Books on the topic 'Multilevel models (Statistics) Markov processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 books for your research on the topic 'Multilevel models (Statistics) Markov processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
author, Farcomeni Alessio, and Pennoni Fulvia author, eds. Latent Markov models for longitudinal data. Boca Raton: CRC Press, 2013.
Find full textChang-Jin, Kim. Estimation of Markov regime-switching regression models with endogenous switching. [St. Louis, Mo.]: Federal Reserve Bank of St. Louis, 2003.
Find full textKoroli͡uk, V. S. Stochastic models of systems. Dordrecht: Kluwer Academic Publishers, 1999.
Find full textZucchini, W. Hidden Markov models for time series: An introduction using R. Boca Raton: Chapman & Hall/CRC, 2009.
Find full textM. N. M. van Lieshout. Stochastic geometry models in image analysis and spatial statistics. Amsterdam, The Netherlands: Centrum voor Wiskunde en Informatica, 1995.
Find full textLim, Kian Guan. Probability and finance theory. New Jersey: World Scientific, 2011.
Find full textIribarren, Gonzalo Pérez. Cadenas de Markov gobernando algunos procesos aplicables a los ríos: Aplicaciones estadísticas a algunos ríos de la Región. [Montevideo: Publicaciones Matemáticas del Uruguay, 1999.
Find full textJacqueline, Gianini, ed. Modèles probabilistes d'aide à la décision. Sillery, Québec: Presses de l'Université du Québec, 1987.
Find full textHaccou, Patsy. Statistical analysis of behavioural data: An approach based on time-structured models. Oxford: Oxford University Press, 1992.
Find full textMazumder, Anjali. Assessing the impact of measurement error in multilevel models via MCMC methods. 2005.
Find full textCappé, Olivier, Eric Moulines, and Tobias Ryden. Inference in Hidden Markov Models (Springer Series in Statistics). Springer, 2007.
Find full textCernat, Alexandru, and Joseph W. Sakshaug, eds. Measurement Error in Longitudinal Data. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198859987.001.0001.
Full textTatarinova, Tatiana V., and Alan Schumitzky. Nonlinear Mixture Models: A Bayesian Approach. Imperial College Press, 2015.
Find full textKorolyuk, Vladimir S., and Vladimir V. Korolyuk. Stochastic Models of Systems (Mathematics and Its Applications). Springer, 1999.
Find full textHidden Markov Models for Time Series: An Introduction Using R, Second Edition. Chapman and Hall/CRC, 2016.
Find full textStochastic Models In The Life Sciences And Their Methods Of Analysis. Singapore, Hong Kong: World Scientific Publishing Co. Pvt. Ltd., 2019.
Find full textHidden Markov Models for Time Series: A Practical Introduction using R (Monographs on Statistics and Applied Probability). 2nd ed. Chapman & Hall/CRC, 2009.
Find full text(Editor), Persi Diaconis, and Susan Holmes (Editor), eds. Stein's Method: Expository Lectures and Applications (Institute of Mathematical Statistics, Lecture Notes-Monograph Series). Institute of Mathematical Statistics, 2004.
Find full textStein's method: Expository lectures and applications. Beachwood, Ohio: Institute of Mathematical Statistics, 2004.
Find full textA Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding. Providence, USA: Brown University, 2019.
Find full text