To see the other types of publications on this topic, follow the link: Multiple scattering.

Journal articles on the topic 'Multiple scattering'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Multiple scattering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

D'Errico, Raffaele, and Alain Sibille. "Single and Multiple Scattering in UWB Bicone Arrays." International Journal of Antennas and Propagation 2008 (2008): 1–12. http://dx.doi.org/10.1155/2008/129584.

Full text
Abstract:
An analysis of interactions between radiators in a UWB biconical array, drawing attention to single and multiple scatterings, is carried out. The complementarity between electrical coupling and radiation scattering is argued. The point source approximation is discussed and shown to be insufficient. An approximation of radiation scattering based on angular averaging of the scattering coefficient is proposed. This approach yields a reduction of the problem complexity, which is especially interesting in UWB multiple antenna systems, because of the large bandwidth. Multiple scattering between radiators is shown to be a second-order effect. Finally, a time domain approach is used in order to investigate pulse distortion and quantify the exactness of the proposed scattering model.
APA, Harvard, Vancouver, ISO, and other styles
2

Garcı́a-Pelayo, Ricardo. "Multiple scattering." Physica A: Statistical Mechanics and its Applications 258, no. 3-4 (September 1998): 365–82. http://dx.doi.org/10.1016/s0378-4371(98)00224-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Winterbon, K. B. "Multiple scattering plus single scattering." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 16, no. 4-5 (June 1986): 310–12. http://dx.doi.org/10.1016/0168-583x(86)90088-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weiwei Cai, Weiwei Cai, and Lin Ma Lin Ma. "Improved Monte Carlo model for multiple scattering calculations." Chinese Optics Letters 10, no. 1 (2012): 012901–12904. http://dx.doi.org/10.3788/col201210.012901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martin, P. A. "Multiple scattering by multiple scatterers." ESAIM: Proceedings 26 (2009): 180–206. http://dx.doi.org/10.1051/proc/2009013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seeger, P. A. "Scattering and multiple scattering in NISP." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 510, no. 3 (September 2003): 290–99. http://dx.doi.org/10.1016/s0168-9002(03)01814-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Martin, P. A. "Multiple scattering and scattering cross sections." Journal of the Acoustical Society of America 143, no. 2 (February 2018): 995–1002. http://dx.doi.org/10.1121/1.5024361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nisbet, A. G. A., G. Beutier, F. Fabrizi, B. Moser, and S. P. Collins. "Diffuse multiple scattering." Acta Crystallographica Section A Foundations and Advances 71, no. 1 (January 1, 2015): 20–25. http://dx.doi.org/10.1107/s2053273314026515.

Full text
Abstract:
A new form of diffraction lines has been identified, similar to Rutherford, Kikuchi and Kossel lines. This paper highlights some of the properties of these lines and shows how they can be used to eliminate the need for sample/source matching in Lonsdale's triple convergent line method in lattice-parameter determination.
APA, Harvard, Vancouver, ISO, and other styles
9

