Academic literature on the topic 'Multiphase Solver'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiphase Solver.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiphase Solver"
Wang, Yan, Chang Shu, Li-Ming Yang, and Hai-Zhuan Yuan. "Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows." Modern Physics Letters B 32, no. 12n13 (May 10, 2018): 1840005. http://dx.doi.org/10.1142/s0217984918400055.
Full textChen, Guo-Qing, Hongyuan Li, Pengyu Lv, and Huiling Duan. "An improved multiphase lattice Boltzmann flux solver with phase interface compression for incompressible multiphase flows." Physics of Fluids 35, no. 1 (January 2023): 013310. http://dx.doi.org/10.1063/5.0131506.
Full textLin, Zhipeng, Wenjing Yang, Houcun Zhou, Xinhai Xu, Liaoyuan Sun, Yongjun Zhang, and Yuhua Tang. "Communication Optimization for Multiphase Flow Solver in the Library of OpenFOAM." Water 10, no. 10 (October 16, 2018): 1461. http://dx.doi.org/10.3390/w10101461.
Full textNguyen, Viet-Bac, Quoc-Vu Do, and Van-Sang Pham. "An OpenFOAM solver for multiphase and turbulent flow." Physics of Fluids 32, no. 4 (April 1, 2020): 043303. http://dx.doi.org/10.1063/1.5145051.
Full textWang, Y., C. Shu, H. B. Huang, and C. J. Teo. "Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio." Journal of Computational Physics 280 (January 2015): 404–23. http://dx.doi.org/10.1016/j.jcp.2014.09.035.
Full textJafarian, Ali, and Ahmadreza Pishevar. "An exact multiphase Riemann solver for compressible cavitating flows." International Journal of Multiphase Flow 88 (January 2017): 152–66. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.08.001.
Full textIvanov, E. A., A. S. Klyuyev, A. A. Zharkovskii, and I. O. Borshchev. "Numerical Simulation of Multiphase Flow Structures in Openfoam Software Package." E3S Web of Conferences 320 (2021): 04016. http://dx.doi.org/10.1051/e3sconf/202132004016.
Full textAbas, Aizat, N. Hafizah Mokhtar, M. H. H. Ishak, M. Z. Abdullah, and Ang Ho Tian. "Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem." Computational and Mathematical Methods in Medicine 2016 (2016): 1–17. http://dx.doi.org/10.1155/2016/6143126.
Full textJiang, LiJuan, HongGuang Sun, and Yan Wang. "Modeling immiscible fluid flow in fractal pore medium by multiphase lattice Boltzmann flux solver." Physics of Fluids 35, no. 2 (February 2023): 023334. http://dx.doi.org/10.1063/5.0137360.
Full textGuo, Yisen, and Yongsheng Lian. "Calculation of Water Collection Efficiency Using a Multiphase Flow Solver." Journal of Aircraft 56, no. 2 (March 2019): 685–94. http://dx.doi.org/10.2514/1.c034793.
Full textDissertations / Theses on the topic "Multiphase Solver"
Dhruv, Akash. "A Multiphase Solver for High-Fidelity Phase-Change Simulations over Complex Geometries." Thesis, The George Washington University, 2021. http://pqdtopen.proquest.com/#viewpdf?dispub=28256871.
Full textLezeau, Patrick A. "An adaptive quasi-Newton coupled multigrid solver for the simulation of steady multiphase flows." Thesis, Cranfield University, 1997. http://hdl.handle.net/1826/4025.
Full textHeyns, Johan Adam. "Formulation of a weakly compressible two-fluid flow solver and the development of a compressive surface capturing scheme using the volume-of-fluid approach." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71934.
Full textENGLISH ABSTRACT: This study presents the development and extension of free-surface modelling techniques for the purpose of modelling two-fluid systems accurately and efficiently. The volume-of-fluid (VOF) method is extended in two ways: Firstly, it is extended to account for variations in the gas density through a weakly compressible formulation. Secondly, a compressive free-surface interface capturing formulation that preserves the integrity of the interface shape is detailed. These formulations were implemented and evaluated using the Elemental software. Under certain flow conditions liquid-gas systems may be subjected to large variations in pressure, making it necessary to account for changes in gas density. Modelling this effectively has received relatively little attention in the context of free-surface modelling and remains a challenge to date. To account for the variations in gas density a weakly compressible free-surface modelling formulation is developed for low Mach number flows. The latter is formally substantiated via a non-dimensional analysis. It is proposed that the new formulation advances on existing free-surface modelling formulations by effecting an accurate representation of the dominant physics in an efficient and effective manner. The proposed weakly compressible formulation is discretised using a vertexcentred edge-base finite volume approach, which provides a computationally efficient method of data structuring and memory usage. Furthermore, this implementation is applicable to unstructured spatial discretisation and parallel computing. In this light, the discretisation is formulated to ensure a stable, oscillatory free solution. Furthermore, the governing equations are solved in a fully coupled manner using a combination of dual time-stepping and a Generalised Minimum Residual solver with Lower-Upper Symmetric Gauss-Seidel preconditioning, ensuring a fast and efficient solution. The newly developed VOF interface capturing formulation is proposed to advance on the accuracy and efficiency with which the evolution of the free-surface interface is modelled. This is achieved through a novel combination of a blended higher-resolution scheme, used to interpolate the volume fraction face value, and the addition of an artificial compressive term to the VOF equation. Furthermore, the computational efficiency of the higher-resolution scheme is improved through the reformulation of the normalised variable approach and the implementation of a new higher-resolution blending function. For the purpose of evaluating the newly developed methods, several test cases are considered. It is demonstrated that the new surface capturing formulation offers a significant improvement over existing schemes, particularly at large CFL numbers. It is shown that the proposed method achieves a sharper, better defined interface for a wide range of flow conditions. With the validation of the weakly compressible formulation, it is found that the numerical results correlate well with analytical solutions. Furthermore, the importance of accounting for gas compressibility is demonstrated via an application study. The weakly compressible formulation is also found to result in negligible additional computational cost while resulting in improved convergence rates.
AFRIKAANSE OPSOMMING: Hierdie studie behels die ontwikkeling van numeriese tegnieke met die doel om twee-vloeistof vloei akkuraat en numeries effektief te modelleer. Die volume-vanvloeistof metode word op twee maniere uitgebrei: Eerstens word variasie van die gasdigtheid in ag geneem deur gebruik te maak van ’n swak samedrukbare model. Tweedens saam is ’n hoë-resolusie metode geformuleer vir die voorstelling van die vloeistof-oppervlak. Hierdie uitbreidings is met die behulp van die Elemental programmatuur geïmplementeer en met behulp van die programmatuur geëvalueer. Onder sekere toestande ervaar vloeistof-gas mengsels groot veranderinge in druk. Dit vereis dat die variasie in gasdigtheid in berekening gebring moet word. Die modellering hiervan het egter tot dusver relatief min aandag ontvang. Om hierdie rede word ’n swak samedrukbare model vir lae Mach-getalle voorgestel om die variasie in gasdigtheid in te reken. Die formulering volg uit ’n nie-dimensionele analise. Daar word geargumenteer dat die nuwe formulering die fisika meer akkuraat verteenwoordig. ’n Gesentraliseerde hoekpunt, rant gebaseerde eindige volume metode word gevolg om die differensiaalvergelykings numeries te diskretiseer. Dit bied ’n doeltreffende manier vir datastrukturering en geheuebenutting. Hierdie benadering is verder geskik vir toepassing op ongestruktureerde roosters en parallelverwerking. Die diskretisering is geformuleer om ’n stabiele oplossing sonder numeriese ossillasies te verseker. Die vloeivergelykings word op ’n gekoppelde wyse opgelos deur gebruik te maak van ’n kombinasie van ’n pseudo tyd-stap metode en ’n Veralgemene Minimum Residu berekeningsmetode met Onder-Bo Simmetriese Gauss- Seidel voorafbewerking. Die nuut ontwikkelde skema vir die modellering van die vloeistof-oppervlak is veronderstel om ’n meer akkurate voorstelling te bied en meer doeltreffend te wees vir numeriese berekeninge. Dit word bereik deur die nuwe kombinasie van ’n hoë-resolusie skema, wat gebruik word om die volumefraksie te interpoleer, met die samevoeging van ’n kunsmatige term in die volume-van-vloeistof vergelyking om die resolusie te verfyn. Verder is die doeltreffendheid van die skema verbeter deur die genormaliseerde veranderlikes benadering te herformuleer en deur die ontwikkeling van ’n nuwe hoë-resolusie vermengingsfunksie. Verskeie toetsgevalle is uitgevoer met die doel om die nuwe modelle te evalueer. Daar word aangetoon dat die nuwe skema vir die modellering van die vloeistofoppervlak ’n meetbare verbetering bied, veral by hoër Courant-Friedrichs-Lewy getalle. Die nuwe formulering bied dus hoër akkuraatheid vir ’n wye verskeidenheid van toestande. Vir die swak samedrukbare formulering is daar ’n goeie korrelasie tussen die numeriese resultate en die analitiese oplossing. In ’n toegepassingsgeval word die noodsaaklikheid om die samedrukbaarheid van die gas in ag te neem gedemonstreer. Die addisionele berekening-kostes van die nuwe formulering is weglaatbaar en in sommige gevalle verhoog die tempo waarteen die oplossing konvergeer
Furfaro, Damien. "Simulation numérique d'écoulements multiphasiques, problèmes à interfaces et changement de phase." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4751/document.
Full textThis work deals with the numerical simulation of compressible multiphase flows in velocity disequilibrium. A HLLC-type two-phase Riemann solver is developed and validated against exact solutions and experimental data. This solver is robust, simple, accurate and entropy preserving. The numerical method is then implemented in 3D unstructured meshes. Furthermore, a numerical technique consisting in enforcing the correct energy partition at a discrete level in agreement with the multiphase shock relations is built. The multiphase extension of the HLLC-type Riemann solver is realized and allows the simulation of a wide range of applications. Finally, a droplet heat and mass transfer model with large range of validity is derived. It is valid in any situation: evaporation, flashing and condensation. It accounts for coupled heat and mass diffusion in the gas phase, thermodynamics of the multi-component gas mixture and heat diffusion inside the liquid droplet, enabling in this way consideration of both droplets heating and cooling phenomena
Gosavi, Shekhar Vishwanath. "An integrated finite element and finite volume code to solve thermo-hydro-mechanical problems in porous media." Diss., Manhattan, Kan. : Kansas State University, 2006. http://hdl.handle.net/2097/157.
Full textGrenier, Nicolas. "Modélisation numérique par la méthode SPH de la séparation eau-huile dans les séparateurs gravitaires." Phd thesis, Nantes, 2009. http://tel.archives-ouvertes.fr/tel-00664668.
Full textAnanthan, M. "Multiscale Simulations in Multiphase Flows." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4287.
Full textThompson, Travis Brandon. "Results towards a Scalable Multiphase Navier-Stokes Solver for High Reynolds Number Flows." Thesis, 2013. http://hdl.handle.net/1969.1/151245.
Full textDI, GIORGIO SIMONE. "Development of a gas–liquid multiphase solver for direct numerical simulation of atomization phenomena." Doctoral thesis, 2021. http://hdl.handle.net/11573/1549308.
Full textKadioglu, Samet Y. Sussman Mark M. "All speed multi-phase flow solvers." Diss., 2005. http://etd.lib.fsu.edu/theses/available/etd-07012005-152645.
Full textAdvisor: Mark Sussman, Florida State University, College of Arts and Sciences, Dept. of Mathematics. Title and description from dissertation home page (viewed Oct. 12, 2005). Document formatted into pages; contains xi, 104 pages. Includes bibliographical references.
Books on the topic "Multiphase Solver"
Al-Safran, Eissa M., and James P. Brill. Applied Multiphase Flow in Pipes and Flow Assurance: Oil and Gas Production. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/9781613994924.
Full textWhitson, Curtis H., and Michael R. Brulé. Phase Behavior. Society of Petroleum Engineers, 2000. http://dx.doi.org/10.2118/9781555630874.
Full textBook chapters on the topic "Multiphase Solver"
Manzanero, Juan, Carlos Redondo, Gonzalo Rubio, Esteban Ferrer, Eusebio Valero, Susana Gómez-Álvarez, and Ángel Rivero-Jiménez. "A High-Order Discontinuous Galerkin Solver for Multiphase Flows." In Lecture Notes in Computational Science and Engineering, 313–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39647-3_24.
Full textBian, Qingyong, Chang Shu, Ning Zhao, Chengxiang Zhu, and Chunling Zhu. "Numerical Investigation of Droplet Impact on the Surface by Multiphase Lattice Boltzmann Flux Solver." In Lecture Notes in Electrical Engineering, 671–84. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2689-1_52.
Full textKnodel, Markus M., Serge Kräutle, and Peter Knabner. "Global Implicit Solver for Multiphase Multicomponent Flow in Porous Media with Multiple Gas Phases and General Reactions." In Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, 595–603. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43651-3_56.
Full textUllah, Hafiz Khadim, Sikiru Oluwarotimi Ismail, and Kumar Shantanu Prasad. "Assessment of Effectiveness of Hollow Fins for Performance Enhancement of Solar Still Device Using Simulation Approach." In Springer Proceedings in Energy, 145–55. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_15.
Full text"Multiphase Lattice Boltzmann Flux Solver for Two-Phase Flows." In Lattice Boltzmann and Gas Kinetic Flux Solvers, 116–52. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811224690_0004.
Full textJordan, Robert B. "Rate Law and Mechanism." In Reaction Mechanisms of Inorganic and Organometallic Systems. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195301007.003.0004.
Full textConference papers on the topic "Multiphase Solver"
Afaq, Muhammad Aaqib, Stefan Turek, Abderrahim Ouazzi, and Arooj Fatima. "Monolithic Newton-Multigrid Solver for Multiphase Flow Problems with Surface Tension." In VI ECCOMAS Young Investigators Conference. València: Editorial Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/yic2021.2021.12390.
Full textPeña-Monferrer, C., J. L. Muñoz-Cobo, G. Monrós-Andreu, and S. Chiva. "Development of a multiscale solver with sphere partitioning tracking." In MULTIPHASE FLOW 2015. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/mpf150221.
Full textKotteda, V. M. Krushnarao, Ashesh Chattopadhyay, Vinod Kumar, and William Spotz. "Next-Generation Multiphase Flow Solver for Fluidized Bed Applications." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69555.
Full textVaradarajan, P. A., and P. S. Hammond. "Flux corrected transport solver for solving 1D multiphase equations for drilling applications." In MULTIPHASE FLOW 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/mpf130151.
Full textRambaks, Andris, Hubertus Murrenhoff, and Katharina Schmitz. "A MULTIPHASE, RIEMANN-SOLVER APPROACH TO GAS-CAVITATION." In 5th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2020. http://dx.doi.org/10.1615/tfec2020.mph.031923.
Full textAkhtar, M. Wasy, and Holley C. Love. "Computations of Single and Multiphase Flows Using a Lattice Boltzmann Solver." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93817.
Full textLi, Huiying, and Sergio A. Vasquez. "Numerical Simulation of Steady and Unsteady Compressible Multiphase Flows." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87928.
Full textLagumbay, Randy S., Oleg V. Vasilyev, Andreas Haselbacher, and Jin Wang. "Numerical Simulation of a High Pressure Supersonic Multiphase Jet Flow Through a Gaseous Medium." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61008.
Full textHosangadi, A., R. Lee, B. York, N. Sinha, and S. Dash. "A three-dimensional unstructured flow solver for reacting multiphase propulsive flows." In 33rd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-258.
Full textLee, R., A. Hosangadi, B. York, N. Sinha, and S. Dash. "Applications of an unstructured solver to reactive, multiphase plume/propulsive flowfields." In 32nd Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2955.
Full textReports on the topic "Multiphase Solver"
Park, HeeHo Daniel. Innovative Linear and Nonlinear Solvers for Simulating Multiphase Flow within Large-Scale Engineered Subsurface Systems. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1570403.
Full text