Dissertations / Theses on the topic 'Multilevel models (Statistics) Markov processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 25 dissertations / theses for your research on the topic 'Multilevel models (Statistics) Markov processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Arab, Ali. "Hierarchical spatio-temporal models for environmental processes." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4698.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed Nov. 21, 2007). Vita. Includes bibliographical references.
Yeo, Sungchil. "On estimation for a combined Markov and semi-Markov model with censoring /." The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487586889187169.
Full textDrton, Mathias. "Maximum likelihood estimation in Gaussian AMP chain graph models and Gaussian ancestral graph models /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8952.
Full textMuller, Christoffel Joseph Brand. "Bayesian approaches of Markov models embedded in unbalanced panel data." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71910.
Full textENGLISH ABSTRACT: Multi-state models are used in this dissertation to model panel data, also known as longitudinal or cross-sectional time-series data. These are data sets which include units that are observed across two or more points in time. These models have been used extensively in medical studies where the disease states of patients are recorded over time. A theoretical overview of the current multi-state Markov models when applied to panel data is presented and based on this theory, a simulation procedure is developed to generate panel data sets for given Markov models. Through the use of this procedure a simulation study is undertaken to investigate the properties of the standard likelihood approach when fitting Markov models and then to assess its shortcomings. One of the main shortcomings highlighted by the simulation study, is the unstable estimates obtained by the standard likelihood models, especially when fitted to small data sets. A Bayesian approach is introduced to develop multi-state models that can overcome these unstable estimates by incorporating prior knowledge into the modelling process. Two Bayesian techniques are developed and presented, and their properties are assessed through the use of extensive simulation studies. Firstly, Bayesian multi-state models are developed by specifying prior distributions for the transition rates, constructing a likelihood using standard Markov theory and then obtaining the posterior distributions of the transition rates. A selected few priors are used in these models. Secondly, Bayesian multi-state imputation techniques are presented that make use of suitable prior information to impute missing observations in the panel data sets. Once imputed, standard likelihood-based Markov models are fitted to the imputed data sets to estimate the transition rates. Two different Bayesian imputation techniques are presented. The first approach makes use of the Dirichlet distribution and imputes the unknown states at all time points with missing observations. The second approach uses a Dirichlet process to estimate the time at which a transition occurred between two known observations and then a state is imputed at that estimated transition time. The simulation studies show that these Bayesian methods resulted in more stable results, even when small samples are available.
AFRIKAANSE OPSOMMING: Meerstadium-modelle word in hierdie verhandeling gebruik om paneeldata, ook bekend as longitudinale of deursnee tydreeksdata, te modelleer. Hierdie is datastelle wat eenhede insluit wat oor twee of meer punte in tyd waargeneem word. Hierdie tipe modelle word dikwels in mediese studies gebruik indien verskillende stadiums van ’n siekte oor tyd waargeneem word. ’n Teoretiese oorsig van die huidige meerstadium Markov-modelle toegepas op paneeldata word gegee. Gebaseer op hierdie teorie word ’n simulasieprosedure ontwikkel om paneeldatastelle te simuleer vir gegewe Markov-modelle. Hierdie prosedure word dan gebruik in ’n simulasiestudie om die eienskappe van die standaard aanneemlikheidsbenadering tot die pas vanMarkov modelle te ondersoek en dan enige tekortkominge hieruit te beoordeel. Een van die hoof tekortkominge wat uitgewys word deur die simulasiestudie, is die onstabiele beramings wat verkry word indien dit gepas word op veral klein datastelle. ’n Bayes-benadering tot die modellering van meerstadiumpaneeldata word ontwikkel omhierdie onstabiliteit te oorkom deur a priori-inligting in die modelleringsproses te inkorporeer. Twee Bayes-tegnieke word ontwikkel en aangebied, en hulle eienskappe word ondersoek deur ’n omvattende simulasiestudie. Eerstens word Bayes-meerstadium-modelle ontwikkel deur a priori-verdelings vir die oorgangskoerse te spesifiseer en dan die aanneemlikheidsfunksie te konstrueer deur van standaard Markov-teorie gebruik te maak en die a posteriori-verdelings van die oorgangskoerse te bepaal. ’n Gekose aantal a priori-verdelings word gebruik in hierdie modelle. Tweedens word Bayesmeerstadium invul tegnieke voorgestel wat gebruik maak van a priori-inligting om ontbrekende waardes in die paneeldatastelle in te vul of te imputeer. Nadat die waardes ge-imputeer is, word standaard Markov-modelle gepas op die ge-imputeerde datastel om die oorgangskoerse te beraam. Twee verskillende Bayes-meerstadium imputasie tegnieke word bespreek. Die eerste tegniek maak gebruik van ’n Dirichletverdeling om die ontbrekende stadium te imputeer by alle tydspunte met ’n ontbrekende waarneming. Die tweede benadering gebruik ’n Dirichlet-proses om die oorgangstyd tussen twee waarnemings te beraam en dan die ontbrekende stadium te imputeer op daardie beraamde oorgangstyd. Die simulasiestudies toon dat die Bayes-metodes resultate oplewer wat meer stabiel is, selfs wanneer klein datastelle beskikbaar is.
Sans, Fuentes Carles. "Markov Decision Processes and ARIMA models to analyze and predict Ice Hockey player’s performance." Thesis, Linköpings universitet, Statistik och maskininlärning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-154349.
Full textMujumdar, Monali. "Estimation of the number of syllables using hidden Markov models and design of a dysarthria classifier using global statistics of speech." Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1283963331&sid=6&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textHo, Kwok Wah. "RJMCMC algorithm for multivariate Gaussian mixtures with applications in linear mixed-effects models /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?ISMT%202005%20HO.
Full textGuha, Subharup. "Benchmark estimation for Markov Chain Monte Carlo samplers." The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1085594208.
Full textLeung, Hiu-lan, and 梁曉蘭. "Wandering ideal point models for single or multi-attribute ranking data: a Bayesian approach." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29552357.
Full textKim, Yong Ku. "Bayesian multiresolution dynamic models." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180465799.
Full textLi, Xiaobai. "Stochastic models for MRI lesion count sequences from patients with relapsing remitting multiple sclerosis." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1142907194.
Full textDeng, Wei. "Multiple imputation for marginal and mixed models in longitudinal data with informative missingness." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1126890027.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiii, 108 p.; also includes graphics. Includes bibliographical references (p. 104-108). Available online via OhioLINK's ETD Center
Jiang, Huijing. "Statistical computation and inference for functional data analysis." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37087.
Full textLi, Qianqiu. "Bayesian inference on dynamics of individual and population hepatotoxicity via state space models." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1124297874.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiv, 155 p.; also includes graphics (some col.). Includes bibliographical references (p. 147-155). Available online via OhioLINK's ETD Center
Dahlin, Johan. "Accelerating Monte Carlo methods for Bayesian inference in dynamical models." Doctoral thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125992.
Full textBorde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Melo, Martínez Oscar Orlando. "Modelos lineales generalizados geoestadísticos basados en distancias." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/127219.
Full textIn the context of regression with a beta-type response variable, we propose a new method that links two methodologies: a distance-based model, and a beta regression with variable dispersion. The proposed model is useful for those situations where the response variable is a rate, a proportion or parts per million. This variable is related with a mixture between continuous and categorical explanatory variables. We present its main statistical properties and some measures for selection of the most predictive dimensions in the model. Furthermore, the prediction of a new observation and the problem of missing data are also developed. Using the proposed model, the mutual funds are analyzed employing the Gower distance for both the mean model and the variable dispersion model. Also, we present a new method based on distances, which allows the modeling of continuous and non-continuous random variables through distance-based spatial generalized linear mixed models (SGLMMs). The parameters are estimated using Markov chain Monte Carlo (MCMC) maximum likelihood. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalized-difference vegetation index (NDVI) and the standard deviation of NDVI calculated from repeated satellite scans over time. Additionally, we propose a beta spatial linear mixed model with variable dispersion using MCMC. An approach to the SGLMMs using the Box-Cox transformation in the precision model is developed. Thus, the parameter optimization process is made for both the spatial mean model as the spatial variable dispersion model. Statistical inference over the parameters is performed using approximations obtained from the asymptotic normality of the maximum likelihood estimator. Diagnosis and prediction of a new observation are also developed. This model is illustrated through of the clay and magnesium contents. On the other hand, we present a solution to problems where the response variable is a count, a rate or a binary (dichotomous) using a refined distance-based generalized linear space-time-autoregressive model with space-time-autoregressive disturbances. This model may also contain additional spatial exogenous variables as well as time exogenous variables. The parameter estimation process is done by the space-time generalized estimating equations (GEE) method, and a measure of goodness-of-fit is presented. Also, the best linear unbiased predictor for prediction purposes is presented. An application for the standardized number of armed actions per 1000 km2 of rebel groups FARC-EP and ELN in different departments of Colombia from 2003 to 2009 is employed to illustrate the proposed methodology. Finally, a spatial generalized linear mixed autoregressive model using distance-based is defined including spatial as well as temporal lags between vectors of stationary state variables. Although the structural parameters are not fully identified in this model, contemporaneous spatial lag coefficients may be identified by exogenous state variables. Dynamic spatial panel data econometrics is used to estimate our proposed model. In this way, the parameters are estimated using MCMC maximum likelihood. We also discuss the interaction between temporal and spatial stationarity, and we derive the impulse responses for our model, which naturally depend upon the temporal and spatial dynamics of the model.
Banterle, Marco. "Computing strategies for complex Bayesian models." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED042/document.
Full textThis thesis presents contributions to the Monte Carlo literature aimed toward the analysis of complex models in Bayesian Statistics; the focus is on both complexity related to complicate models and computational difficulties.We will first expand Delayed Acceptance, a computationally efficient variant ofMetropolis--Hastings, to a multi-step procedure and enlarge its theoretical background, providing proper justification for the method, asymptotic variance bounds relative to its parent MH kernel and optimal tuning for the scale of its proposal.We will then develop a flexible Bayesian method to analyse nonlinear environmentalprocesses, called Dimension Expansion, that essentially consider the observed process as a projection from a higher dimension, where the assumption of stationarity could hold.The last chapter will finally be dedicated to the investigation of conditional (in)dependence structures via a fully Bayesian formulation of the Gaussian Copula graphical model
Herman, Joseph L. "Multiple sequence analysis in the presence of alignment uncertainty." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:88a56d9f-a96e-48e3-b8dc-a73f3efc8472.
Full textWei, Lai. "Spectral-based tests for periodicities." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1201706810.
Full textMazumder, Anjali. "Assessing the impact of measurement error in multilevel models via MCMC methods." 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=362363&T=F.
Full textReddy, Tarylee. "The application of multistate Markov models to HIV disease progression." Thesis, 2011. http://hdl.handle.net/10413/5810.
Full textThesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2011.
"Baseline free approach for the semiparametric transformation models with missing covariates." 2003. http://library.cuhk.edu.hk/record=b5891462.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2003.
Includes bibliographical references (leaves 37-41).
Abstracts in English and Chinese.
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Basic concepts of survival data --- p.3
Chapter 1.2 --- Missing Complete at Random (MCAR) --- p.8
Chapter 1.3 --- Missing at Random (MAR) --- p.9
Chapter 2 --- The maximaization of the marginal likelihood --- p.11
Chapter 2.1 --- Survival function --- p.11
Chapter 2.2 --- Missing covariate pattern --- p.13
Chapter 2.3 --- Set of survival time with rank restrictions --- p.13
Chapter 2.4 --- Marginal likelihood --- p.14
Chapter 2.5 --- Score function --- p.15
Chapter 3 --- The MCMC stochastic approximation approach --- p.17
Chapter 4 --- Simulations Studies --- p.22
Chapter 4.1 --- MCAR : Simulation 1 --- p.23
Chapter 4.2 --- MCAR : Simulation 2 --- p.24
Chapter 4.3 --- MAR : Simulation 3 --- p.26
Chapter 4.4 --- MAR : Simulation 4 --- p.27
Chapter 5 --- Example --- p.30
Chapter 6 --- Discussion --- p.33
Appendix --- p.35
Bibliography --- p.37
Yeh, Hung-Wen Chan Wenyaw. "Estimating parameters in markov models for longitudinal studies with missing data or surrogate outcomes /." 2007. http://proquest.umi.com.www5.sph.uth.tmc.edu:2048/pqdweb?did=1436372581&sid=1&Fmt=2&clientId=92&RQT=309&VName=PQD.
Full textBloem-Reddy, Benjamin Michael. "Random Walk Models, Preferential Attachment, and Sequential Monte Carlo Methods for Analysis of Network Data." Thesis, 2017. https://doi.org/10.7916/D8348R5Q.
Full textEl-Khatib, Mayar. "Highway Development Decision-Making Under Uncertainty: Analysis, Critique and Advancement." Thesis, 2010. http://hdl.handle.net/10012/5741.
Full text