Kaiser, Robin. "Quantum multiple scattering." Journal of Modern Optics 56, no. 18-19 (October 20, 2009): 2082–88. http://dx.doi.org/10.1080/09500340903082663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bissonnette, Luc R., and Daniel L. Hutt. "Multiple scattering lidar." Applied Optics 29, no. 34 (December 1, 1990): 5045. http://dx.doi.org/10.1364/ao.29.005045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Xinglong Xiong, Xinglong Xiong, Meng Li Meng Li, Lihui Jiang Lihui Jiang, and Shuai Feng Shuai Feng. "A method for determining cirrus height with multiple scattering." Chinese Optics Letters 11, no. 10 (2013): 100101–3. http://dx.doi.org/10.3788/col201311.100101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Moon, Ki-Yeon, Kye-Hong Cho, Jin-Sang Cho, and Chang-Woo Hong. "Early Hardening Behavior of Natural Hydraulic Lime Paste by Multiple Light Scattering Analysis." Journal of the Korean Institute of Resources Recycling 26, no. 1 (February 28, 2017): 43–50. http://dx.doi.org/10.7844/kirr.2017.26.1.43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Xu, W., X.-L. Zhang, Z.-Y. Guo, C. Si, Y.-D. Zhao, A. Marcelli, D.-L. Chen, and Z.-Y. Wu. "CopperL-edge spectra: multiplet vs. multiple scattering theory." Journal of Physics: Conference Series 430 (April 22, 2013): 012010. http://dx.doi.org/10.1088/1742-6596/430/1/012010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cheng, Yuan, and David G. Cory. "Multiple Scattering by NMR." Journal of the American Chemical Society 121, no. 34 (September 1999): 7935–36. http://dx.doi.org/10.1021/ja9843324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sato, Kaori, Hajime Okamoto, and Hiroshi Ishimoto. "Modeling Lidar Multiple Scattering." EPJ Web of Conferences 119 (2016): 21005. http://dx.doi.org/10.1051/epjconf/201611921005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yurchenko, V. I. "Theory of multiple scattering." Journal of Experimental and Theoretical Physics 91, no. 6 (December 2000): 1115–29. http://dx.doi.org/10.1134/1.1342878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lutomirski, Richard F., Anthony P. Ciervo, and Gainford J. Hall. "Moments of multiple scattering." Applied Optics 34, no. 30 (October 20, 1995): 7125. http://dx.doi.org/10.1364/ao.34.007125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bissonnette, Luc R. "Multiple-scattering lidar equation." Applied Optics 35, no. 33 (November 20, 1996): 6449. http://dx.doi.org/10.1364/ao.35.006449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Scales, John A., and Kasper Van Wijk. "Tunable multiple-scattering system." Applied Physics Letters 79, no. 14 (October 2001): 2294–96. http://dx.doi.org/10.1063/1.1402156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Werner, Christian. "Multiple-scattering lidar experiments." Optical Engineering 31, no. 8 (1992): 1731. http://dx.doi.org/10.1117/12.58707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tourin, Arnaud, Mathias Fink, and Arnaud Derode. "Multiple scattering of sound." Waves in Random Media 10, no. 4 (October 2000): R31—R60. http://dx.doi.org/10.1088/0959-7174/10/4/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Braspenning, P. J., and A. Lodder. "Generalized multiple-scattering theory." Physical Review B 49, no. 15 (April 15, 1994): 10222–30. http://dx.doi.org/10.1103/physrevb.49.10222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Winterbon, K. B. "Finite-angle multiple scattering." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 21, no. 1-4 (January 1987): 1–7. http://dx.doi.org/10.1016/0168-583x(87)90131-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jette, David. "Electron dose calculation using multiple-scattering theory. A. Gaussian multiple-scattering theory." Medical Physics 15, no. 2 (March 1988): 123–37. http://dx.doi.org/10.1118/1.596166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jette, David, and Alex Bielajew. "Electron dose calculation using multiple-scattering theory: Second-order multiple-scattering theory." Medical Physics 16, no. 5 (September 1989): 698–711. http://dx.doi.org/10.1118/1.596329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

KORTE, U. "MULTIPLE SCATTERING CALCULATIONS OF GBMEED." Surface Review and Letters 04, no. 05 (October 1997): 959–63. http://dx.doi.org/10.1142/s0218625x97001127.

Full text
Abstract:
A method for computing grazing-incidence backscattering medium energy (1–3 keV) electron diffraction (GBMEED) is presented. The technique was recently proposed as a structural tool exhibiting diffraction effects resembling those of XPD. In GBMEED the intensity of quasielastically thermal diffuse scattering is measured at large scattering angles such that different atoms can be assumed to vibrate independently, and thus represent localized sources for diffuse scattering in the surface layers. The basis of the calculations is the multiple scattering theory of diffuse RHEED adopted to the medium energy case with a vibrating atom as source of diffuse scattering. Calculated plots of the intensity versus azimuthal/polar exit angle for an In overlayer on Si(111) show the forward focusing effect along the source-scatterer direction (well known from XPD) and further fine structure.
APA, Harvard, Vancouver, ISO, and other styles
27

Xu, M. L., J. J. Barton, and M. A. Van Hove. "Electron scattering by atomic chains: Multiple-scattering effects." Physical Review B 39, no. 12 (April 15, 1989): 8275–83. http://dx.doi.org/10.1103/physrevb.39.8275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wuttke, Joachim. "Multiple-scattering effects on smooth neutron-scattering spectra." Physical Review E 62, no. 5 (November 1, 2000): 6531–39. http://dx.doi.org/10.1103/physreve.62.6531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cucinotta, Francis A., Lawrence W. Townsend, and John W. Wilson. "Multiple-scattering effects in quasielastic α−4He scattering." Physical Review C 46, no. 4 (October 1, 1992): 1451–56. http://dx.doi.org/10.1103/physrevc.46.1451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zorn, Reiner. "Multiple scattering correction of neutron scattering elastic scans." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 572, no. 2 (March 2007): 874–81. http://dx.doi.org/10.1016/j.nima.2006.12.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Schäfer, Andreas, Xin-Nian Wang, and Ben-Wei Zhang. "Multiple parton scattering in nuclei: Quark–quark scattering." Nuclear Physics A 793, no. 1-4 (September 2007): 128–70. http://dx.doi.org/10.1016/j.nuclphysa.2007.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chiappetta, P., J. M. Perrin, and B. Torresani. "Low-energy light scattering: a multiple-scattering description." Il Nuovo Cimento D 9, no. 6 (June 1987): 717–25. http://dx.doi.org/10.1007/bf02457031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Fewster, P. F. "A high-resolution multiple-crystal multiple-reflection diffractometer." Journal of Applied Crystallography 22, no. 1 (February 1, 1989): 64–69. http://dx.doi.org/10.1107/s0021889888011392.

Full text
Abstract:
A high-resolution multiple-reflection diffractometer has been built to study crystals distorted by epitaxy and defects in nearly perfect crystals. The diffractometer combines the merits of the two-crystal four-reflection monochromator (to define a narrow wavelength range with a tailless reflectivity profile) and an analyser crystal to select the angular range diffracted from the sample crystal. The diffractometer is operated in two modes. In the first the sample and analyser rotations are coupled to obtain near-perfect rocking curves from distorted crystals, and in the second mode the two axes are uncoupled to obtain a diffraction space map for studying the diffuse scattering. The simulation of these profiles and maps based on dynamical theory is presented. The former allows complex structures to be analysed and the latter case, by deconvolving the dynamical scattering in these maps, permits a complete interpretation of the kinematic scattering.
APA, Harvard, Vancouver, ISO, and other styles
34

Marengo, Edwin A. "Quasi‐Born approximation scattering and inverse scattering of multiple scattering targets." IET Radar, Sonar & Navigation 11, no. 8 (June 7, 2017): 1276–84. http://dx.doi.org/10.1049/iet-rsn.2016.0622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

van der Mark, Martin B., Meint P. van Albada, and Ad Lagendijk. "Light scattering in strongly scattering media: Multiple scattering and weak localization." Physical Review B 37, no. 7 (March 1, 1988): 3575–92. http://dx.doi.org/10.1103/physrevb.37.3575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Domke, H. "Inhomogeneous atmospheres – On transforming conservative multiple scattering to non-conservative multiple pseudo-scattering." Journal of Quantitative Spectroscopy and Radiative Transfer 183 (November 2016): 56–63. http://dx.doi.org/10.1016/j.jqsrt.2016.03.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Jette, David. "Electron dose calculation using multiple-scattering theory: A new theory of multiple scattering." Medical Physics 23, no. 4 (April 1996): 459–77. http://dx.doi.org/10.1118/1.597777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jette, David, and Suzan Walker. "Electron dose calculation using multiple-scattering theory: Energy distribution due to multiple scattering." Medical Physics 24, no. 3 (March 1997): 383–400. http://dx.doi.org/10.1118/1.597907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ivanov, V. V. "Multiple light scattering: mean number of scatterings and related problems." Astrophysics 52, no. 1 (January 2009): 24–39. http://dx.doi.org/10.1007/s10511-009-9054-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ikelle, Luc T. "An analysis of 2D and 3D multiple attenuation for a canonical example." GEOPHYSICS 70, no. 6 (November 2005): A13—A28. http://dx.doi.org/10.1190/1.2127108.

Full text
Abstract:
Three-dimensional formulations of free-surface multiple attenuation for multioffset seismic data are well known. They are not yet used in practice because they require very dense source-receiver coverage, which is still out of reach with existing seismic-acquisition systems. The development of alternative solutions based on 2D algorithms depends on our understanding of the relationship between 2D and 3D free-surface multiple-attenuation methods. This paper attempts to enhance this understanding by establishing the relationship between 2D and 3D inverse scattering free-surface multiple attenuation. A 3D model consisting of three scattering points (one scattered point located in the vertical plane containing the shooting line and the other two points outside this plane) in a homogeneous medium (for which the exact pressure field is analytically known) is used to show that the 2D inverse scattering multiple-attenuation algorithm predicts all free-surface multiples as does its 3D counterpart but with some traveltime and amplitude errors. One implication of this result is that the current 2D inverse scattering multiple-attenuation algorithm, with an appropriate 2D-to-3D correction, can be used to predict the free-surface multiples for data containing out-of-plane scattering.
APA, Harvard, Vancouver, ISO, and other styles
41

Braun, M. A., and K. Urbanowski. "Multiple measurements realized by a multiple scattering process." Physica A: Statistical Mechanics and its Applications 190, no. 1-2 (November 1992): 130–44. http://dx.doi.org/10.1016/0378-4371(92)90082-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Maung, Khin Maung, and Franz Gross. "Covariant multiple scattering series for elastic projectile-target scattering." Physical Review C 42, no. 4 (October 1, 1990): 1681–93. http://dx.doi.org/10.1103/physrevc.42.1681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Piskozub, Jacek, and David McKee. "Effective scattering phase functions for the multiple scattering regime." Optics Express 19, no. 5 (February 25, 2011): 4786. http://dx.doi.org/10.1364/oe.19.004786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Drewel, M., J. Ahrens, and U. Podschus. "Decorrelation of multiple scattering for an arbitrary scattering angle." Journal of the Optical Society of America A 7, no. 2 (February 1, 1990): 206. http://dx.doi.org/10.1364/josaa.7.000206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lovejoy, S., B. P. Watson, Y. Grosdidier, and D. Schertzer. "Scattering in thick multifractal clouds, Part II: Multiple scattering." Physica A: Statistical Mechanics and its Applications 388, no. 18 (September 2009): 3711–27. http://dx.doi.org/10.1016/j.physa.2009.05.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dhont, J. K. G., C. G. de Kruif, and A. Vrij. "Light scattering in colloidal dispersions: Effects of multiple scattering." Journal of Colloid and Interface Science 105, no. 2 (June 1985): 539–51. http://dx.doi.org/10.1016/0021-9797(85)90329-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Romanov, V. P., D. Yu Churmakov, E. Berrocal, and I. V. Meglinskii. "Low-order light scattering in multiple scattering disperse media." Optics and Spectroscopy 97, no. 5 (November 2004): 796–802. http://dx.doi.org/10.1134/1.1828631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zinke, Arno, Cem Yuksel, Andreas Weber, and John Keyser. "Dual scattering approximation for fast multiple scattering in hair." ACM Transactions on Graphics 27, no. 3 (August 2008): 1–10. http://dx.doi.org/10.1145/1360612.1360631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

van der Mark, Martin B., Meint P. van Albada, and Ad Lagendijk. "Erratum: Light scattering in strongly scattering media: Multiple scattering and weak localization." Physical Review B 38, no. 7 (September 1, 1988): 5063. http://dx.doi.org/10.1103/physrevb.38.5063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bissonnette, Luc R., and Daniel L. Hutt. "Multiple-scattering aerosol lidar inversion method." Canadian Journal of Physics 71, no. 1-2 (January 1, 1993): 39–46. http://dx.doi.org/10.1139/p93-007.

Full text
Abstract:
The multiple-scattering contributions to lidar aerosol backscatter returns are measured by simultaneous detection at four concentric fields of view. A solution method is proposed to calculate, from the ratios of the lidar returns at the different fields of view, the range-resolved scattering coefficient. The method also provides the effective size of the aerosol particles responsible for the forward peak of the scattering phase function. Solutions from measurements performed in fog and clouds with a 1.054 μm lidar system are presented.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography