Academic literature on the topic 'Multiphase Flow Solver'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiphase Flow Solver.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multiphase Flow Solver"

1

Lin, Zhipeng, Wenjing Yang, Houcun Zhou, et al. "Communication Optimization for Multiphase Flow Solver in the Library of OpenFOAM." Water 10, no. 10 (2018): 1461. http://dx.doi.org/10.3390/w10101461.

Full text
Abstract:
Multiphase flow solvers are widely-used applications in OpenFOAM, whose scalability suffers from the costly communication overhead. Therefore, we establish communication-optimized multiphase flow solvers in OpenFOAM. In this paper, we first deliver a scalability bottleneck test on the typical multiphase flow case damBreak and reveal that the Message Passing Interface (MPI) communication in a Multidimensional Universal Limiter for Explicit Solution (MULES) and a Preconditioned Conjugate Gradient (PCG) algorithm is the short slab of multiphase flow solvers. Furthermore, an analysis of the communication behavior is carried out. We find that the redundant communication in MULES and the global synchronization in PCG are the performance limiting factors. Based on the analysis, we propose our communication optimization algorithm. For MULES, we remove the redundant communication and obtain optMULES. For PCG, we import several intermediate variables and rearrange PCG to reduce the global communication. We also overlap the computation of matrix-vector multiply and vector update with the non-blocking computation. The resulting algorithms are respectively referred to as OFPiPePCG and OFRePiPePCG. Extensive experiments show that our proposed method could dramatically increase the parallel scalability and solving speed of multiphase flow solvers in OpenFOAM approximately without the loss of accuracy.
APA, Harvard, Vancouver, ISO, and other styles
2

Nguyen, Viet-Bac, Quoc-Vu Do, and Van-Sang Pham. "An OpenFOAM solver for multiphase and turbulent flow." Physics of Fluids 32, no. 4 (2020): 043303. http://dx.doi.org/10.1063/1.5145051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivanov, E. A., A. S. Klyuyev, A. A. Zharkovskii, and I. O. Borshchev. "Numerical Simulation of Multiphase Flow Structures in Openfoam Software Package." E3S Web of Conferences 320 (2021): 04016. http://dx.doi.org/10.1051/e3sconf/202132004016.

Full text
Abstract:
Numerical simulation of various structures of multiphase flow in the pipe was performed using the OpenFOAM software package. A visual comparison of multiphase flow design structures for separated stratified-wave, plug and annular flow modes with experimental data is presented. For multiphase flow modelling the solver compressibleInterFoam was used. From the results of numerical modelling, it follows that the OpenFOAM software package allows correct prediction of multiphase flow modes in the pipe depending on Reynolds numbers for gas and liquid phases of the flow.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Wei, and Mathieu Desbrun. "Fluid-Solid Coupling in Kinetic Two-Phase Flow Simulation." ACM Transactions on Graphics 42, no. 4 (2023): 1–14. http://dx.doi.org/10.1145/3592138.

Full text
Abstract:
Real-life flows exhibit complex and visually appealing behaviors such as bubbling, splashing, glugging and wetting that simulation techniques in graphics have attempted to capture for years. While early approaches were not capable of reproducing multiphase flow phenomena due to their excessive numerical viscosity and low accuracy, kinetic solvers based on the lattice Boltzmann method have recently demonstrated the ability to simulate water-air interaction at high Reynolds numbers in a massively-parallel fashion. However, robust and accurate handling of fluid-solid coupling has remained elusive: be it for CG or CFD solvers, as soon as the motion of immersed objects is too fast or too sudden, pressures near boundaries and interfacial forces exhibit spurious oscillations leading to blowups. Built upon a phase-field and velocity-distribution based lattice-Boltzmann solver for multiphase flows, this paper spells out a series of numerical improvements in momentum exchange, interfacial forces, and two-way coupling to drastically reduce these typical artifacts, thus significantly expanding the types of fluid-solid coupling that we can efficiently simulate. We highlight the numerical benefits of our solver through various challenging simulation results, including comparisons to previous work and real footage.
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Guo-Qing, Hongyuan Li, Pengyu Lv, and Huiling Duan. "An improved multiphase lattice Boltzmann flux solver with phase interface compression for incompressible multiphase flows." Physics of Fluids 35, no. 1 (2023): 013310. http://dx.doi.org/10.1063/5.0131506.

