCE-BEM coefficients are sparse on delay-Doppler domain and contain only a few nonzero elements. To enable the identification of nonzero entries, sparsity enhancing Gaussian priors with Gamma hyperpriors are adopted. An iterative algorithm is developed under variational inference (VI) framework. The proposed algorithm iteratively estimate the channel, recover the unknown data using Viterbi algorithm and learn the channel and noise statistical information, using only limited number of pilot subcarrier in one OFDM symbol. Secondly, we investigate multihop amplify-and-forward (AF) OFDM system, where system structure is generally unknown to the receiver due to the variable number of hops and relaying paths in high mobility environment. We notice that in AF relaying systems, the composite source-relay-destination channel is sufficient for data detection. Then we integrate the multilink, multihop channel matrices into one composite channel matrix, which turns out to have the same structure as the point-to-point OFDM channel. The reformulated system model is more concise and a similar iterative algorithm to that of the point-to-point case can be derived to estimate the composite channel and detect data. This means that the proposed framework applies to OFDM system under high mobility regardless of the system structure. Simulation results show that the performance of the proposed algorithm is very close to that of the optimal channel estimation and data detection algorithm, which requires specific information of system structure, channel tap positions, channel lengths, Doppler shifts as well as noise powers. It is worth noting that, the close-to-ideal performance of the proposed algorithms is achieved with none of the above information.
published_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
25

Koebele, Clemens. "Mode-division-multiplexing as a possibility to cope with the increasing capacity demand in optical transmission systems." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00762642.

Full text
Abstract:
Currently deployed optical transmission systems use coherent detection for data rates of 40 Gb/s and 100 Gb/s. Quadrature phase shift keying (QPSK) modulation using four phase levels in combination with polarization division multiplexing (PDM) allows transmitting four bits per symbol. The use of more complex modulation formats, such as 16 level quadrature amplitude modulation (16QAM) allows increasing the data rate. However, this method reduces dramatically the transmission reach. For example, when passing from 100 Gb/s PDM-QPSK to 200 Gb/s PDM-16QAM, the reach is reduced by a factor of five. A new and disruptive approach in order to increase the capacity is mode division multiplexing (MDM), and this approach is investigated in the frame of my thesis. I start my thesis with some generalities on optical transmission systems followed by a presentation of their historical evolution against the background of the increasing capacity demand in the worldwide telecommunication networks. Afterwards I show some ways to continue the capacity growth in optical transmission systems before focusing on MDM. I describe the new key elements, notably the few-mode fiber and the few-mode amplifier, the mode-multiplexer / -demultiplexer and the new receiver system. I finish with a presentation of some experiments using entire MDM systems, which allowed us to be among the first research teams worldwide to realize a successful MDM transmission
APA, Harvard, Vancouver, ISO, and other styles
26

Nguyen, Nam Tran Electrical Engineering &amp Telecommunications Faculty of Engineering UNSW. "Training signal and precoder dsigns for channel estimation and symbol detection in MIMO and OFDM systems." Awarded by:University of New South Wales. Electrical Engineering & Telecommunications, 2008. http://handle.unsw.edu.au/1959.4/43243.

Full text
Abstract:
Research in wireless communications has been actively carried out in recent years. In order to enable a high data transmission rate, multiple-input multiple-output (MIMO) communications has been proposed and commonly adopted. Accurate channel identification and reliable data detection are major challenges in the implementation of a communications system operating over a wireless fading channel. These issues become even more challenging in MIMO systems since there are many more parameters involved in the estimation processes. This thesis, consisting of four major parts, focuses on applying convex optimization to solve design problems in both MIMO channel estimation and data detection. The first part proposes a novel orthogonal affine precoding technique for jointly optimal channel estimation and symbol detection in a general MIMO frequency-selective fading channel. Additionally, the optimal power allocation between the data and training signals is also analytically derived. The proposed technique is shown to perform much better than other affine precoding techniques in terms of detection error probability and computational complexity. The second part is concerned with the MIMO orthogonal frequency-division multiplexing (OFDM) systems. The superimposed training technique developed in the first part is applied and extended for MIMO-OFDM systems where all the involved transmitters and receivers are assumed to be uncorrelated. Analytical and numerical results confirm that the proposed design can efficiently identify the unknown wireless channel as well as effectively recover the data symbols, while conserving the transmission bandwidth. The third part considers training and precoding designs for OFDM under colored noise environment. The superiority of the proposed design over the previously-known design under colored noise is thoroughly demonstrated. The last part of the thesis develops the orthogonal affine precoder for spatially correlated MIMO-OFDM systems. The optimal superimposed training sequences are solved by tractable semi-definite programming. To have a better computational efficiency, two approximate design techniques are also presented. Furthermore, the non-redundancy precoder proposed in the third part is employed to combat channel correlation. As a result, the proposed designs are demonstrated to outperform other known designs in terms of channel estimation and data detection.
APA, Harvard, Vancouver, ISO, and other styles
27

Ellinger, John David. "Multi-Carrier Radar for Target Detection and Communications." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1463839176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Du, Li. "A Multichannel Oil Debris Sensor for Online Health Monitoring of Rotating Machinery." University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1354641162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

LI, XIAOXU. "WAVELENGTH-DIVISION-MULTIPLEXED TRANSMISSION USING SEMICONDUCTOR OPTICAL AMPLIFIERS AND ELECTRONIC IMPAIRMENT COMPENSATION." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4025.

Full text
Abstract:
Over the last decade, rapid growth of broadband services necessitated research aimed at increasing transmission capacity in fiber-optic communication systems. Wavelength division multiplexing (WDM) technology has been widely used in fiber-optic systems to fully utilize fiber transmission bandwidth. Among optical amplifiers for WDM transmission, semiconductor optical amplifier (SOA) is a promising candidate, thanks to its broad bandwidth, compact size, and low cost. In transmission systems using SOAs, due to their large noise figures, high signal launching powers are required to ensure reasonable optical signal-to-noise ratio of the received signals. Hence the SOAs are operated in the saturation region and the signals will suffer from SOA impairments including self-gain modulation, self-phase modulation, and inter channel crosstalk effects such as cross-gain modulation, cross-phase modulation, and four-wave mixing in WDM. One possibility to circumvent these nonlinear impairments is to use constant-intensity modulation format in the 1310 nm window where dispersion is also negligible. In this dissertation, differential phase-shift keying (DPSK) WDM transmission in the 1310 nm window using SOAs was first considered to increase the capacity of existing telecommunication network. A WDM transmission of 4 x 10 Gbit/s DPSK signals over 540 km standard single mode fiber (SSMF) using cascaded SOAs was demonstrated in a recirculating loop. In order to increase the transmission reach of such WDM systems, those SOA impairments must be compensated. To do so, an accurate model for quantum-dot (QD) SOA must be established. In this dissertation, the QD-SOA was modeled with the assumption of overall charge neutrality. Static gain was calculated. Optical modulation response and nonlinear phase noise were studied semi-analytically based on small-signal analysis. The quantitative studies show that an ultrafast gain recovery time of ~0.1 ps can be achieved when QD-SOAs are under high current injection, which leads to high saturation output power. However more nonlinear phase noise is induced when the QD-SOAs are used in the transmission systems operating at 10 Gbit/s or 40 Gbit/s. Electronic post-compensation for SOA impairments using coherent detection and digital signal processing (DSP) was investigated next in this dissertation. An on-off keying transmission over 100 km SSMF using three SOAs at 1.3 [micrometer] were demonstrated experimentally with direct detection and SOA impairment compensation. The data pattern effect of the signal was compensated effectively. Both optimum launching power and Q-factor were improved by 8 dB. For advanced modulation formats involving phase modulation or in transmission windows with large dispersion, coherent detection must be used and fiber impairments in WDM systems need to be compensated as well. The proposed fiber impairment compensation is based on digital backward propagation. The corresponding DSP implementation was described and the required calculations as well as system latency were derived. Finally joint SOA and fiber impairment compensations were experimentally demonstrated for an amplitude-phase-shift keying transmission.
Ph.D.
Optics and Photonics
Optics and Photonics
Optics PhD
APA, Harvard, Vancouver, ISO, and other styles
30

Ruan, Matt (Ming), and mattruan@gmail com. "Timing and Frequency Synchronization in Practical OFDM Systems." The Australian National University. ANU College of Engineering & Computer Science, 2009. http://thesis.anu.edu.au./public/adt-ANU20100728.103929.

Full text
Abstract:
Orthogonal frequency-division multiplexing (OFDM) has been adopted by many broadband wireless communication systems for the simplicity of the receiver technique to support high data rates and user mobility. However, studies also show that the advantage of OFDM over the single-carrier modulation schemes could be substantially compromised by timing or frequency estimation errors at the receiver. In this thesis we investigate the synchronization problem for practical OFDM systems using a system model generalized from the IEEE 802.11 and IEEE 802.16 standards. For preamble based synchronization schemes, which are most common in the downlink of wireless communication systems, we propose a novel timing acquisition algorithm which minimizes false alarm probability and indirectly improves correct detection probability. We then introduce a universal fractional carrier frequency offset (CFO) estimator that outperforms conventional methods at low signal to noise ratio with lower complexity. More accurate timing and frequency estimates can be obtained by our proposed frequency-domain algorithms incorporating channel knowledge. We derive four joint frequency, timing, and channel estimators with different approximations, and then propose a hybrid integer CFO estimation scheme to provide flexible performance and complexity tradeoffs. When the exact channel delay profile is unknown at the receiver, we present a successive timing estimation algorithm to solve the timing ambiguity. Both analytical and simulation results are presented to confirm the performance of the proposed methods in various realistic channel conditions. The ranging based synchronization scheme is most commonly used in the uplink of wireless communication systems. Here we propose a successive multiuser detection algorithm to mitigate multiple access interference and achieve better performance than that of conventional single-user based methods. A reduced-complexity version of the successive algorithm feasible for hardware real-time implementation is also presented in the thesis. To better understand the performance of a ranging detector from a system point of view, we develop a technique that can directly translate a detector�s missed detection probability into the maximum number of users that the method can support in one cell with a given number of ranging opportunities. The analytical results match the simulations reasonably well and show that the proposed successive algorithms allow a base station to serve more than double the number of users supported by the conventional methods. Finally, we investigate inter-carrier interference which is caused by the timevarying communication channels. We derive the bounds on the power of residual inter-carrier interference that cannot be mitigated by a frequency-domain equalizer with a given number of taps. We also propose a Turbo equalization scheme using the novel grouped Particle filter, which approaches the performance of the Maximum A Posterior algorithm with much lower complexity.
APA, Harvard, Vancouver, ISO, and other styles
31

Billoori, Sharath Reddy. "Towards adaptation of OFDM based wireless communication systems." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ferreira, Rafael Jales Lima. "Estudo de sistemas com multiportadoras ópticas ortogonais e coerentes." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/18/18155/tde-29042013-113736/.

Full text
Abstract:
Neste trabalho a técnica de multiportadoras OFDM (Orthogonal Frequency Division Multiplexing), aplicada a sistemas ópticos, é estudada, com foco principal na geração e transmissão dos chamados supercanais ópticos modulados em altíssimas taxas (até Terabits/s). O OFDM prevê um melhor aproveitamento da largura de banda e, quando comparada à técnica FDM (Frequency Division Multiplexing), permite uma redução de aproximadamente 50% do espectro ocupado. Esta economia proporcionada pela técnica torna-a forte candidata para uso em redes ópticas reconfiguráveis, pois provê melhor eficiência espectral aos sinais com reconfiguração de tráfego remoto. Dois cenários serão abordados: o primeiro, em que o sinal com multiportadoras moduladas de forma híbrida (QAM - quadradure amplitude modulation) é gerado no domínio elétrico para, em seguida, modular uma portadora óptica; e o segundo, no qual as multiportadoras são geradas no domínio óptico e, posteriormente, moduladas individualmente também no domínio óptico - e neste caso o formato de modulação pode variar. Para o segundo caso, três técnicas de geração de supercanais serão estudadas e avaliadas a fim de se realizar uma comparação entre elas. Neste trabalho também serão comparadas as técnicas de recepção óptica direta e coerente, aplicadas a sistemas OFDM. Os resultados para o estudo da geração de multiportadoras ópticas, obtidos através de simulações no software Optisystem v. 9.0, são validados por resultados experimentais obtidos no Laboratório de Comunicações Ópticas da Fundação CPqD.
This manuscript presents a study on the multicarrier modulation technique OFDM (Orthogonal frequency division multiplexing) applied to optical systems. The OFDM technique provides a better use of bandwidth and, compared with FDM (Frequency Division Multiplexing), provides a nearly 50% reduction of the occupied bandwidth. This feature makes the OFDM technique an ideal candidate for reconfigurable optical networks because it allows better spectral efficiency to the signals with remote traffic reconfiguration. The study focuses, mainly, on the theoretical investigation of OFDM applied to the transmission of the so-called optical superchannels, modulated at very high bit rates (above Terabits/s). Two scenarios are discussed: in the first, the multicarrier signal, modulated in a hybrid format (QAM - quadrature amplitude modulation), is generated in the electrical domain before modulating the optical carrier, and in the second the multicarrier beam is generated in the optical domain and subsequently each subcarrier is digitally modulated. In this second approach, three superchannel generation techniques are studied and evaluated for being compared. This work will also compare the direct and coherent detection techniques applied to OFDM systems. The results for the optical multicarrier generation study, obtained by numerical simulation (platform Optisystem v. 9.0), are validated by experimental results obtained at the Laboratory of Optical Communication CPqD Foundation.
APA, Harvard, Vancouver, ISO, and other styles
33

Panagiotopoulou, Maria. "Organic-inorganic composite materials for specific recognition and optical detection of environmental, food and biomedical analytes." Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2315/document.

Full text
Abstract:
Cette thèse décrit l'état de l'art des sondes et nanoparticules fluorescents traditionnels utilisés en imagerie de fluorescence ainsi que le développement de nouveaux nanomatériaux à base de polymère à empreinte moléculaire, aussi dénommé ‘anticorps plastique’, pour le ciblage et la bioimagerie. En biologie et en médecine, il y a un besoin constant de diagnostiquer diverses maladies pour leur éventuel traitement et prévention. Une distribution anormale et un taux élévé de glycosylation (e.g. acides hyaluronique et sialique) à la surface ou dans les cellules sont indicateurs d’une infection ou d’un cancer. Généralement, l’imagerie par fluorescence permet de visualiser, localiser et quantifier les biomarqueurs de pathologie mais à l’heure actuelle, il n’existe pas d’outil analytique fiable pour cibler spécifiquement les molécules de glycosylation car les anticorps et les lectines vendus dans le commerce ont une faible affinité et sélectivité vis-à-vis de ces cibles. Dans ce contexte, les polymères à empreintes moléculaires (MIPs) pourraient apporter une solution. Les MIPs sont des récepteurs synthétiques possédant des affinités et sélectivités comparables à ceux des anticorps, mais exhibant une stabilité physique, thermique et chimique bien plus accrue. De plus, leur fabrication est peu coûteuse et ne nécessite pas de tuer des animaux comme pour l’obtention des anticorps biologiques. Dans cette thèse, nous avons optimisé et synthétisé des MIPs biocompatibles pour leur utilisation en bioimagerie afin de détecter et quantifier l’acide hyaluronique et l’acide sialique sur les cellules et les tissus de peau humaine. L’acide glucuronique, une composante de l’acide hyaluronique et l’acide N-acétylneuraminique, l’acide sialique le plus commun, ont été utilisés comme molécules ‘patron’, générant des MIPs très sélectifs envers leur cible en milieu aqueux. Deux types de nanoparticules de MIPs fluorescents ont été synthétisés: (1) en incorporant un colorant rhodamine polymérisable dans la solution de pré-polymérisation et (2) en encapsulant des boîtes quantiques InP/ZnS générant ainsi des MIPs de type cœur-coquille. Pour cela, nous avons adopté une stratégie innovante qui consiste à synthétiser les coquilles de MIPs directement autour des boîtes quantiques en utilisant l’énergie de l’onde fluorescente émise par l’excitation des points quantiques, pour initier la polymérisation. Un protocole d'immunocoloration standard a ensuite été optimisé afin d’imager des kératinocytes humains fixés et vivants ainsi que des tissus de peau, par microscopie à épifluorescence et confocale. Les résultats étaient similaires à ceux obtenus par la méthode de référence utilisant une protéine biotinylée reconnaissant l'acide hyaluronique. L'imagerie multiplex en combinant deux MIPs couplés à deux couleurs de boîtes quantiques et l’imagerie des cellules cancéreuses ont également été démontrées. Bien que les MIPs n’étaient pas cytotoxiques aux concentrations utilisées pour la bioimagerie, la toxicité des différentes composantes du MIP pourrait être un frein à leur utilisation dans le domaine biomédical. Afin de rendre ces MIPs plus ‘inoffensifs’, nous avons supprimé l’amorceur de polymérisation, une molécule considérée comme toxique. Les MIPs ont été synthétisés en employant des monomères qui s’auto-initient sous l’effet de l’UV ou de la chaleur. La spécificité et la sélectivité des MIPs obtenus étaient similaires à ceux préparés avec des amorceurs. En conclusion, cette thèse décrit la première utilisation des MIPs comme anticorps synthétique pour la bioimagerie de fluorescence. Ce travail ouvre la voie à de nouvelles applications en détection, diagnostique et thérapie par des MIPs
This thesis describes the state of the art in nanomaterials-based targeted bioimaging and introduces molecularly imprinted polymers, also termed ‘plastic antibodies’ as novel biorecognition agents for labeling and imaging of cells and tissues. In fundamental biology and medical diagnostics, there is a constant need to localize and quantify specific molecular targets. Abnormal glycosylation levels or distributions of hyaluronan or sialic acids on cells are indicators of infection or malignancy. In general, bioimaging with fluorescent probes enables the localization and qualitative or quantitative determination of these pathological biomarkers. However, no reliable tools for the recognition of glycosylation sites on proteins exist, because the commercially available antibodies or lectins have poor affinity and selectivity for these targets. In this context, tailor-made molecularly imprinted polymers (MIPs) are promising synthetic receptor materials since they present a series of advantages over their natural counterparts such as the ease and low cost of preparation and their physical and chemical stability. Thus, MIPs could provide a robust and specific imaging tool for revealing the location/distribution, time of appearance and structure of glycosylation sites on/in cells, which would lead to a better insight of the tremendously diverse biological processes in which these molecules are involved. Herein, we describe the synthesis of water-compatible MIPs for the molecular imaging of hyaluronan and sialylation sites on cells and tissues. Since molecular imprinting of entire biomacromolecules like oligosaccharides is challenging, we opted for what is commonly called the ‘epitope approach’, which was inspired by nature. The monosaccharides, glucuronic acid and N-acetylneuraminic acid were imprinted, and the resulting MIPs were able to bind these molecules when present and accessible on the terminal unit of hyaluronan and sialylation sites. Fluorescent MIPs were synthesized as rhodamine-labeled nanoparticles and as MIP-coated InP/ZnS core-shell quantum dot (QD) particles. For the coating of the QDs, a novel versatile solubilization and functionalization strategy was proposed, which consists of creating polymer shells directly on QDs by photopolymerization using the particles as individual internal light sources. A standard immunostaining protocol was then successfully adapted for the application of the fluorescently labeled MIPs to image fixed and living human keratinocytes and skin tissues, by epifluorescence and confocal fluorescence microscopy. The results were comparable to those obtained with a reference method where staining was done with a biotinylated hyaluronic acid binding protein. Multiplexed and cancer cell imaging were also performed, demonstrating the potential of molecularly imprinted polymers as a versatile biolabeling and bioimaging tool. Although the MIPs were not cytotoxic at the concentrations used for bioimaging, in order to render them generally applicable in biomedicine, where toxicity of the polymerization precursors is a matter of concern, we suppressed the initiator, a toxic chemical. Initiator-free MIPs were thus synthesized by using monomers that can self-initiate under UV irradiation or heat. The specificity and selectivity of the obtained MIPs were as good as the ones prepared with initiators. In conclusion, we have demonstrated for the first time the great potential of MIPs as synthetic antibody mimics for bioimaging. The possibility to associate other functionalities such as QDs and additionally attach drugs to the same material appears rather straightforward due to the synthetic polymeric nature of MIPs, which paves the way to new potential applications in theranostics
APA, Harvard, Vancouver, ISO, and other styles
34

Jameson, Brian Douglas. "A NOVEL MULTI-FUNCTIONAL SOFTWARE-DEFINED RADAR: THEORY & EXPERIMENTS." Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1375821039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Segkos, Michail. "Advanced techniques to improve the performance of OFDM Wireless LAN." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FSegkos.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering and M.S. in Applied Physics)--Naval Postgraduate School, June 2004.
Thesis advisor(s): Tri T. Ha, Brett H. Borden. Includes bibliographical references (p. 107-109). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
36

Kakkar, Aditya. "Theoretical Investigation of a new OFDM Access-Network Topology (OTONES)." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-128712.

Full text
Abstract:
Recent studies on growth of telecomm sector depict an ever rising demand for high bandwidth applications such as on-line gaming, high definition television and many more. This demand is coupled with increase in internet connected utilities per house hold - each requiring a portion of bandwidth. The fast development of broadband telecommunication services calls for an upgrade of access infrastructure. This challenge could be met by technologies such as Fiber-To-The-Home/Building (FTTH/B) point-to-multipoint (P2MP) optical access networking. Further, FTTH is also widely regarded as a future proof solution for broadband telecommunication services within scientific and industrial sectors. This has encouraged large amount of research and development throughout the globe to find optimal topologies for FTTH. OFDM based optical access network topology abbreviated as OTONES is an ongoing EU FP 7 project under the PIANO+ framework. The OTONES project addresses the next generation optical access networking on the basis of Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Multiple Access (OFDMA), with special provision for reduced complexity and signal processing aspects of the subscriber side terminals (ONUs). This thesis focuses on the theoretical investigation of OFDM based optical access network topology OTONES. The thesis provides an in depth view of the salient aspects of the topology and formulates the key requirements of OTONES topology. The investigation primarily delves on two important aspects of the topology. First, finding the optimal analog circuitry for the optical network unit (ONU). Second, finding the optimal operation regime for the topology and hence optimizing the system level concept. In this thesis, we show that the requirement of an analog circuitry originates from the need of successive up-conversions in OTONES topology which also produces image spectrum. This image spectrum causes a 3 dB loss in power and spectral efficiency in absence of a proper image rejection circuitry. Thus, we discuss the generic SSB generation methods for efficient image rejection. Novel Bedrosian method based on Bedrosian Theorem is established as a promising method for image rejection. We show that this method is an analog implementation of Hilbert Transform Method and does not involve any approximation. Both generic methods for SSB along with the Novel Bedrosian method are evaluated based on the criterion established for OTONES topology. Finally, optical filtering from the set of generic SSB method is proposed for the downstream path and Novel Bedrosian method is proposed for the upstream path. The tolerance limits for Novel Bedrosian method, are also established for its physical implementation. We further discuss the realistic implementation of various components of the OTONES topology. We also establish the optimal operation regime of the full concurrent topology based on parameters such as input optical power, pilot tone separation and many more. Finally as a key feature of the thesis, we optimize the system level concept of the topology with the use of the proposed Novel Bedrosian Method as the optimal analog circuitry for OTONES topology and provide a region of optimal operation of the topology.
APA, Harvard, Vancouver, ISO, and other styles
37

Deiss, Frédérique. "Développement de réseaux multiplexés de biocapteurs électrochimiques." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13883/document.

Full text
Abstract:
Ce travail de thèse a porté sur le développement de réseaux de micro- et nanocapteurs opto-électrochimiques pour la bioanalyse. Ils répondent à la demande grandissante dans le domaine de la recherche et du diagnostic pour des outils permettant de réaliser de multiples analyses simultanément avec des échantillons de faibles volumes. Ces nouvelles biopuces de haute densité sont fabriquées à partir de faisceaux cohérents de fibres optiques. Une des deux faces est micro- ou nanostructurée par une attaque chimique, puis fonctionnalisée avec une sonde biologique. La première biopuce est un réseau de nanocapteurs fluorescents à ADN où les sondes ont été immobilisées grâce aux propriétés d’électropolymérisation du pyrrole. La lecture est réalisée à distance au travers du faisceau d’imagerie. En combinant la technique d’immobilisation avec des microleviers électrochimiques, plusieurs sondes différentes ont pu être adressées sur le même réseau nanostructuré. La seconde biopuce permet d’effectuer des immunodosages multiplexés en utilisant l’imagerie électrochimiluminescente résolue à l’échelle d’une microsphère. Le développement de cette technique permet de combiner les avantages de l’électrochimiluminescence avec des immunodosages multiplexés. L’élaboration de ces réseaux allie différentes techniques physico-chimiques, notamment électrochimiques, pour obtenir des biopuces avec un fort potentiel, grâce à une densité et un degré de multiplexage importants
This work presents the development of optoelectrochemical micro- and nanosensor arrays for bioanalytical applications. These platforms respond to the growing need in research and diagnostic for tools allowing multiple and simultaneous analysis in small-volume samples. These new high density biochips are made from coherent optical fiber bundles: one face is micro- or nanostructured by chemical etching and then functionnalized with biological probes. The first biochip is a fluorescent DNA nanosensor array where probes have been immobilized by electrodeposition of a polypyrrole thin film. The detection of the hybridization is remotely performed through the imaging fiber. Different probes were succesfully addressed onto the same nanostructured array thanks to electrochemical cantilevers. The second biochip allows multiplexed sandwich immunoassays using electrochimiluminescent imaging resolved at the single bead level. In particular, the development of this new readout mechanism allows extending electrochemiluminescent detection for multiplexed immunoassays. Design and implementations of both platforms take advantages of different physical and chemical techniques, especially electrochemical, to obtain biochips with a great potential through high density and high multiplexing level
APA, Harvard, Vancouver, ISO, and other styles
38

Ben, Salem Aymen. "The Application of Multiuser Detection to Spectrally Efficient MIMO or Virtual MIMO SC-FDMA Uplinks in LTE Systems." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30351.

Full text
Abstract:
Single Carrier Frequency Division Multiple Access (SC-FDMA) is a multiple access transmission scheme that has been adopted in the 4th generation 3GPP Long Term Evolution (LTE) of cellular systems. In fact, its relatively low peak-to-average power ratio (PAPR) makes it ideal for the uplink transmission where the transmit power efficiency is of paramount importance. Multiple access among users is made possible by assigning different users to different sets of non-overlapping subcarriers. With the current LTE specifications, if an SC-FDMA system is operating at its full capacity and a new user requests channel access, the system redistributes the subcarriers in such a way that it can accommodate all of the users. Having less subcarriers for transmission, every user has to increase its modulation order (for example from QPSK to 16QAM) in order to keep the same transmission rate. However, increasing the modulation order is not always possible in practice and may introduce considerable complexity to the system. The technique presented in this thesis report describes a new way of adding more users to an SC-FDMA system by assigning the same sets of subcarriers to different users. The main advantage of this technique is that it allows the system to accommodate more users than conventional SC-FDMA and this corresponds to increasing the spectral efficiency without requiring a higher modulation order or using more bandwidth. During this work, special attentions wee paid to the cases where two and three source signals are being transmitted on the same set of subcarriers, which leads respectively to doubling and tripling the spectral efficiency. Simulation results show that by using the proposed technique, it is possible to add more users to any SC-FDMA system without increasing the bandwidth or the modulation order while keeping the same performance in terms of bit error rate (BER) as the conventional SC-FDMA. This is realized by slightly increasing the energy per bit to noise power spectral density ratio (Eb/N0) at the transmitters.
APA, Harvard, Vancouver, ISO, and other styles
39

Hamze, Mohamad. "Study of different SOA structures impact on the transmission of IMDD OOFDM signals." Thesis, Brest, 2015. http://www.theses.fr/2015BRES0026/document.

Full text
Abstract:
Le travail de thèse porte sur une étude d'impact de différentes structures SOA sur la transmission optique de signaux OFDM modulés en intensité et reçus en détection directe (IMDD-OOFDM), dans le cadre des réseaux d'accès de nouvelle génération (σGPτσ). Dans la première partie du travail, nous avons d’abord validé expérimentalement la modélisation d’un RSτA sur une large plage d’utilisation. Ce modèle a ensuite été implémenté dans le cadre d'une plate-forme de co-simulation pour les systèmes de transmission IMDD-OOFDM et pour la conversion en longueur d'onde de signaux OOFDM avec une validation expérimentale. Une analyse approfondie des performances de transmission a été ensuite menée en termes de puissance optique et de longueur d’onde injectées, de longueur de fibre, de l’émission spontanée amplifiée (ASE), de la bande passante électrique et des non-linéarités du RSτA. Nous avons notamment montré théoriquement qu’une capacité minimale de transmission de 8,9 Gb/s sur 100 km pouvait être atteinte sur une plage de 100 nm avec le RSOA utilisé et avec l’aide d’une modulation adaptative (AMττFDM). Nous avons également démontré expérimentalement, pour la première fois à notre connaissance, la conversion de longueur d'onde de signaux optiques OOFDM-16QAM sur une plage de 70 nm en utilisant l'effet XGM du RSOA. Dans la seconde partie, nous avons développé la modélisation de plusieurs structures de SOA : un SOA à îlots quantiques (QD SOA), un SOA bi-électrodes et deux SOA cascadés en configuration contra-propagative. Nous avons étudiés leurs performances en transmission à l’aide de la modulation AMττFDM. Nous avons montré que ces structures présentent une capacité de transmission allant jusqu’à 30 Gb/s avec des distances de transmission jusqu'à 60 km. Nous avons montré également que le QD-SOA présente de meilleures performances en termes de capacité de transmission pour des distances allant jusqu'à 140 km en comparaison avec les deux autres configurations
The thesis work deals with study of different SOA structures impact on the transmission of intensity modulation and direct detection OFDM signals in the context of the next generation access networks. In the first part of the work, we have experimentally validated a comprehensive wideband RSOA field model. It was the nused as part of a co-simulation platform for IMDD-OOFDM and OOFDM wavelength conversion transmission systems. Thanks to this co-simulation platform that presents good agreement with the measurement, and our experimental setup, we analyze the transmission performance in terms of optical input power, fiber length, ASEnoise, electrical bandwidth and RSOA nonlinearities. We showed by simulation that an AMOOFDM signal transmission over a 100 nm wavelength range with a minimum transmission capacity of 8.9 Gb/s for fiber lengths up to 100 km can be reached. Finally, we experimentally demonstrated, for the first time to the best of our knowledge, the feasibility of performing wave length conversion over 70 nm of OOFDM-16QAM optical signals using the XGM effect in an RSOA. In the second part of this work we develop a simplified quantum dot –SOA and two electrode SOAintensity modulator models and study their effect on a numerical OFDM IMDD transmission system, we also study a two cascaded SOA in a counter propagating configuration as an intensity modulator. We find that for the three configurations we can achieve a high transmission capacity of around 30 Gb/s for transmission distances up to 60 Km, we also find that the QD-SOA will have the best performance in terms of transmission capacity for distances up to 140 Km in comparison with the two other SOA configurations
APA, Harvard, Vancouver, ISO, and other styles
40

Qin, Hao. "Sécurité pratique de systèmes de cryptographie quantique : étude d'attaques et développement de contre-mesures." Electronic Thesis or Diss., Paris, ENST, 2015. http://www.theses.fr/2015ENST0040.

Full text
Abstract:
Dans cette thèse, j’étudie une primitive cryptographique appelée distribution quantique de clés. La distribution quantique de clés permet à deux parties distantes de partager une clé secrète en présence d’une espion, dont la puissance est seulement limité par les lois de la physique quantique. J’ai concentré mon travail de thèse sur la distribution quantique de clés à variables continues et en particulier, sur l’étude pratique d’implémentations. J’ai proposé et étudié théoriquement une attaque par canaux cachés originale, visant les détecteurs : l’attaque par saturation. Nous avons de plus démontré expérimentalement la faisabilité de cette attaque sur un système de la distribution quantique de clés à variables continues dans notre laboratoire. Enfin, nous avons en outre démontré expérimentalement pour la première fois la faisabilité du déploiement d’un système de la distribution quantique de clés à variables continues dans un réseau optique du multiplexage en longueur d’onde dense
In this thesis, I study a cryptographic primitive called quantum key distribution which allows two remote parties to share a secret key, in the presence of an eavesdropper, whose power is only limited by the laws of quantum physics. I focus my study on the implementation and the practical security of continuousvariable protocols. For the first time, I have proposed and studied a detector-based side channel attack on a continuous-variable system : saturation attack. This attack opens a new security loophole that we have characterized experimentally in our laboratory, on a real continuous-variable system. Finally, we have demonstrated experimentally for the first time the feasibility of a continuous-variable system deployment in a Dense Wavelength Division Multiplexing network, where quantum signals coexist with intense classical signals in a same fiber
APA, Harvard, Vancouver, ISO, and other styles
41

Shang, Lei, and lei shang@ieee org. "Modelling of Mobile Fading Channels with Fading Mitigation Techniques." RMIT University. Electrical and Computer Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20061222.113303.

Full text
Abstract:
This thesis aims to contribute to the developments of wireless communication systems. The work generally consists of three parts: the first part is a discussion on general digital communication systems, the second part focuses on wireless channel modelling and fading mitigation techniques, and in the third part we discuss the possible application of advanced digital signal processing, especially time-frequency representation and blind source separation, to wireless communication systems. The first part considers general digital communication systems which will be incorporated in later parts. Today's wireless communication system is a subbranch of a general digital communication system that employs various techniques of A/D (Analog to Digital) conversion, source coding, error correction, coding, modulation, and synchronization, signal detection in noise, channel estimation, and equalization. We study and develop the digital communication algorithms to enhance the performance of wireless communication systems. In the Second Part we focus on wireless channel modelling and fading mitigation techniques. A modified Jakes' method is developed for Rayleigh fading channels. We investigate the level-crossing rate (LCR), the average duration of fades (ADF), the probability density function (PDF), the cumulative distribution function (CDF) and the autocorrelation functions (ACF) of this model. The simulated results are verified against the analytical Clarke's channel model. We also construct frequency-selective geometrical-based hyperbolically distributed scatterers (GBHDS) for a macro-cell mobile environment with the proper statistical characteristics. The modified Clarke's model and the GBHDS model may be readily expanded to a MIMO channel model thus we study the MIMO fading channel, specifically we model the MIMO channel in the angular domain. A detailed analysis of Gauss-Markov approximation of the fading channel is also given. Two fading mitigation techniques are investigated: Orthogonal Frequency Division Multiplexing (OFDM) and spatial diversity. In the Third Part, we devote ourselves to the exciting fields of Time-Frequency Analysis and Blind Source Separation and investigate the application of these powerful Digital Signal Processing (DSP) tools to improve the performance of wireless communication systems.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, Yunlong [Verfasser], and M. [Akademischer Betreuer] Weber. "Building blocks of a silicon photonic integrated wavelength division multiplexing transmitter for detector instrumentation = Bausteine für einen integrierten siliziumphotonischen Wellenlängenmultiplexsender zur Detektorinstrumentierung / Yunlong Zhang ; Betreuer: M. Weber." Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1227451229/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mestre, Adrover Miquel Angel. "Data center optical networks : short- and long-term solutions." Thesis, Evry, Institut national des télécommunications, 2016. http://www.theses.fr/2016TELE0022/document.

Full text
Abstract:
Les centres de données deviennent de plus en plus importants, allant de petites fermes de serveurs distribuées à des grandes fermes dédiées à des tâches spécifiques. La diffusion de services "dans le nuage" conduit à une augmentation incessante de la demande de trafic dans les centres de données. Dans cette thèse, nous étudions l'évolution des réseaux dans les centres de données et proposons des solutions à court et à long terme pour leur intra-connexion physique. Aujourd'hui, la croissance de la demande de trafic met en lumière la nécessité urgente d’interfaces à grande vitesse capables de faire face à la bande passante exigeant de nouvelles applications. Ainsi, à court terme, nous proposons de nouveaux transpondeurs optiques à haut débit, mais à faible coût, permettant la transmission de 200 Gb /s utilisant des schémas de modulation en intensité et à détection directe. Plusieurs types de modulations d’impulsions en amplitude avancées sont explorés, tout en augmentant la vitesse à des débits symboles allant jusqu’à 100 GBd. La génération électrique à haute vitesse est réalisé grâce à un nouveau convertisseur analogique-numérique intégré, capable de doubler les vitesses des entrées et de générer des signaux à plusieurs niveaux d’amplitude. Cependant, le trafic continuera sa croissance. Les centres de données actuels reposent sur plusieurs niveaux de commutateurs électroniques pour construire un réseau d'interconnexion capable de supporter une telle grande quantité de trafic. Dans une telle architecture, la croissance du trafic est directement liée à une augmentation du nombre des composants du réseau, y-compris les commutateurs avec plus de ports, les interfaces et les câbles. Le coût et la consommation d'énergie qui peut être attendus à l'avenir est intenable, ce qui appelle à une réévaluation du réseau. Par conséquent, nous présentons ensuite un nouveau concept fondé sur la commutation de "slots" optiques (Burst Optical Slot Switching, i.e. BOSS) dans lequel les serveurs sont connectés via des nœuds BOSS à travers des anneaux de fibres multiplexé en longueur d'onde et en temps, et organisés dans une topologie en tore. Au cours de cette thèse, nous étudions la mise en œuvre des nœuds BOSS; en particulier, la matrice de commutation et les transpondeurs optiques. L'élément principal au sein de la matrice de commutation est le bloqueur de slots, qui est capable d'effacer n’importe quel paquet (slot) sur n’importe quelle longueur d'onde en quelques nanosecondes seulement. D'une part, nous explorons l'utilisation d'amplificateurs optiques à semi-conducteurs comme portes optiques à utiliser dans le bloqueur des slots, et étudier leur cascade. D'autre part, nous développons un bloqueur de slots intégré monolithiquement capable de gérer jusqu'à seize longueurs d'onde avec la diversité de polarisation. Ensuite, nous présentons plusieurs architectures de transpondeur et nous étudions leur performance. La signalisation des transpondeurs doit répondre à deux exigences principales: le fonctionnement en mode paquet et la résistance au filtrage serré. D'abord, nous utilisons des transpondeurs élastiques qui utilisent des modulations Nyquist N-QAM, et qui adaptent le format de modulation en fonction du nombre de nœuds à traverser. Ensuite, nous proposons l'utilisation du multiplexage par répartition orthogonale de la fréquence en cohérence optique (CO-OFDM). Avec une structure de paquet inhérente et leur grande adaptabilité fréquentielle, nous démontrons que les transpondeurs CO-OFDM offrent une capacité plus élevée et une meilleure portée que leurs homologues Nyquist. Finalement, nous comparons notre solution BOSS avec la topologie Clos replié utilisée aujourd'hui. Nous montrons que notre architecture BOSS nécessite 400 fois moins de transpondeurs et de câbles que les réseaux de commutation électronique d'aujourd'hui, ce qui ouvre la voie à des centres de données hautement évolutifs et durables
Data centers are becoming increasingly important and ubiquitous, ranging from large server farms dedicated to various tasks such as data processing, computing, data storage or the combination thereof, to small distributed server farms. The spread of cloud services is driving a relentless increase of traffic demand in datacenters, which is doubling every 12 to 15 months. Along this thesis we study the evolution of data center networks and present short- and long-term solutions for their physical intra-connection. Today, rapidly-growing traffic in data centers spotlights the urgent need for high-speed low-cost interfaces capable to cope with hungry-bandwidth demanding new applications. Thereby, in the short-term we propose novel high-datarate low-cost optical transceivers enabling up to 200 Gb/s transmission using intensity-modulation and direct-detection schemes. Several advanced pulse amplitude modulation schemes are explored while increasing speeds towards record symbol-rates, as high as 100 GBd. High-speed electrical signaling is enabled by an integrated selector-power digital-to- analog converter, capable of doubling input baud-rates while outputting advance multi-level pulse amplitude modulations. Notwithstanding, data centers’ global traffic will continue increasing incessantly. Current datacenters rely on high-radix all-electronic Ethernet switches to build an interconnecting network capable to pave with such vast amount of traffic. In such architecture, traffic growth directly relates to an increase of networking components, including switches with higher port-count, interfaces and cables. Unsustainable cost and energy consumption that can be expected in the future calls for a network reassessment. Therefore, we subsequently present a novel concept for intra-datacenter networks called burst optical slot switching (BOSS); in which servers are connected via BOSS nodes through wavelength- and time-division multiplexed fiber rings organized in a Torus topology. Along this thesis we investigate on the implementation of BOSS nodes; in particular, the switching fabric and the optical transceivers. The main element within the switching fabric is the slot blocker, which is capable of erasing any packet of any wavelength in a nanosecond time-scale. On the one hand, we explore the use of semiconductor optical amplifiers as means of gating element to be used within the slot blocker and study their cascadability. On the other hand we develop a monolithically integrated slot blocker capable of handling up to sixteen wavelength channels with dual-polarization diversity. Then we present several transceiver architectures and study their performances. Transceivers’ signaling needs to fulfill two main requirements: packet-mode operation, i.e. being capable of recovering few microsecond –long bursts; and resiliency to tight filtering, which occurs when cascading many nodes (e.g. up to 100). First we build packet-mode Nyquist-pulse-shaped N-QAM transceivers, which adapt the modulation format as a function of the number of nodes to traverse. Later we propose the use of coherent-optical orthogonal frequency division multiplexing (CO-OFDM). With inherent packet structure and high spectral tailoring capabilities, we demonstrate that CO-OFDM-based transceivers offer higher capacity and enhanced reach than its Nyquist counterpart. Finally, we compare our BOSS solution to today’s Folded Clos topology, and show that our BOSS architecture requires x400 fewer transponders and cables than today’s electronic switching networks, which paves the way to highly scalable and sustainable datacenters
APA, Harvard, Vancouver, ISO, and other styles
44

Ahmed, Nadeem. "Joint detection strategies for orthogonal frequency division multiplexing." Thesis, 2000. http://hdl.handle.net/1911/17318.

Full text
Abstract:
Traditional OFDM implementations use conventional Fourier filters for data modulation, via the IFFT operation. Much research suggests wavelet based OFDM provides performance gains, due to superior spectral containment properties of wavelet filters. When compared in simulation, neither system was found fundamentally better than the other. Rather than focus on filter bank design, joint detection strategies provide a relatively simple method for improving system performance. The conventional matched filter used in OFDM systems, is only optimal when the channel introduces no carrier distoration. We propose an optimal detector, which maximizes the probability of making correct decisions, and a suboptimal method which decorrelates carriers based on knowledge of the channel. Both joint detection methods provide significant performance gains in OFDM systems over conventional matched filtering.
APA, Harvard, Vancouver, ISO, and other styles
45

Jian-Rong, Tzeng. "Semi-Soft Decision VBLAST Detection Algorithm for Spatial Multiplexing System." 2006. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-1507200614322000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wen, Chun-Jung, and 溫峻榮. "Time-division-multiplexing passive optical network with fault detection function." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/bfakqt.

Full text
Abstract:
碩士
國立臺北科技大學
光電與通訊產業研發碩士專班
99
The major concern of planning PON is to provide high bandwidth and high quality to the reception end for networking requirements base on simple network structure and low cost. The structure of PON mainly constructed with one OLT and multi ONUs. Per volume of ONUs built in network per volume of ONUs built in networking, the tasks of fault diagnosis and problem solving for equipments to enhancement of availability becomes a important issue. This thesis is based on the approach of case study with EL company, this essay mainly discuss and research on the fault diagnosis methods when failure of ONUs in a multi-thread PON, the finding/result helps on the development of reliable PON in the future.
APA, Harvard, Vancouver, ISO, and other styles
47

Tzeng, Jian-Rong, and 曾建榮. "Semi-Soft Decision VBLAST Detection Algorithm for Spatial Multiplexing System." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/78033023682793944377.

Full text
Abstract:
碩士
國立臺灣大學
電信工程學研究所
94
For a general MIMO system, we usually use the vertically co-polarized antenna arrays at both transmitter and receive ends. If we use cross polarization antenna scheme symmetrically in both ends, the capacity is higher than conventional antenna polarization scheme under the LOS condition due to the high isolation between orthogonal polarizations. However, in NLOS condition, the result is contrary because of the loss of power gain. VBLAST is an efficient detection algorithm for MIMO system, the performance, however, is still far from optimal ML algorithm. Therefore, several modified algorithm has been proposed and we implement them to compare their performance. Finally, we propose a new modified algorithm called semi-soft decision VBLAST. Simulation results show that our proposed algorithm not only outperform than conventional VBLAST considerably but also can be easily combined with any kind of VBLAST algorithms and their modified version to achieve more tremendous performance. VBLAST-OFDM is introduced to convert common frequency-selective fading channel into Rayleigh fading channel which is suitable for VBLAST. Channel model adopted by next-generation WLAN standard, 802.11n, is used in our simulation. Channel estimation algorithm is also considered. There is more interference when more antennas are used and the nulling operation cannot work well in the correlated channel. Consequently, in the correlated channel, using more antennas cannot guarantee the higher performance as what we can see in i.i.d. channel.
APA, Harvard, Vancouver, ISO, and other styles
48

Chen, Chih-Liang, and 陳致良. "Investigation of Low-Complexity Multiplexing Detection Techniques for OFDM Systems." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/26417560807031267807.

Full text
Abstract:
博士
國立交通大學
電子研究所
99
Orthogonal frequency division multiplexing (OFDM) systems utilize the multiplexing technique over the frequencies for high transmission rates. However, in order to obtaining the transmitted data at receivers, multiplexing detections generally cost lots of computational complexities. As such, this work proposes new algorithms regarding cell identification and data detections for reducing the complexities of multiplexing detections. To achieve high-performance cell identification (ID) detection with low complexity, this work proposes an efficient non-coherent cell identification (ID) detection technique based on a new optimization metric for OFDM systems. Furthermore, the metric is simplified to two lower-complexity metrics. As such, two more modified cell ID detection methods extended from the first one are also proposed. Experiments show that all the three new cell ID methods achieve better performances than the conventional methods in multipath Rayleigh fading channels. This work also conducts the statistical analysis to characterize the proposed techniques completely. It is shown that the results of the theoretical analysis are close to the simulation results. Besides, the discussions also consider the system performances of the BPSK-modulated reference sequences and Zadoff-Chu reference sequences. Among the new techniques, specifically, the third proposed method using the second simplified new metric has much lower complexity and higher performance than the conventional methods. On the other hand, for data detection in OFDM systems, the time variation of a multipath channel results in inter-carrier interference (ICI). It leads to performance degradations. In reducing the problem, current successive detection methods cost very high computational complexities. Among them, the minimum-mean-square-error successive detection (MMSE-SD) method has the best performance. This work proposes an improved data detection method with low complexity by integrating the techniques of Newton's iterative matrix inversion method and the MMSE-SD method which considers the effects of signal-to-interference-plus-noise ratio (SINR). In order to efficiently integrate Newton's and MMSE-SD method, we develop an effective scheme with low complexity for generating the initial values required by Newton's method. Based on the new initial value scheme, we are able to simplify the criterion of maximum SINR determination to an equivalent one with lower complexity. As a result, the proposed algorithm has a much lower complexity of O(N2) than O(N3) of the MMSE-SD algorithm, where N is the number of subcarriers. Moreover, simulation results in different channel conditions show that performances of the proposed MMSE-SD method are very close to the MMSE-SD method. Furthermore, multiple-input and multiple-output (MIMO) and multi-hop communication systems are also an application of multiplexing techniques for increasing the transmission data rate and bandwidth usage efficiency. This work further considers a MIMO multi-hop network and analyzes the relationship between energy consumption and bandwidth. The minimum energy consumption is formulated as an optimization problem. By taking both transmit antennas (TAs) and receive antennas (RAs) into consideration, the energy-bandwidth tradeoff in MIMO multi-hop wireless networks is investigated. Moreover, the minimum energy of an equal-spaced relaying strategy is investigated for various numbers of antennas. In addition, the minimum energy over all possible antenna pairs is derived. Finally, the effect of the number of hops used to relay the information on the energy-bandwidth tradeoff is considered.
APA, Harvard, Vancouver, ISO, and other styles
49

Wang-YuehChang and 張汪鉞. "Differential Metric Based Algorithms for Spatial Multiplexing MIMO Signal Detection." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/gm5566.

Full text
Abstract:
博士
國立成功大學
電腦與通信工程研究所
105
The multiple-input multiple-output (MIMO) system makes efficient use of spectrum and increases the transmission throughput in wireless communications. Designing low-complexity detection algorithms with high performance for the MIMO system has been an important issue. In this thesis, we propose three efficient detection algorithms for MIMO systems based on differential metrics. We first define differential metrics and derive the associated recursive calculation of different orders. Based on differential metrics, we give the principle of gradient search. We then propose a gradient search algorithm (GSA) that can provide a good trade-off between performance and complexity. The GSA applies the indicative functions such that we can determine in advance some ML bits of the initial sequence and reduce the searching range. The GSA also uses a stop condition with which we can stop the search if the proper condition is satisfied. We also propose a fixed-complexity GSA, which has fixed number of operations during the searching process and is appropriate for pipelined hardware implementation. For the exact maximum-likelihood (ML) detection, we propose a novel ML detection algorithm based on differential metrics. The indicative functions are further applied to implement an efficient tree search for ML detection. The proposed algorithms do not need QR decomposition and matrix inversion. The multiplicative operations are only necessary before the searching process, during which only the additive operations are needed. Finally, we propose a novel soft detection algorithm that can generate the values of log-likelihood ratios (LLR) and provide a trade-off between performance and complexity. The numerical results validate the efficiency of the proposed algorithms.
APA, Harvard, Vancouver, ISO, and other styles
50

Matthé, Maximilian. "Multiple-Input Multiple-Output Detection Algorithms for Generalized Frequency Division Multiplexing." Doctoral thesis, 2017. https://tud.qucosa.de/id/qucosa%3A30965.

Full text
Abstract:
Since its invention, cellular communication has dramatically transformed personal lifes and the evolution of mobile networks is still ongoing. Evergrowing demand for higher data rates has driven development of 3G and 4G systems, but foreseen 5G requirements also address diverse characteristics such as low latency or massive connectivity. It is speculated that the 4G plain cyclic prefix (CP)-orthogonal frequency division multiplexing (OFDM) cannot sufficiently fulfill all requirements and hence alternative waveforms have been in-vestigated, where generalized frequency division multiplexing (GFDM) is one popular option. An important aspect for any modern wireless communication system is the application of multi-antenna, i.e. MIMO techiques, as MIMO can deliver gains in terms of capacity, reliability and connectivity. Due to its channel-independent orthogonality, CP-OFDM straightforwardly supports broadband MIMO techniques, as the resulting inter-antenna interference (IAI) can readily be resolved. In this regard, CP-OFDM is unique among multicarrier waveforms. Other waveforms suffer from additional inter-carrier interference (ICI), inter-symbol interference (ISI) or both. This possibly 3-dimensional interference renders an optimal MIMO detection much more complex. In this thesis, weinvestigate how GFDM can support an efficient multiple-input multiple-output (MIMO) operation given its 3-dimensional interference structure. To this end, we first connect the mathematical theory of time-frequency analysis (TFA) with multicarrier waveforms in general, leading to theoretical insights into GFDM. Second, we show that the detection problem can be seen as a detection problem on a large, banded linear model under Gaussian noise. Basing on this observation, we propose methods for applying both space-time code (STC) and spatial multiplexing techniques to GFDM. Subsequently, we propose methods to decode the transmitted signals and numerically and theoretically analyze their performance in terms of complexiy and achieved frame error rate (FER). After showing that GFDM modulation and linear demodulation is a direct application of Gabor expansion and transform, we apply results from TFA to explain singularities of the modulation matrix and derive low-complexity expressions for receiver filters. We derive two linear detection algorithms for STC encoded GFDM signals and we show that their performance is equal to OFDM. In the case of spatial multiplexing, we derive both non-iterative and iterative detection algorithms which base on successive interference cancellation (SIC) and minimum mean squared error (MMSE)-parallel interference cancellation (PIC) detection, respectively. By analyzing the error propagation of the SIC algorithm, we explain its significantly inferior performance compared to OFDM. Using feedback information from the channel decoder, we can eventually show that near-optimal GFDM detection can outperform an optimal OFDM detector by up to 3dB for high SNR regions. We conclude that GFDM, given the obtained results, is not a general-purpose replacement for CP-OFDM, due to higher complexity and varying performance. Instead, we can propose GFDM for scenarios with strong frequency-selectivity and stringent spectral and FER requirements.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography