Academic literature on the topic 'Multilevel Power Converters'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multilevel Power Converters.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multilevel Power Converters"
Verdugo, Cristian, Samir Kouro, Christian A. Rojas, Marcelo A. Perez, Thierry Meynard, and Mariusz Malinowski. "Five-Level T-type Cascade Converter for Rooftop Grid-Connected Photovoltaic Systems." Energies 12, no. 9 (May 8, 2019): 1743. http://dx.doi.org/10.3390/en12091743.
Full textDybko, Maxim, Sergey Brovanov, and Hong Hee Lee. "Multilevel NPC Converters in Parallel Connection for Power Conditioning Systems." Applied Mechanics and Materials 792 (September 2015): 189–96. http://dx.doi.org/10.4028/www.scientific.net/amm.792.189.
Full textMei, Zhiting, Jingyang Fang, and Stefan Goetz. "Control and Optimization of Lattice Converters." Electronics 11, no. 4 (February 15, 2022): 594. http://dx.doi.org/10.3390/electronics11040594.
Full textG, Ramya, and Ramaprabha R. "A Review on Designand Control Methods of Modular Multilevel Converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 7, no. 3 (September 1, 2016): 863. http://dx.doi.org/10.11591/ijpeds.v7.i3.pp863-871.
Full textMechouma, Rabiaa, and Boubekeur Azoui. "Multiple low frequency dual reference PWM control of a grid connected photovoltaic three phase NPC inverter with DC/DC boost converter." Serbian Journal of Electrical Engineering 11, no. 2 (2014): 315–37. http://dx.doi.org/10.2298/sjee1402315m.
Full textJih-Sheng Lai and Fang Zheng Peng. "Multilevel converters-a new breed of power converters." IEEE Transactions on Industry Applications 32, no. 3 (1996): 509–17. http://dx.doi.org/10.1109/28.502161.
Full textPaulo, Matheus Sene, Andrei de Oliveira Almeida, Pedro Machado de Almeida, and Pedro Gomes Barbosa. "Control of an Offshore Wind Farm Considering Grid-Connected and Stand-Alone Operation of a High-Voltage Direct Current Transmission System Based on Multilevel Modular Converters." Energies 16, no. 16 (August 9, 2023): 5891. http://dx.doi.org/10.3390/en16165891.
Full textJeong, In Wha. "DC-Link Capacitor Voltage Balancing Control of a Five-Level Regenerative AC Electronic Load Using One-Cycle Control." Energies 14, no. 19 (September 24, 2021): 6101. http://dx.doi.org/10.3390/en14196101.
Full textMajdoul, Radouane, Abelwahed Touati, Abderrahmane Ouchatti, Abderrahim Taouni, and Elhassane Abdelmounim. "A nine-switch nine-level converter new topology with optimal modulation control." International Journal of Power Electronics and Drive Systems (IJPEDS) 12, no. 2 (June 1, 2021): 932. http://dx.doi.org/10.11591/ijpeds.v12.i2.pp932-942.
Full textOkhotkin, Grigory P., and Ivan I. Ivanchin. "SPACE VECTOR PWM IN A MULTILEVEL VOLTAGE CONVERTER." Vestnik Chuvashskogo universiteta, no. 1 (March 30, 2022): 107–14. http://dx.doi.org/10.47026/1810-1909-2022-1-107-114.
Full textDissertations / Theses on the topic "Multilevel Power Converters"
Ferreira, Abel António de Azevedo. "Modular multilevel converters for power system applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405894.
Full textLa presente tesis trata sobre el funcionamiento de los convertidores modulares de multinivel (MMC) utilizados en la transmisión de energía eléctrica en corriente continua, en particular para aplicaciones de media y alta tensión. En primer lugar, se presenta la evolución de los convertidores utilizados en el campo de la transmisión de energía eléctrica mediante enlaces en corriente continua de alta tensión(HVdc), haciendo especial énfasis en los convertidores de topología multinivel. Debido a la naturaleza intrínseca del convertidor MMC, se debe regular el intercambio de potencia entre las redes de corriente alterna y continua a las que se conecta, junto con la energía interna almacenada, para asegurar un buen funcionamiento del mismo. Por ello, se presenta una descripción del control del convertidor soportada por un riguroso análisis matemático. El diseño de los diferentes lazos de control se valida mediante simulaciones representando diferentes condiciones de funcionamiento posibles. Un factor clave del rendimiento del MMC es la estrategia de modulación utilizada para aplicar voltajes en cada una de sus ramas. Para evaluar sus diferencias a nivel de pérdidas, se presenta una comparativa entre diferentes técnicas de modulación incorporando secuencia homopolar. Este estudio se complementa con el estudio de diferentes procedimientos seguidos para equilibrar el almacenamiento de energía en los condensadores de una rama. Una cuestión de investigación transversal de esta topología de convertidor de tensión es su eficiencia. Posteriormente, se obtiene una expresión matemática que permite describir las pérdidas de los semiconductores del convertidor en funcionamiento, para diferentes niveles de transferencia de potencia. Finalmente, se analizan los posibles grados de libertad de un MMC operando en modo de compensación de potencia reactiva (STATCOM). En base a la operación de dicho convertidor y de la variable que se requiera optimizar, resulta posible variar la tensión entre sus polos DC para lograr un mejor funcionamiento del convertidor
Serbia, Nicola. "Modular Multilevel Converters for HVDC power stations." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2014. http://tel.archives-ouvertes.fr/tel-00945375.
Full textLund, Richard. "Multilevel Power Electronic Converters for Electrical motor Drives." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-687.
Full textPower electronic converters are widely used in industrial power conversion systems both for utility and drives applications. As the power level increases, the voltage level is increased accordingly to obtain satisfactory efficiency. During the last years, the voltage rating of fast switching high voltage semiconductors such as the Insulated Gate Bipolar Transistor (IGBT) has increased. Still, there is a need for series connection of switching devices. In this area of applications, the Multilevel Converter has shown growing popularity.
The fundamental advantages of the Multilevel Converter topologies are low distorted output waveforms and limited voltage stress on the switching devices. The main disadvantages are higher complexity and more difficult control.
In this thesis, Multilevel Converters are analysed for large motor drive applications. The main focus has been on converter losses, output waveform quality and control.
Analytical expressions for both switching and conduction losses for 4- and 5-level Diode Clamped Converters have been developed. The investigation shows that the losses can be reduced by utilizing a multilevel topology for a 1 MW drive. This work is presented in [46]. The same reduction in losses is proven for a 2300V/ 3 MW drive.
Analytical expressions for the harmonic losses in 3-level converters have been developed for 2 different Carrier Based PWM schemes, presented in [56], [57] and [58]. Also Space Vector PWM are investigated and compared by simulations, in addition to 4- and 5-level Carrier Based PWM.
DC-bus balancing in both 3- and 5-level converters is discussed. Balancing in 3- level converters can be achieved by proper control. Balancing in 5-level converters can be achieved by proper arrangement of isolated DC-supplies.
One 40kW 3-level converter and one 5kW 5-level converter has been designed and built. Experimental verification of the analytical and simulated results is shown.
Peftitsis, Dimosthenis, Georg Tolstoy, Antonios Antonopoulos, Jacek Rabkowski, Jang-Kwon Lim, Mietek Bakowski, Lennart Ängquist, and Hans-Peter Nee. "High-Power Modular Multilevel Converters With SiC JFETs." KTH, Elektrisk energiomvandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-52687.
Full text© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.QC 20111220
Hassan, Bakri. "Current fed multilevel converters for high current power applications." Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3267.
Full textSternberger, Ronny. "Analytical modelling and controller design of a multilevel STATCOM." Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=25797.
Full textElamalayil, Soman Deepak. "Multilevel Power Converters with Smart Control for Wave Energy Conversion." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-332730.
Full textAlmaleki, Masoud. "Sliding mode observation of capacitor voltage in multilevel power converters." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/11846/.
Full textSaleh, Kamel Subhi. "Sensorless Control of High Power Induction Motors Using Multilevel Converters." Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.523161.
Full textJupin, Samuel. "Advanced Control of Multilevel Power Converters for Weak Grid Applications." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0210.
Full textWith the progressive rise of the micro-grids incorporating renewable energy sources, a new electricity distribution paradigm is emerging. These new architectures interface uncontrolled consumers with intermittent energy sources, therefore imposing more stress on the conversion, storage and management of the energy.Power converters are adapting accordingly, in particular, with the development of multi-level converters, which allow higher power rates and better power quality than their predecessors with similar components, but whose control is becoming increasingly complex.Due to their hybrid nature, the control of power converters is traditionally split into two parts: on the one side, the continuous objectives related to the main interfacing function of the power converters, and, on the other side, the driving of their quantized power switches, known as the modulation strategy.In this context, the growing demands in efficiency, reliability, versatility and performance require a high level of intelligence of the complete control structure. To meet these requirements, the objectives of this research work are to address both the interfacing objectives and the inner driving of the converter into a single controller. This decision implies incorporating the non-linearity of power converters into the controller, equivalent to suppressing the traditional modulation block. Modulation is the traditional solution to linearize the inner operation of the converters. The Model Predictive Control (MPC) approach was chosen to handle the non-linearity and the diversity of control objectives that accompany power converters.The developed control algorithm combines graph theory, with Dijkstra, A* and other algorithms, with a special state-space model designed for switching systems to form a powerful universal tool capable of simultaneously manipulating the discrete and continuous nature of the converter and its environment. Switched state-space models are studied, leading to interesting results on stability and controllability concerning their application on power converters.The obtained controller is then tested in simulation, with various case studies: grid-connected and standalone inverter, rectifier and bidirectional operation. These situations are studied for three common multi-level topologies: Neutral Point-Clamped, Flying Capacitor and Cascaded H-Bridge. The exact same MPC structure is used for each and every one of the case studies, with adaptations of its internal behavior. This behavior is agglomerated in two functions: the prediction, containing the model of the converter, and the cost function, which translates the control requirements into the optimal problem solved by the algorithm. Changing the topology implies adjusting the model, without impacting the cost function, while modifying this function is sufficient to adapt to the different applications.The results show that the controller manages to directly drive the power switches according to the application, demonstrating a large variety of considerations and objectives. The overall performance of this unique structure is comparable to that of the multiple structures used for each of the studied cases, with the notable exception of rectifier operation mode, where the speed and range of possibilities are particularly interesting.In conclusion, the developed controller manages miscellaneous applications, topologies, objectives and constraints. While the traditional linear control structures have to change, often deeply, for different operation modes and control requirements, such modifications do not affect the control architecture of the designed MPC controller. This shows the versatility of the proposed solution and its universality, further demonstrated by its ability to adapt to different power converters without modifications. Finally, the complexity of the modulation is fully included in the structure, offering simplicity and flexibility to the control design
Books on the topic "Multilevel Power Converters"
Multilevel Converts for Industrial Applications. Taylor & Francis Group, 2013.
Find full textTeodorescu, Remus, Kamran Sharifabadi, Lennart Harnefors, Staffan Norrga, and Hans Peter Nee. Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems. Wiley & Sons, Incorporated, John, 2016.
Find full textTeodorescu, Remus, Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Neeb, and Staffan Norrga. Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems. Wiley & Sons, Limited, John, 2016.
Find full textTeodorescu, Remus, Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Neeb, and Steffan Norrga. Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems. Wiley & Sons, Limited, John, 2016.
Find full textTeodorescu, Remus, Kamran Sharifabadi, Lennart Harnefors, Staffan Norrga, and Hans Peter Nee. Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems. Wiley & Sons, Incorporated, John, 2016.
Find full textTeodorescu, Remus, Kamran Sharifabadi, Lennart Harnefors, Staffan Norrga, and Hans Peter Nee. Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems. Wiley & Sons, Incorporated, John, 2016.
Find full textInstitute Of Electrical and Electronics Engineers. IEEE 2745.1-2019 IEEE Guide for Technology of Unified Power Flow Controller Using Modular Multilevel Converter - Part 1: Functions. IEEE, 2019.
Find full textBook chapters on the topic "Multilevel Power Converters"
Dokić, Branko L., and Branko Blanuša. "Introduction to Multilevel Converters." In Power Electronics, 559–92. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09402-1_10.
Full textMeynard, Thierry, and Guillaume Gateau. "PWM Strategies for Multilevel Converters." In Power Electronic Converters, 243–85. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118621196.ch9.
Full textLoh, Poh Chiang, Yushan Liu, Haitham Abu-Rub, and Baoming Ge. "Z-Source Multilevel Inverters." In Impedance Source Power Electronic Converters, 194–225. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119037088.ch12.
Full textTafti, Hossein Dehghani, Georgios Konstantinou, and Josep Pou. "Multilevel Converter-Based Photovoltaic Power Conversion." In Advanced Multilevel Converters and Applications in Grid Integration, 369–411. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119476030.ch16.
Full textKhan, Md Shafquat Ullah. "Multilevel Converter-based Wind Power Conversion." In Advanced Multilevel Converters and Applications in Grid Integration, 413–32. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119476030.ch17.
Full textTrabelsi, Mohamed, and Haitham Abu-Rub. "Grid Integration of Quasi-Z Source Based PV Multilevel Inverter." In Impedance Source Power Electronic Converters, 362–89. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119037088.ch19.
Full textSadigh, Arash Khoshkbar, and S. Masoud Barakati. "Topologies and Control Strategies of Multilevel Converters." In Modeling and Control of Sustainable Power Systems, 311–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22904-6_11.
Full textIslam, Md Rabiul, Youguang Guo, and Jianguo Zhu. "FPGA-Based Digital Switching Controller for Multilevel Converters." In Power Converters for Medium Voltage Networks, 153–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44529-7_5.
Full textIslam, Md Rabiul, Youguang Guo, and Jianguo Zhu. "Design and Analysis of 11- and 33-kV Modular Multilevel Cascaded Converters." In Power Converters for Medium Voltage Networks, 227–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44529-7_7.
Full textRoomi, Muhammad M. "Z-Source Inverter-Based Fuel Cell Power Generation." In Advanced Multilevel Converters and Applications in Grid Integration, 433–54. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119476030.ch18.
Full textConference papers on the topic "Multilevel Power Converters"
"PWM methods multilevel converters." In 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551). IEEE, 2004. http://dx.doi.org/10.1109/pesc.2004.1354741.
Full textFranz, G. A. "Multilevel simulation tools for power converters." In Applied Power Electronics Conference and Exposition. IEEE, 1990. http://dx.doi.org/10.1109/apec.1990.66362.
Full text"Multilevel converters for high power applications." In IECON 2008 - 34th Annual Conference of IEEE Industrial Electronics Society. IEEE, 2008. http://dx.doi.org/10.1109/iecon.2008.4758467.
Full textHassanifar, Mahyar, V. M. Hrishikesan, Jun-Hyung Jung, Sattar Bazyar, Hamzeh Beiranvand, Thiago Pereira, Marius Langwasser, and Marco Liserre. "Modular Multilevel Converters Enabling Multibus DC Distribution." In 2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, 2023. http://dx.doi.org/10.1109/cpe-powereng58103.2023.10227452.
Full textIqbal, Atif, and Marif Daula. "Off – Grid Power Supply Solution for Portable Cabins using Solar PV System for Qatar." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0008.
Full textEshwiage, Ahmed, Suleiman M. Sharkh, and Sara Bouguerra. "Power Loss Analysis in Modular Multilevel Converters." In 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM). IEEE, 2019. http://dx.doi.org/10.1109/acemp-optim44294.2019.9007179.
Full text"Modeling and Control of Multilevel Converters." In 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC). IEEE, 2018. http://dx.doi.org/10.1109/epepemc.2018.8521969.
Full textde Sousa, Gean J. M., and Marcelo L. Heldwein. "Concentrated submodules model for modular multilevel converters." In 2017 IEEE Southern Power Electronics Conference (SPEC). IEEE, 2017. http://dx.doi.org/10.1109/spec.2017.8333622.
Full textBiswas, Suvankar, and David Reusch. "Evaluation of GaN Based Multilevel Converters." In 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). IEEE, 2018. http://dx.doi.org/10.1109/wipda.2018.8569122.
Full textSchon, Andre, and Mark-M. Bakran. "Comparison of modular multilevel converter based HV DC-DC-converters." In 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe). IEEE, 2016. http://dx.doi.org/10.1109/epe.2016.7695259.
Full textReports on the topic "Multilevel Power Converters"
Erickson, R., S. Angkititrakul, and K. Almazeedi. New Family of Multilevel Matrix Converters for Wind Power Applications: Final Report, July 2002 - March 2006. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/897520.
Full text