Academic literature on the topic 'Multiple Regression Estimate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiple Regression Estimate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiple Regression Estimate"
ALVES, M. E., and A. LAVORENTI. "Remaining Phosphorus Estimate Through Multiple Regression Analysis." Pedosphere 16, no. 5 (October 2006): 566–71. http://dx.doi.org/10.1016/s1002-0160(06)60089-1.
Full textLi, Zhong-xiao. "Adaptive multiple subtraction based on support vector regression." GEOPHYSICS 85, no. 1 (November 22, 2019): V57—V69. http://dx.doi.org/10.1190/geo2018-0245.1.
Full textGorgees, HazimMansoor, and FatimahAssim Mahdi. "Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients." Journal of Physics: Conference Series 1003 (May 2018): 012049. http://dx.doi.org/10.1088/1742-6596/1003/1/012049.
Full textRahayu, Elvri, Iin Parlina, and Zulia Almaida Siregar. "Application of Multiple Linear Regression Algorithm for Motorcycle Sales Estimation." JOMLAI: Journal of Machine Learning and Artificial Intelligence 1, no. 1 (March 18, 2022): 1–10. http://dx.doi.org/10.55123/jomlai.v1i1.142.
Full textSuparta, W., and W. S. Putro. "Using multiple linear regression model to estimate thunderstorm activity." IOP Conference Series: Materials Science and Engineering 185 (March 2017): 012023. http://dx.doi.org/10.1088/1757-899x/185/1/012023.
Full textLong, Michael A., Kenneth J. Berry, and Paul W. Mielke. "A Note on Permutation Tests of Significance for Multiple Regression Coefficients." Psychological Reports 100, no. 2 (April 2007): 339–45. http://dx.doi.org/10.2466/pr0.100.2.339-345.
Full textEllington, E. Hance, Guillaume Bastille‐Rousseau, Cayla Austin, Kristen N. Landolt, Bruce A. Pond, Erin E. Rees, Nicholas Robar, and Dennis L. Murray. "Using multiple imputation to estimate missing data in meta‐regression." Methods in Ecology and Evolution 6, no. 2 (December 17, 2014): 153–63. http://dx.doi.org/10.1111/2041-210x.12322.
Full textWhite, Edward D., Vincent P. Sipple, and Michael A. Greiner. "Using Logistic and Multiple Regression to Estimate Engineering Cost Risk." Journal of Cost Analysis & Management 6, no. 1 (July 2004): 67–79. http://dx.doi.org/10.1080/15411656.2004.10462248.
Full textShen, Gang. "Asymptotics of a Theil-type estimate in multiple linear regression." Statistics & Probability Letters 79, no. 8 (April 2009): 1053–64. http://dx.doi.org/10.1016/j.spl.2008.12.017.
Full textChen, Xiru, and Hongzhi An. "Abnormal behavior of the least squares estimate of multiple regression." Science in China Series A: Mathematics 40, no. 3 (March 1997): 234–42. http://dx.doi.org/10.1007/bf02874515.
Full textDissertations / Theses on the topic "Multiple Regression Estimate"
Kerr, Barry Douglas. "Multiple Regression Equations to Estimate Mean Nutrient Concentrations in Streams of North Central Texas from Landsat Derived Land Use." Thesis, University of North Texas, 1994. https://digital.library.unt.edu/ark:/67531/metadc278778/.
Full textErnstsson, Hampus, and Liljesvan Max Börjes. "Multiples for Valuation Estimates of Life Science Companies in Sweden." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254239.
Full textVärderingsmultiplar är ett vanligt och enkelt verktyg för att approximera företags värde. Det kan beskriva temporär dynamik och skillnader hos marknader, industrier och bolag. Trots dess praktiska användbarhet finns en del kritiska problem som fortfarande debatteras. Denna uppsats undersöker om det existerar några egenskaper för att förklara marknadsvärdet med hjälp av värderingsmultiplar inom life science industrin i Sverige. Tillvägagångssättet följer välkänd teori om multipel linjär regressions analys. Resultaten visade att det endast finns ett samband mellan marknadsvärdet och utgifter för forskning och utveckling för ett bolag. Detta innebär inte att de andra variablerna inte har någon effekt på marknadsvärdet, utan att det inte finns ett linjärt samband som kan bevisas på ett statistiskt vis.
Jastram, John Dietrich. "Improving Turbidity-Based Estimates of Suspended Sediment Concentrations and Loads." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/32514.
Full textMaster of Science
Garcia, Altemir Tomaz de Carvalho. "Estimativa de demanda de energia elétrica em uma instituição de ensino superior." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/8150.
Full textMade available in DSpace on 2016-04-25T12:59:29Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 2399944 bytes, checksum: b31ffd454938b9e66e2494032cb6d9ee (MD5) Previous issue date: 2015-08-28
In recent years, several studies where published regarding to the estimation of variables related to the use of electricity, where the most varied methodologies are used to perform modeling and estimation of demand for energy of countries, States, companies in general and educational systems. In this dissertation where chosen this last category and the focus is on Higher Education Institutions (HEIs). Looking for drawing up an estimate of Wing Maxim Demand (WMD), monthly of electrical energy power, for the (HEIs), from the amount of students and, if necessary, from other causal variables, which can contribute to managerial way for the renegotiation of contracts with concessionaires that lead to annual cost savings and still contribute to a better control of the levels of maxim demand of electricity. To achieve this objective, it was realized a review of the literature regarding to the variables that could introduce correlation with the dependent variable WMD. This review indicated several methodologies that could contribute to the solution of the problem proposed: Markov Chain, Support vector Regression methodology, Genetic Programming Model and Artificial Neural Networks. It was adopted the methodology of Multiple Linear Regression (MLR) because it is less complex and a methodology directed at large companies. It was selected an IES and were carried out interviews with some engineers and technician of his electrical engineering division, seeking to better understand energy use and the behavior of the variable WMD in this IES being made available the reports of power energy monitoring where the WMD data of January-December 2008 of 2014 were contained. So on the basis of these data and documental research of the independent variables, and, through the methodologies of Multiple Linear Regression (MLR), it was developed a model from the data of 72 months which had their waste evaluated, showing a coefficient of determination R ^ 2 equal to 0.883. Independent variables that remained in the model, from the use of the backward method, were 4 (four) Dummy variables associated with the years, six variables of this type associated with the months and a variable which is the product of school days for graduates and the quantity of graduate students registered. This model was able to identify seasonality presents in the behavior of the WMD of this HIE. It would allow the hiring of WMD per month, that would make savings of 57% compared to the traditional contracting mode (WMD fixed for the entire period), considering the period from July to December, before the period left for validation. In conclusion, a forecast for the period of January to May 2015 and the adoption of the proposed model was able to provide a savings of 45% in relation to the scheme currently used by this HEI.
Nos últimos anos, diversos trabalhos foram publicados em relação à estimativa de variáveis relacionadas ao uso da energia elétrica, onde as mais variadas metodologias são utilizadas para realizar a modelagem e estimação da demanda por energia de países, Estados, empresas em geral e dos sistemas de ensino. Nesta dissertação foi escolhida esta última categoria e o foco consiste nas Instituições de Ensino Superior (IES). Procurando elaborar uma estimativa de Demanda Máxima de Ponta (DMP), mensal de potência de energia elétrica adequada às IESS, a partir da quantidade de alunos, e, se necessário, a partir de outras variáveis causais, que possam contribuir de maneira gerencial para a renegociação de contratos com concessionárias que levem à redução de custos anuais e que ainda podem contribuir para um melhor controle dos níveis de demanda máxima de energia elétrica. Para alcançar tal objetivo, foi realizada uma revisão da literatura a respeito de variáveis que poderiam apresentar correlação com a variável dependente DMP. Esta revisão indicou várias metodologias que poderiam contribuir para a solução do problema proposto: a Cadeia de Markov, a Metodologia de Regressão do vetor de Suporte, o Modelo de Programação Genética e as Redes Neurais Artificiais. Por ser uma metodologia menos complexa e direcionada a empresas de grande porte, adotou-se a Metodologia de Regressão Linear Múltipla (RLM). Foi selecionada uma IES e foram realizadas entrevistas com alguns engenheiros e técnico da sua divisão de engenharia elétrica, procurando entender melhor o uso da energia e o comportamento da variável DMP nesta IES, sendo disponibilizados os relatórios de energia do sistema de monitoração de energia onde os dados de DMP de janeiro de 2008 a dezembro de 2014 estavam contidos. Então, com base nestes dados e em pesquisa documental das candidatas a variáveis independentes, e, através da Metodologia (RLM), foi desenvolvido um modelo a partir dos dados de 72 meses, que teve seus resíduos avaliados, apresentando um coeficiente de determinação 𝑅2 igual a 0,883 .As variáveis independentes que permaneceram no modelo, a partir da utilização do método backward, foram 4(quatro) variáveis Dummy associadas a anos, seis variáveis deste tipo associadas a meses e uma variável fruto do produto entre dias letivos de graduação e quantidade de alunos da graduação matriculados. O modelo foi capaz de identificar a sazonalidade presente no comportamento da DMP da IES em estudo. Ele possibilitaria a contratação de DMP por mês, o que daria uma economia de 57% em relação ao modo de contratação tradicional (DMP fixo para todo o período), considerando o período de julho a dezembro, antes do período deixado para validação. Concluindo, foi realizada uma previsão para o período de janeiro a maio de 2015 e a adoção do modelo proposto foi capaz de proporcionar uma economia de 45% em relação ao esquema utilizado atualmente pela IES.
Mabilana, Hugo Adriano. "Desenvolvimento de modelo agrometeorológico espectral para estimativa de rendimento do milho na província de Manica-Moçambique." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/30188.
Full textMozambique is a country located along the east coast of southern Africa, with an economy based primarily on agriculture. The Maize crop (Zea mays L.) is the most important crop, growing in rainfed conditions, with its yield dependent only on weather conditions. Agrometeorological models to forecast yields of food crops are viable alternatives for decision making on food safety measures and supply. The agricultural calendar and the production system make use of geotechnologies an important tool for crop monitoring and yield forecasting. Products from remote sensing data, combined with spectral indices and agrometeorological parameters can improve the spatial representations of maize yields in Mozambique. Setting an agrometeorological model to estimate the spectral yield of corn by multiple linear regression in Manica province, Mozambique was the objective of the study. Were conducted a mapping of agricultural areas by analyzing multitemporal NDVI / MODIS and also evaluated the effectiveness of spectral and meteorological variables in the estimated maize yield in an area of Manica province involving the districts of Gondola, Manica, Mossurize and Sussundenga responsible for more than 80% of corn production in the province in the years 2000 to 2009. A model was developed to estimate the beginnig of the corn cycle, using as a criteria the rainfall, and setting a fixed cycle of corn in 130 days. The methodology for mapping agricultural areas consisted of sums of binary images generated by the difference of maximum and minimum NDVI throughout the cycle and establishing levels of restriction based on comparisons with official statistics by district. Were tested the meteorological variables: the relative evapotranspiration (ETr / ETm) and the index of satisfaction of water needs (ISNA) calculated from data from meteorological model of ECMWF. The set of spectral variable were comprised of 16 days composition of vegetation indices NDVI and EVI from the MODIS product MOD13Q1 and LSWI generated from normalized difference of surface reflectance bands of near-infrared and medium infrared contained the same product. The meteorological and spectral variables was the set of independent variables and the average and relative yield were the set of dependent variables used to adjusted a multiple regression model, called agrometeorological-spectral model. To all districts, except for Mossurize were generated models with good performance in estimating the corn yield and with physical meaning. The regional model, including Gondola, Manica and Sussundenga and involving the relative yield was the most suitable for estimating corn yield in the region with r2 = 0.762 and RMSE of 9.46%.
Coudret, Raphaël. "Stochastic modelling using large data sets : applications in ecology and genetics." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00865867.
Full textVargas, Luciano Lopes Amor. "Modelo para estimar a geração de resíduo de madeira de uso provisório em obras de edifícios verticai." Universidade do Vale do Rio dos Sinos, 2017. http://www.repositorio.jesuita.org.br/handle/UNISINOS/6311.
Full textMade available in DSpace on 2017-05-30T11:58:58Z (GMT). No. of bitstreams: 1 Luciano Lopes Vargas Amor_.pdf: 2139833 bytes, checksum: f496319c4cf4ede22ca6b861b4855664 (MD5) Previous issue date: 2017-01-12
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
CNPQ – Conselho Nacional de Desenvolvimento Científico e Tecnológico
O setor da construção civil é hoje um grande gerador de resíduos, o que impacta negativamente o meio ambiente. Tanto a fase de projeto quanto a de execução de obras podem ocasionar essa geração. Quantificar o resíduo gerado em uma obra é fundamental para ter um controle do problema. A madeira, principal material empregado no uso provisório nos canteiros de obras, pode gerar grande volume de resíduo, sendo que o mesmo é descartado tão logo a obra termina, havendo pouco reaproveitamento ou reciclagem da mesma. Quantificar esse resíduo pode facilitar a gestão e o controle do mesmo, possibilitando a sustentabilidade de um material nobre e importante para o desenvolvimento da construção civil. O objetivo deste estudo consiste em propor um modelo para estimar a geração de resíduos de madeira de uso provisório em obras de edifícios verticais, analisando suas características de projeto e de execução. A estratégia de pesquisa utilizada foi o estudo de casos múltiplos, com coleta de dados de obras localizadas na região metropolitana de Porto Alegre, feitos através de entrevistas, observações in loco e análise de projetos. Ao todo, a amostra estudada foi formada por 22 obras de 11 empresas. Como resultado, foram gerados modelos estatísticos, a partir de regressão múltipla, contendo a variável dependente - volume de resíduos de madeira – e as variáveis independentes relativas ao projeto – número de pavimentos, número de pavimentos em subsolo, volume de concreto executado – e à execução - comprimento linear de tapume em madeira, índice de uso da madeira na confecção dos equipamentos de proteção coletiva e instalações provisórias. O modelo proposto possui R² ajustado de 0,893, indicando que é capaz de explicar 89,3% do fenômeno. As variáveis que mais impactaram foram o número de pavimentos e o número de pavimentos em subsolo. O modelo permite que as empresas construtoras possuam maior controle sobre o volume de resíduo de madeira gerado pelas suas obras, e possibilita realizar ações efetivas em prol da gestão dos resíduos, havendo maior controle e a redução dos mesmos. Possibilita também aplicá-lo em outras obras de diferentes regiões, considerando as características de projeto e de execução locais.
The construction industry is today a great generator of waste, which has a negative impact on the environment. Both the design and execution phases of works can cause this generation. To quantify the waste generated in a work is fundamental to control the problem. Wood, the main material used temporarily in construction sites, can generate a large volume of waste, which is discarded as soon as the work is finished, with little reuse or recycling. Quantifying this waste can facilitate the management and control of the same, allowing the sustainability of a material which is important and noble for the development of civil construction. The aim of this study is to propose a model to estimate the generation of wood waste used temporarily in vertical construction, analyzing their design and execution characteristics. The research strategy used was the study of multiple cases, with data collection of works located in the metropolitan region of Porto Alegre, made through interviews, in situ observations and project analysis In all, the sample studied was formed by 22 works from 11 companies. As a result, statistical models were generated from multiple regression, containing the dependent variable - volume of wood waste - and the independent variables related to the project - number of floors, number of floors in subsoil, volume of concrete executed - and execution - linear length of siding in wood, the index use of wood in the production of collective protection equipment and temporary facilities. The proposed model has an adjusted R² of 0.893, indicating that it is able to explain 89.3% of the phenomenon. The variables that most impacted it were the number of floors and the number of floors in subsoil. The model allows construction companies to have greater control over the volume of wood waste generated by their works, and enables effective actions to be taken in favor of waste management, with greater control and reduction of waste. It can also be applied in other works from different regions, considering the local design and execution characteristics.
Dias, Michele Ferreira. "Modelo para estimar a geração de resíduos na produção de obras residenciais verticais." Universidade do Vale do Rio dos Sinos, 2013. http://www.repositorio.jesuita.org.br/handle/UNISINOS/4129.
Full textMade available in DSpace on 2015-07-01T19:30:05Z (GMT). No. of bitstreams: 1 micheledias.pdf: 1762771 bytes, checksum: ef597c67a9fa0e4be515580698ec6a19 (MD5) Previous issue date: 2013-09-05
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
FAPERGS - Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
SINDUSCON/NH - Sindicato da Indústria da Construção Civil de Novo Hamburgo/RS
A significativa quantidade de resíduos gerada pelo setor da construção civil é hoje um grande problema ambiental a ser enfrentado pelo poder público e empresas construtoras. Para evitar ou reduzir a geração de resíduos é preciso atuar na origem, que pode estar desde o projeto até a fase de execução. O projeto consiste no passo inicial do empreendimento e tem influência significativa sobre o processo construtivo e produto final. Estudos apontam também que o sistema de gestão empregado por construtoras tem relação direta com a ocorrência de perdas, incluindo os resíduos. O conhecimento do índice de geração de resíduos é uma importante informação gerencial, com diferentes objetivos, desde a conscientização do problema, até para servir de base para o planejamento e implementação de ações voltadas à minimização da geração. Contudo, a quantificação dos resíduos de construção ainda pode ser considerada como um desafio, tendo em vista características peculiares da construção e a heterogeneidade dos resíduos. Observa-se muita variabilidade nos métodos empregados e variáveis consideradas, além das diferenças relativas à época e contextos pesquisados para geração dos índices e indicadores. Este trabalho propõe o desenvolvimento de um modelo estatístico para estimar a quantificação da geração de RCD em obras residenciais verticais, considerando características específicas das construtoras que atuam na região metropolitana de Porto Alegre-RS, investigando a influência do projeto e do sistema de produção. A estratégia de pesquisa consistiu num estudo de caso com múltiplas fontes de evidências, utilizando como ferramenta de análise estatística a regressão linear múltipla. A amostra é formada por dados de 20 obras residenciais verticais de 10 empresas que atuam na região metropolitana de Porto Alegre. Como resultado foi gerado um modelo estatístico, formado pela variável dependente (estimativa da quantidade de resíduo a ser gerada) e variáveis independentes relativas ao projeto (área do pavimento tipo, relação entre o número de pavimentos tipos e o número total de pavimentos e Índice econômico de compacidade) e ao sistema de produção (sistema construtivo e reaproveitamento de resíduos no canteiro). O modelo proposto obteve valor de R² ajustado = 0,69, permitindo explicar 69% da geração de resíduos em obras com características semelhantes, foi observada melhor aproximação da estimativa realizada pelo modelo quando comparado a algumas estimativas da literatura. A informação gerada através do modelo é importante na conscientização dos empresários locais e útil para basear ações no sentido de minimizar a geração, reciclar ou ações relativas ao destino final adequado, além de possibilitar comparações com informações sobre a geração de resíduos de outras localidades.
A significant amount of waste generated by the construction industry is now a major environmental problem to be faced by the government and construction companies. To avoid or reduce the generation of waste is necessary to work at the source, which may be from design to the implementation phase. The project consists in the initial step of the development and has significant influence on the construction process and final product. Studies also indicate that the management system employed by construction companies is directly related to the occurrence of losses, including waste. The knowledge of the waste generation rate is important management information, with different goals, since the awareness of the problem, even to serve as a basis for planning and implementation of actions aimed at minimizing the generation. However, the quantification of construction waste can still be considered as a challenge in view of the peculiar characteristics of the construction and the heterogeneity of the wastes. It is observed high variability in the methods employed and the variables considered, and the differences related to the time and contexts searched for generating indices and indicators. This work proposes the development of a statistical model to estimate the quantification of CDW generation in residential construction vertical, considering the specific characteristics of construction companies operating in the metropolitan area of Porto Alegre - RS, investigating the influence of design and production system. The research strategy consisted of a case study with multiple sources of evidence, using as a tool for statistical analysis with linear regression. The sample consists of data from 20 residential construction vertical of 10 companies operating in the metropolitan area of Porto Alegre. As a result generated a statistical model , formed by the dependent variable ( the estimated amount of waste to be generated ) and independent variables related to the project (area of the pavement type , relationship between the number of flooring types and the total number of floors and economic index compactness ) and production system ( building system and reuse of waste in construction ) . The proposed model obtained adjusted R² = 0.69 , allowing explain 69 % of waste generation in the works with similar characteristics was observed better approximation to the estimation made by the model when compared to some estimates of the literature . The information generated by the model is important in raising awareness of local entrepreneurs and useful to base actions to minimize the generation, recycling or actions relating to the appropriate destination, and enable comparisons with information on waste generation from other locations.
Cagliari, Joice. "Função de pedotransferência para estimar o fósforo remanescente em solos, utilizando rede neural artificial." Universidade do Vale do Rio dos Sinos, 2010. http://www.repositorio.jesuita.org.br/handle/UNISINOS/4670.
Full textMade available in DSpace on 2015-08-03T23:08:01Z (GMT). No. of bitstreams: 1 JoiceCagliari.pdf: 1412838 bytes, checksum: 244299757ce9e71c1219d2018888f982 (MD5) Previous issue date: 2010
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
O fósforo remanescente consiste na concentração de fósforo que permanece em solução após a agitação por 1 hora de uma amostra de solo com solução de CaCl2 0,01 mol L-1 contendo 60 mg L-1 P. O valor de fósforo remanescente pode ser utilizado como um bom indicador da capacidade de sorção aniônica de um solo haja vista ser mais sensível a sua composição mineralógica do que ao teor de sua fração argila. No Brasil, a utilização agronômica do fósforo remanescente é contemplada no sistema oficial de recomendação de fertilizantes e corretivos do Estado de Minas Gerais. O objetivo principal deste estudo foi o de desenvolver uma função de pedotransferência que permitisse estimar com razoável exatidão o valor de fósforo remanescente de solos representativos do Estado de São Paulo, a partir de outros atributos químicos de mais simples e/ou rotineira determinação laboratorial. Nesse contexto, duas funções de pedotransferência foram desenvolvidas com base em redes neurais artificiais (RNA) e análises de regressão linear múltipla (RLM), utilizando um banco de dados constituído por propriedades físicas e químicas de solos amostrados em diferentes localidades do Estado de São Paulo. As redes alimentadas adiante com múltiplas camadas foram utilizadas para desenvolver a função de pedotransferência baseada em RNA e a topologia foi determinada a partir de experimentos sucessivos. Os critérios de escolha da melhor rede neural foram, simultaneamente, o desempenho na etapa de treinamento, medido por meio do erro quadrático médio, e a capacidade de generalização, avaliada por meio de análises estatísticas entre os valores de Prem estimados e determinados analiticamente. A topologia da rede que melhor estimou o fósforo remanescente foi [3 14 1], ou seja, três neurônios na camada de entrada, quatorze em uma única camada intermediária e um na camada de saída; a função de ativação utilizada foi a sigmoidal logística, os valores de entrada foram normalizados entre [0;1] e o algoritmo de aprendizagem utilizado foi o resilient backpropagation. As três variáveis da camada de entrada foram o valor de pH medido em solução de NaF 1 mol L-1 (pH NaF), a soma de bases trocáveis (SB) e o teor de alumínio trocável (Al3+), sendo as duas últimas determinadas rotineiramente em análises de solo e a primeira de mais fácil e rápida obtenção que o fósforo remanescente. A função de pedotransferência baseada em RLM foi desenvolvida considerando as mesmas variáveis de entrada utilizadas na função de pedotransferência baseada em RNA. A comparação entre os desempenhos obtidos, para um mesmo conjunto de validação, mostrou que as funções de pedotransferência baseadas em redes neurais apresentam estimativas mais exatas do fósforo remanescente. Apesar do conjunto de dados utilizado não ser suficientemente abrangente para o estabelecimento de uma função de pedotransferência definitiva para a estimativa do fósforo remanescente, os resultados do presente trabalho indicam como promissor o desenvolvimento de um massivo banco de dados por meio do aproveitamento dos resultados analíticos continuamente gerados pelos vários laboratórios brasileiros dedicados à avaliação da fertilidade do solo e que contemple os valores de fósforo remanescente e pH NaF. Tal banco de dados permitirá o desenvolvimento de uma função de pedotransferência baseada em redes neurais artificiais cuja utilização possibilitará o cálculo imediato de valores suficientemente exatos de fósforo remanescente com razoável economia de recursos financeiros que seriam empregados na análise de um grande número de amostras.
The remaining phosphorus consists of the P concentration that remains in solution after shaking for 1 hour a soil sample with 0.01 mol L-1 CaCl2 containing 60 mg L-1 P. The remaining phosphorus values can be used as suitable indicators of the soil capacity of anion sorption due to be more dependable on the soil mineralogy than on the soil clay content. In Brazil, the remaining phosphorus is used as an ancillary variable in the official guidelines for determining fertilizer and amender requirements of agricultural soils of the Minas Gerais state. The main goal of this research was to develop a pedotransfer function (PTF) capable of providing fairly accurate estimates of remaining phosphorus values of representative soils of the São Paulo state from often-determined soil chemical properties and/or from other ones of easier determination. In this context, two pedotransfer functions were developed by using artificial neural networks (ANN) and multiple regression analysis (MRA) applied to a database formed by values of soil chemical and physical properties derived from soil surveys previously carried out in different locations of the São Paulo state. The multi-layer feedforward neural networks approach was used for the development of the ANN-based PTF being its topology determined from successive experiments. The simultaneous criteria adopted for choosing the best neural network were the performance during the training stage, measured by the mean squared error, and its capacity of providing accurate Prem values, which was evaluated by using a validation database in which statistical comparisons were done between the measured and estimated Prem values. The topology of the network that provided the most accurate estimates of the remaining phosphorus was [3 14 1], i.e., three neurons at the input layer, fourteen at a unique hidden layer and one neuron at the output layer; further development features included the use of the sigmoid logistic model as activation function, the input of data normalized in the [0;1] interval and the use of the resilient backpropagation learning algorithm. The three variables at the input layer were the soil pH value measured in 1 mol L-1 NaF (pH NaF), the sum of exchangeable bases (SB) and the soil content of exchangeable aluminum (Al3+), being the two last ones usually determined in soil test laboratories whereas the pH NaF determination is easier than the remaining phosphorus one. The MRA-based PTF was developed considering the same input variables of the ANN-based one, i.e., pH NaF, SB and Al3+. The comparisons performed with a same validation database showed that the pedotransfer function developed from artificial neural networks provided more accurate estimates of remaining phosphorus values. Despite the database used for the PTF development not be so comprehensive for the establishment of a definitive pedotransfer function for estimating remaining phosphorus values, the results of the present research indicate as promising the development of a massive database from chemical results often obtained by the Brazilian laboratories dedicated to soil fertility evaluation and that includes Prem and pH NaF values. This database will allow the development of a comprehensive ANN-based pedotransfer function capable of not only calculating suitable Prem values for practical applications but also reducing the expenses related to the analyses of a great number of soil samples.
Portier, François. "Réduction de la dimension en régression." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00871049.
Full textBooks on the topic "Multiple Regression Estimate"
Miksza, Peter, and Kenneth Elpus. Regression. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199391905.003.0010.
Full textLogistic and Multiple Regression: A Two-Pronged Approach to Accurately Estimate Cost Growth in Major DoD Weapon Systems. Storming Media, 2004.
Find full textPeacock, Janet L., Sally M. Kerry, and Raymond R. Balise. Multifactorial analyses. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198779100.003.0010.
Full textBook chapters on the topic "Multiple Regression Estimate"
Agulló, José. "Exact algorithms for computing the least median of squares estimate in multiple linear regression." In Institute of Mathematical Statistics Lecture Notes - Monograph Series, 133–46. Hayward, CA: Institute of Mathematical Statistics, 1997. http://dx.doi.org/10.1214/lnms/1215454133.
Full textLa Paglia, I., E. Di Gialleonardo, A. Facchinetti, M. Carnevale, and R. Corradi. "A Methodology to Estimate Railway Track Conditions from Vehicle Accelerations Based on Multiple Regression." In Lecture Notes in Civil Engineering, 203–10. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39109-5_21.
Full textLai, T. L., Herbert Robbins, and C. Z. Wei. "Strong consistency of least squares estimates in multiple regression." In Herbert Robbins Selected Papers, 510–12. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5110-1_47.
Full textMoncayo, Steven, and Guillermo Ávila. "Landslide Travel Distances in Colombia from National Landslide Database Analysis." In Progress in Landslide Research and Technology, Volume 1 Issue 1, 2022, 315–25. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-16898-7_24.
Full textHigano, Yoshiro. "Introduction: Real Estate Tax System and Real Estate Market in Japan." In New Frontiers in Regional Science: Asian Perspectives, 115–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8848-8_8.
Full text"How to Estimate Regression Coefficients in MS Excel." In Multiple Linear Regression. India: Starttech Educational Services LLP, 2020. http://dx.doi.org/10.4135/9781529630138.n2.
Full textCsathó, Botond Tamás, Csaba Endre Berky, and Bálint Péter Horváth. "Scattering Matrix-Based Dielectric Permittivity Estimation of Bulk Materials." In Electromagnetic Non-Destructive Evaluation (XXIV). IOS Press, 2023. http://dx.doi.org/10.3233/saem230003.
Full textBandyopadhyay, Arindam. "Matrix Algebra and their Application in Risk Prediction and Risk Monitoring." In Basic Statistics for Risk Management in Banks and Financial Institutions, 119–40. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192849014.003.0005.
Full textCento, Veljanovski. "Part V Pass-On, 21 Proving Pass-on." In Cartel Damages. Oxford University Press, 2020. http://dx.doi.org/10.1093/law-ocl/9780198855163.003.0021.
Full textCento, Veljanovski. "Part IV Measurement, 15 Statistical Evidence." In Cartel Damages. Oxford University Press, 2020. http://dx.doi.org/10.1093/law-ocl/9780198855163.003.0015.
Full textConference papers on the topic "Multiple Regression Estimate"
Maier, Philipp M., and Sina Keller. "Machine Learning Regression on Hyperspectral Data to Estimate Multiple Water Parameters." In 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2018. http://dx.doi.org/10.1109/whispers.2018.8747010.
Full textZhang, Ningyu, Guiyuan Liu, and Hongsheng Song. "Using hyperspectral image data to estimate soil mercury with stepwise multiple regression." In Eighth International Conference on Digital Image Processing (ICDIP 2016), edited by Charles M. Falco and Xudong Jiang. SPIE, 2016. http://dx.doi.org/10.1117/12.2244667.
Full textOkuno, Alex, and Alberto Ferreira. "Generalized linear tree: a flexible algorithm for predicting continuous variables." In LatinX in AI at International Conference on Machine Learning 2021. Journal of LatinX in AI Research, 2021. http://dx.doi.org/10.52591/lxai2021072420.
Full textJosé Arnóbio de Araújo Júnior, Robson da Silva Magalhães, and Emerson Felipe Araújo Magalhães. "MULTIPLE LINEAR REGRESSION MODEL APPLIED TO A FRAMEWORK FOR INDICATORS ESTIMATE IN MAINTENANCE MANAGEMENT." In 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro, Brazil: ABCM Brazilian Society of Mechanical Sciences and Engineering, 2015. http://dx.doi.org/10.20906/cps/cob-2015-0750.
Full textZikos, Dimitrios, and Dhanashri Ostwal. "A Platform based on Multiple Regression to Estimate the Effect of in-Hospital Events on Total Charges." In 2016 IEEE International Conference on Healthcare Informatics (ICHI). IEEE, 2016. http://dx.doi.org/10.1109/ichi.2016.72.
Full textKnop, Lauren, Guilherme Aramizo Ribeiro, and Mo Rastgaar. "Towards a Generalized Model of Multivariable Ankle Impedance During Standing Based on the Lower Extremity Muscle EMG." In 2019 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dmd2019-3315.
Full textSeptianingrum, Sukma Ayu, M. Alfian Dzikri, M. Arief Soeleman, Pujiono Pujiono, and Muslih Muslih. "Performance Analysis of Multiple Linear Regression and Random Forest for an Estimate of the Price of a House." In 2022 International Seminar on Application for Technology of Information and Communication (iSemantic). IEEE, 2022. http://dx.doi.org/10.1109/isemantic55962.2022.9920454.
Full textAlkinani, Husam Hasan, Abo Taleb Tuama Al-Hameedi, Shari Dunn-Norman, and Mustafa Adil Al-Alwani. "Statistical Models to Predict Tensile Strength from Unconfined Compressive Strength: Case Study from Southern Iraq." In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205589-ms.
Full textDilorenzo, Ednaldo, Felipe Furtado, Mauro Silva, Elisabeth Morais, and Gibeon Aquino. "Estimating LOC for OMA primitives: an approach based on correlation and regression analysis." In Simpósio Brasileiro de Engenharia de Software. Sociedade Brasileira de Computação, 2008. http://dx.doi.org/10.5753/sbes.2008.21341.
Full textAlmeida, Paula, and Abel Carrasquilla. "Integrating geological attributes with a multiple linear regression of geophysical well logs to estimate the permeability of carbonate reservoirs in Campos basin - Southeastern Brazil." In International Conference and Exhibition, Barcelona, Spain, 3-6 April 2016. Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2016. http://dx.doi.org/10.1190/ice2016-6267083.1.
Full textReports on the topic "Multiple Regression Estimate"
Blampied, Nigel, Tariq Shehab, Elhami Nasr, and Laxmi Sindhu Samudrala. Preconstruction Support Cost Hours Estimating on Caltrans Pavement Rehabilitation Projects. Mineta Transportation Institute, May 2023. http://dx.doi.org/10.31979/mti.2023.2148.
Full textOver, Thomas, Riki Saito, Andrea Veilleux, Padraic O’Shea, Jennifer Sharpe, David Soong, and Audrey Ishii. Estimation of Peak Discharge Quantiles for Selected Annual Exceedance Probabilities in Northeastern Illinois. Illinois Center for Transportation, June 2016. http://dx.doi.org/10.36501/0197-9191/16-014.
Full textGhanghas, Ankit, Sayan Dey, and Venkatesh Merwade. Development of a Multiple Water Course Joint Probability Analysis Procedure for Indiana Watersheds. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317616.
Full textEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Full textWeller, Joel I., Derek M. Bickhart, Micha Ron, Eyal Seroussi, George Liu, and George R. Wiggans. Determination of actual polymorphisms responsible for economic trait variation in dairy cattle. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600017.bard.
Full textBrosh, Arieh, David Robertshaw, Yoav Aharoni, Zvi Holzer, Mario Gutman, and Amichai Arieli. Estimation of Energy Expenditure of Free Living and Growing Domesticated Ruminants by Heart Rate Measurement. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580685.bard.
Full textMultiple-regression equations to estimate peak-flow frequency for streams in Hays County, Texas. US Geological Survey, 1995. http://dx.doi.org/10.3133/wri954019.
Full text