Academic literature on the topic 'Multiple statistical analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiple statistical analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiple statistical analysis"
Fienberg, Stephen E., Michael M. Meyer, and Stanley S. Wasserman. "Statistical Analysis of Multiple Sociometric Relations." Journal of the American Statistical Association 80, no. 389 (March 1985): 51–67. http://dx.doi.org/10.1080/01621459.1985.10477129.
Full textTeixeira-Pinto, Armando, and Laura Mauri. "Statistical Analysis of Noncommensurate Multiple Outcomes." Circulation: Cardiovascular Quality and Outcomes 4, no. 6 (November 2011): 650–56. http://dx.doi.org/10.1161/circoutcomes.111.961581.
Full textLenth, Russell, and Søren Højsgaard. "Reproducible statistical analysis with multiple languages." Computational Statistics 26, no. 3 (March 2, 2011): 419–26. http://dx.doi.org/10.1007/s00180-011-0245-5.
Full textDonner, A. "The statistical analysis of multiple binary measurements." Journal of Clinical Epidemiology 41, no. 9 (1988): 899–905. http://dx.doi.org/10.1016/0895-4356(88)90107-2.
Full textDabrowski, Andre Robert, and David McDonald. "Statistical Analysis of Multiple Ion Channel Data." Annals of Statistics 20, no. 3 (September 1992): 1180–202. http://dx.doi.org/10.1214/aos/1176348765.
Full textJankovic, Slobodan. "The Multivariate Statistical Analysis – Multiple Linear Regression." International Journal on Biomedicine and Healthcare 10, no. 4 (2022): 173. http://dx.doi.org/10.5455/ijbh.2022.10.173-175.
Full textCalvo, Borja, and Guzmán Santafé. "scmamp: Statistical Comparison of Multiple Algorithms in Multiple Problems." R Journal 8, no. 1 (2016): 248. http://dx.doi.org/10.32614/rj-2016-017.
Full textÖZKAYA, Güven, Özlem TAŞKAPILIOĞLU, and İlker ERCAN. "Statistical Shape Analysis of Handwriting of Patients with Multiple Sclerosis." Turkiye Klinikleri Journal of Medical Sciences 32, no. 6 (2012): 1702–9. http://dx.doi.org/10.5336/medsci.2012-30233.
Full textGreenwood, Jeremy J. D. "Statistical Analysis of Experiments Conducted at Multiple Sites." Oikos 69, no. 2 (March 1994): 334. http://dx.doi.org/10.2307/3546155.
Full textSalo, J., H. M. El-Sallabi, and P. Vainikainen. "Statistical Analysis of the Multiple Scattering Radio Channel." IEEE Transactions on Antennas and Propagation 54, no. 11 (November 2006): 3114–24. http://dx.doi.org/10.1109/tap.2006.883964.
Full textDissertations / Theses on the topic "Multiple statistical analysis"
Smith, Anna Lantz. "Statistical Methodology for Multiple Networks." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492720126432803.
Full textDI, BRISCO AGNESE MARIA. "Statistical Network Analysis: a Multiple Testing Approach." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/96090.
Full textLiu, Wei. "Analysis of power functions of multiple comparisons tests." Thesis, University of Bath, 1990. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235586.
Full textZain, Zakiyah. "Combining multiple survival endpoints within a single statistical analysis." Thesis, Lancaster University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618302.
Full text李志傑 and Chi-kit Li. "The statistical analysis of multi-way and multiple compositions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1986. http://hub.hku.hk/bib/B31230672.
Full textLi, Chi-kit. "The statistical analysis of multi-way and multiple compositions /." [Hong Kong] : University of Hong Kong, 1986. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12323652.
Full textNashimoto, Kane. "Multiple comparison techniques for order restricted models /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3144445.
Full textBianchini, Germán. "Wildland Fire Prediction based on Statistical Analysis of Multiple Solutions." Doctoral thesis, Universitat Autònoma de Barcelona, 2006. http://hdl.handle.net/10803/5762.
Full textUn caso particular donde los modelos resultan muy útiles es la predicción de la propagación de Incendios Forestales. Los incendios se han vuelto un gran peligro que cada año provoca grandes pérdidas desde el punto de vista ambiental, económico, social y humano. En particular, las estaciones secas y calurosas incrementan seriamente el riesgo de incendios en el área Mediterránea. Por lo tanto, el uso de modelos es relevante para estimar el riesgo de incendios y predecir el comportamiento de los mismos.
Sin embargo, en muchos casos, los modelos presentan una serie de limitaciones. Estas se relacionan con la necesidad de un gran número de parámetros de entrada. En muchos casos, tales parámetros presentan cierto grado de incertidumbre debido a la imposibilidad de medirlos en tiempo real, y deben ser estimados a partir de datos indirectas. Además, en muchos casos estos modelos no se pueden resolver analíticamente y deben ser calculados aplicando métodos numéricos que son una aproximación de la realidad.
Se han desarrollado diversos métodos basados en asimilación de datos para optimizar los parámetros de entrada. Comúnmente, estos métodos operan sobre un gran número de parámetros de entrada y, a través de optimización, se enfocan en hallar un único conjunto de parámetros que describa de la mejor forma posible el comportamiento previo. Por lo tanto, es de esperar que el mismo conjunto de valores pueda ser usado para describir el futuro inmediato.
Sin embargo, esta clase de predicción se basa en un solo conjunto de parámetros y, por lo que se explicó, debido a aquellos parámetros que presentan un comportamiento dinámico, los valores optimizados pueden no resultar adecuados para el siguiente paso.
El presente trabajo propone un método alternativo. Nuestro sistema, llamado Sistema Estadístico para la Gestión de Incendios Forestales, se basa en conceptos estadísticos. Su objetivo es hallar un patrón del comportamiento del incendio, independientemente de los valores de los parámetros. En este método, cada parámetro es representado mediante un rango de valores y una cardinalidad. Se generan todos los posibles escenarios considerando todas las posibles combinaciones de los valores de los parámetros de entrada, y entonces se evalúa la propagación para cada caso. Los resultados son agregados estadísticamente para determinar la probabilidad de que cada área se queme. Esta agregación se utiliza para predecir el área quemada en el siguiente paso.
Para validar nuestro método, usamos un conjunto de quemas reales prescritas. Además, comparamos nuestro método contra otros dos. Uno de estos dos métodos fue implementado para este trabajo: GLUE (Generalized Likelihood Uncertainty Estimation). Dicho método corresponde a una adaptación de un sistema hidrológico. El otro caso (Método Evolutivo) es un algoritmo genético previamente desarrollado e implementado también por nuestro equipo de investigación.
Los sistemas propuestos requieren un gran número de simulaciones, razón por la cual decidimos usar un esquema paralelo para implementarlos. Esta forma de trabajo difiere del esquema tradicional de teoría y experimentación, lo cual es la forma común de la ciencia y la ingeniería. El cómputo científico está en continua expansión, principalmente a través del análisis de modelos matemáticos implementados en computadores. Los científicos e ingenieros desarrollan programas de computador que modelan los sistemas bajo estudio. Esta metodología está creando una nueva rama de la ciencia basada en métodos computacionales, la cual crece de forma acelerada. Esta aproximación es llamada Ciencia Computacional.
In many different scientific areas, the use of models to represent the physical system has become a common strategy. These models receive some input parameters representing the particular conditions and provide an output representing the evolution of the system. Usually, these models are integrated in simulation tools that can be executed on a computer.
A particular case where models are very useful is the prediction of Forest Fire propagation. Forest fire is a very significant hazard that every year provokes huge looses from the environmental, economical, social and human point of view. Particularly dry and hot seasons seriously increase the risk of forest fires in the Mediterranean area. Therefore, the use of models is very relevant to estimate fire risk, and predict fire behavior.
However, in many cases models present a series of limitations. Usually, such limitations are due to the need of a large number of input parameters. In many cases such parameters present some uncertainty due to the impossibility to measure all of them in real time and must be estimated from indirect measurements. Moreover, in most cases these models cannot be solved analytically and must be solved applying numerical methods that are only an approach to reality (still without considering the limitations that present the translations of these solutions when they are carried out by means of computers).
Several methods based on data assimilation have been developed to optimize the input parameters. In general, these methods operate over a large number of input parameters, and, by mean of some kind of optimization, they focus on finding a unique parameter set that would describe the previous behavior in the best form. Therefore, it is hoped that the same set of values could be used to describe the immediate future.
However, this kind of prediction is based on a single value of parameters and, as it has been said above, for those parameters that present a dynamic behavior the new optimized values cannot be adequate for the next step.
The objective of this work is to propose an alternative method. Our method, called Statistical System for Forest Fire Management, is based on statistical concepts. Its goal is to find a pattern of the forest fire behavior, independently of the parameters values. In this method, each parameter is represented by a range of values with a particular cardinality for each one of them. All possible scenarios considering all possible combinations of input parameters values are generated and the propagation for each scenario is evaluated. All results are statically aggregated to determine the burning probability of each area. This aggregation is used to predict the burned area in the next step.
To validate our method, we use a set of real prescribed burnings. Furthermore, we compare our method against two other methods. One of these methods was implemented by us for this work: GLUE (Generalized Likelihood Uncertainty Estimation). It corresponds to an adaptation of a hydrological method. The other method (Evolutionary method) is a genetic algorithm previously developed and implemented by our research team.
The proposed system requires a large number of simulations, a reason why we decide to use a parallel-scheme to implement them. This way of working is different from traditional scheme of theory and experiment, which is the common form of science and engineering. The scientific computing approach is in continuous expansion, mainly through the analysis of mathematical models implemented on computers. Scientists and engineers develop computer programs that model the systems under study. This methodology is creating a new branch of science based on computational methods that is growing very fast. This approach is called Computational Science.
Miller, Christopher Ryan 'Red'. "Statistical analysis of wireless networks predicting performance in multiple environments /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FMiller.pdf.
Full textThesis Advisor(s): David Annis. "June 2006." Includes bibliographical references (p.57). Also available in print.
Miller, Christopher Ryan. "Statistical analysis of wireless networks predicting performance in multiple environments." Thesis, Monterey, California. Naval Postgraduate School, 2006. http://hdl.handle.net/10945/2817.
Full textBooks on the topic "Multiple statistical analysis"
Booth, Gordon D. Identifying proxy sets in multiple linear regression: An aid to better coefficient interpretation. Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1994.
Find full textStanley, Feldman, ed. Multiple regression in practice. Beverly Hills: Sage Publications, 1985.
Find full textJaccard, James. Interaction effects in multiple regression. 2nd ed. Thousand Oaks, Calif: Sage Publications, 2003.
Find full textRobert, Turrisi, and Wan Choi K, eds. Interaction effects in multiple regression. Newbury Park: Sage Publications, 1990.
Find full textOrme, John G. Multiple regression with discrete dependent variables. New York: Oxford University Press, 2009.
Find full text1923-, Cohen Jacob, and Cohen Jacob 1923-, eds. Applied multiple regression/correlation analysis for the behavioral sciences. 3rd ed. Mahwah, N.J: L. Erlbaum Associates, 2003.
Find full textBechhofer, Robert E. Design and analysis of experiments for statistical selection, screening, and multiple comparisons. New York: Wiley, 1995.
Find full textSheldon, Zedeck, ed. Data analysis for research designs: Analysis-of-variance and multiple regression/correlation approaches. New York: W.H. Freeman, 1989.
Find full textK, Wan Choi, ed. LISREL approaches to interaction effects in multiple regression. Thousand Oaks, Calif: Sage Publications, 1996.
Find full textLin, Nancy Pei-ching. A new approach to sample size determination of replicated Latin square designs and analysis of multiple comparison procedures. [Tʻai-pei shih: Ching sheng wen wu kung ying kung ssu, 1985.
Find full textBook chapters on the topic "Multiple statistical analysis"
Heiberger, Richard M., and Burt Holland. "Multiple Comparisons." In Statistical Analysis and Data Display, 199–233. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2122-5_7.
Full textHeiberger, Richard M., and Burt Holland. "Multiple Comparisons." In Statistical Analysis and Data Display, 155–85. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4284-8_7.
Full textArmstrong, Richard A., and Anthony C. Hilton. "Multiple Linear Regression." In Statistical Analysis in Microbiology: Statnotes, 127–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9780470905173.ch25.
Full textArmstrong, Richard A., and Anthony C. Hilton. "Stepwise Multiple Regression." In Statistical Analysis in Microbiology: Statnotes, 135–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9780470905173.ch26.
Full textGatnar, Eugeniusz. "Fusion of Multiple Statistical Classifiers." In Data Analysis, Machine Learning and Applications, 19–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78246-9_3.
Full textHeiberger, Richard M., and Burt Holland. "Multiple Regression—Regression Diagnostics." In Statistical Analysis and Data Display, 345–75. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2122-5_11.
Full textHeiberger, Richard M., and Burt Holland. "Multiple Regression—Regression Diagnostics." In Statistical Analysis and Data Display, 297–327. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4284-8_11.
Full textLittle, Roderick J. A., and Donald B. Rubin. "Bayes and Multiple Imputation." In Statistical Analysis with Missing Data, 200–220. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119013563.ch10.
Full textPardo, Scott. "Multiplicity and Multiple Comparisons." In Statistical Analysis of Empirical Data, 33–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43328-4_4.
Full textRotello, Caren M., Jerome L. Myers, Arnold D. Well, and Robert F. Lorch. "Introduction to Multiple Regression." In Research Design and Statistical Analysis, 538–62. 4th ed. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003453550-24.
Full textConference papers on the topic "Multiple statistical analysis"
Ortiz-Bustos, Josefa, Helena Pérez del Pulgar, Isabel del Hierro, and Sanjiv Prashar. "STATISTICAL ANALYSIS OF MULTIPLE-CHOICE QUESTIONS IN CHEMISTRY EDUCATION." In 17th annual International Conference of Education, Research and Innovation, 6785–88. IATED, 2024. https://doi.org/10.21125/iceri.2024.1637.
Full textKamoljitprapa, Pianpool, Sirikanlaya Sookkhee, and Orathai Polsen. "Statistical Analysis for Genome Data Based on Multiple SNPs Using Kernel Machine Based Test." In 2024 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C), 262–66. IEEE, 2024. https://doi.org/10.1109/ri2c64012.2024.10784332.
Full textSinha, Debjit, Vasant Rao, Chaitanya Peddawad, Michael Wood, Jeffrey Hemmett, Suriya Skariah, and Patrick Williams. "Statistical Timing Analysis considering Multiple-Input Switching." In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020. http://dx.doi.org/10.1109/dac18072.2020.9218601.
Full textRay, Priyadip, and Lawrence Carin. "Nonparametric Bayesian factor analysis of multiple time series." In 2011 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2011. http://dx.doi.org/10.1109/ssp.2011.5967742.
Full textChen, Shengchang, Shujing Lu, Ying Wen, and Yue Lu. "Using multiple sequence alignment and statistical language model to integrate multiple Chinese address recognition outputs." In 2015 13th International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2015. http://dx.doi.org/10.1109/icdar.2015.7333742.
Full textLiu, Jian, Tao Peng, Qingyi Quan, and Lili Cao. "Performance analysis of the Statistical Priority-Based Multiple Access." In 2017 3rd IEEE International Conference on Computer and Communications (ICCC). IEEE, 2017. http://dx.doi.org/10.1109/compcomm.2017.8322509.
Full textCzajka, Adam, and Kevin W. Bowyer. "Statistical analysis of multiple presentation attempts in iris recognition." In 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF). IEEE, 2015. http://dx.doi.org/10.1109/cybconf.2015.7175982.
Full textHouston, Eric, Stephen Parker, and Douglas Keene. "Statistical Analysis of Multiple Encoded Ultrasonic Testing Data Sets." In ASME 2024 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/pvp2024-125166.
Full textMahmood, Khalid, Syed Muhammad Asad, Muhammad Moinuddin, Azzedine Zerguine, and S. Paul. "Statistical analysis of multiple access interference in Rayleigh fading environment for MIMO CDMA systems." In 2014 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2014. http://dx.doi.org/10.1109/ssp.2014.6884663.
Full textFu, Jinxin, and H. Daniel Ou-Yang. "Statistical Analysis of Transiently Trapped Multiple Nanoparticles in Optical Confinement." In JSAP-OSA Joint Symposia. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/jsap.2013.19a_d5_1.
Full textReports on the topic "Multiple statistical analysis"
Colbert, Mark A. Statistical Analysis of Multiple Choice Testing. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada407446.
Full textZhan, Peng. Statistical Analysis and Data Visualization in R. Instats Inc., 2022. http://dx.doi.org/10.61700/dizyg5iq1mqj5469.
Full textJohnson, Jeffrey O., John W. Raby, and David I. Knapp. Statistical Analysis of Atmospheric Forecast Model Accuracy - A Focus on Multiple Atmospheric Variables and Location-Based Analysis. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada600391.
Full textZaninotto, Paola. Multiple Imputation by Chained Equations (MICE). Instats Inc., 2024. https://doi.org/10.61700/1tr36kp5gwa5b1858.
Full textMoeyaert, Mariola. Introduction to Meta-Analysis. Instats Inc., 2023. http://dx.doi.org/10.61700/9egp6tqy3koga469.
Full textMoeyaert, Mariola. Introduction to Meta-Analysis. Instats Inc., 2023. http://dx.doi.org/10.61700/z1ui6nlaom67q469.
Full textFuentes, Anthony, Michelle Michaels, and Sally Shoop. Methodology for the analysis of geospatial and vehicle datasets in the R language. Cold Regions Research and Engineering Laboratory (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42422.
Full textTarko, Andrew P., Mario Romero, Cristhian Lizarazo, and Paul Pineda. Statistical Analysis of Safety Improvements and Integration into Project Design Process. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317121.
Full textPălici, Bogdan, Alin Savu, Maria Trifon, Cristian Georgescu, Cătălin Toma, Alexandru Mihăilescu, and Gabriel Simion. Mapping - Interactive Tool for Exploring Statistical Data about Cultural Infrastructure in Romania. National Institute for Cultural Research and Training, 2021. http://dx.doi.org/10.61789/mod.cdi.crtg.en.21.
Full textTosi, R., R. Codina, J. Principe, R. Rossi, and C. Soriano. D3.3 Report of ensemble based parallelism for turbulent flows and release of solvers. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.06.
Full text