Full text
Abstract:
Numerical dissipation is ubiquitous in multiphase flow simulation. This paper introduces a phase interface compression term into the recently developed multiphase lattice Boltzmann flux solver and achieves an excellent interface maintenance. Here, the phase interface compression term only works in the interface region and is solved as the flux in finite volume discretization. At each cell interface, the interfacial compression velocity [Formula: see text] is determined by local reconstruction velocities of the multiphase lattice Boltzmann flux solver, which maintains the consistency of the flux evaluation. Meanwhile, the interfacial order parameter C in the phase interface compression term is obtained by the second order upwind scheme according to the interface normal direction. Numerical validation of the present model has been made by simulating the Zalesak problem, the single vortex problem, Rayleigh–Taylor instability, and bubble rising and coalescence. The obtained results indicate the validity and reliability of the present model.
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Yisen, and Yongsheng Lian. "Calculation of Water Collection Efficiency Using a Multiphase Flow Solver." Journal of Aircraft 56, no. 2 (2019): 685–94. http://dx.doi.org/10.2514/1.c034793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Singh, Gurpreet, Gergina Pencheva, and Mary F. Wheeler. "An approximate Jacobian nonlinear solver for multiphase flow and transport." Journal of Computational Physics 375 (December 2018): 337–51. http://dx.doi.org/10.1016/j.jcp.2018.08.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, LiJuan, HongGuang Sun, and Yan Wang. "Modeling immiscible fluid flow in fractal pore medium by multiphase lattice Boltzmann flux solver." Physics of Fluids 35, no. 2 (2023): 023334. http://dx.doi.org/10.1063/5.0137360.

Full text
Abstract:
In this paper, the multiphase lattice Boltzmann flux solver (MLBFS), where the phase field model and the apparent liquid permeability model are built-in, is developed to simulate incompressible multiphase flows in fractal pore structure at the representative elementary volume scale. MLBFS takes advantage of the traditional Navier–Stokes solver (e.g., geometric flexibility and direct handling of complex boundary conditions) and lattice Boltzmann method (e.g., intrinsically kinetic nature, simplicity, and parallelism). It is easily applied to simulate multiphase flows transport in the porous medium with large density ratios and high Reynolds numbers. This study focuses on the fluid flow in fractal pore structures and provides an in-depth discussion of the effects of non-Newtonian index, fractal parameters, and density ratios on multiphase flow. The proposed model is validated with benchmark problems to test the applicability and reliability of the MLBFS in describing fluid flow in fractal pore structures with large density ratios and viscosity ratios. Simulation results show that the fractal parameters (i.e., fractal dimension, tortuous fractal dimension, porosity, and capillary radius ratio) can accurately characterize fractal pore structure and significantly affect the apparent liquid permeability. In addition, the flow rate increases with the fractal dimension and decreases with the tortuous fractal dimension, while both flow rate and apparent liquid permeability decrease as the capillary radius ratio. It is also noteworthy that the effect of nonlinear drag forces cannot be neglected for shear-thickened flows.
APA, Harvard, Vancouver, ISO, and other styles
9

Abas, Aizat, N. Hafizah Mokhtar, M. H. H. Ishak, M. Z. Abdullah, and Ang Ho Tian. "Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem." Computational and Mathematical Methods in Medicine 2016 (2016): 1–17. http://dx.doi.org/10.1155/2016/6143126.

Full text
Abstract:
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Houcun, Min Xiang, Shiwei Zhao, and Weihua Zhang. "Development of a multiphase solver for cavitation flow near free surface." Ocean Engineering 188 (September 2019): 106236. http://dx.doi.org/10.1016/j.oceaneng.2019.106236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography