Dissertations / Theses on the topic 'Multilevel analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Multilevel analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Venkatasubramanian, S. "Illiteracy in India : a multilevel analysis." Thesis, University of Portsmouth, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302445.
Full textSy, Oumar Sekou. "Multilevel mediation analysis estimation and applications /." Search for this dissertation online, 2004. http://wwwlib.umi.com/cr/ksu/main.
Full textWoodhouse, Geoffrey M. "Adjustment for measurement error in multilevel analysis." Thesis, University College London (University of London), 1998. http://discovery.ucl.ac.uk/10019113/.
Full textWong, Chun-mei May. "Multilevel models for survival analysis in dental research." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B3637216X.
Full textPham, Thanh Vinh. "The performance of Multilevel Structural Equation Modeling (MSEM) in comparison to Multilevel Modeling (MLM) in multilevel mediation analysis with non-normal data." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/7077.
Full textFeng, Yuanjian. "Detection and Characterization of Multilevel Genomic Patterns." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/38577.
Full textPh. D.
Neilson, Lisa Anne. "Social capital and political consumerism: a multilevel analysis." Connect to resource, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1156951934.
Full textHesari, Saeed Aroni. "A multilevel superelement substructuring for boxlike caisson analysis." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/6540.
Full textShumka, Ellen. "The social facilitation of bullying : a multilevel analysis." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43517.
Full textWong, Chun-mei May, and 王春美. "Multilevel models for survival analysis in dental research." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B3637216X.
Full textSteele, Fiona Alison. "Multilevel analysis of health and family planning data." Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319290.
Full textJohns, Robert. "Therapist effects over time : a multilevel modelling analysis." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/18214/.
Full textSteffens, Niklas K., Meir Shemla, Jürgen Wegge, and Stefan Diestel. "Organizational Tenure and Employee Performance: A Multilevel Analysis." Sage, 2014. https://tud.qucosa.de/id/qucosa%3A35549.
Full textLee, Ji-Youn. "A Multilevel Analysis of Young Adult Migration, 1980-1998." DigitalCommons@USU, 2002. https://digitalcommons.usu.edu/etd/4289.
Full textXia, Yuan. "Multilevel Monte Carlo for jump processes." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:7bc8e98a-0216-4551-a1f3-1b318e514ee8.
Full textGalliat, Tobias. "Adaptive multilevel cluster analysis by self organizing box maps." [S.l.] : [s.n.], 2002. http://www.diss.fu-berlin.de/2002/125/index.html.
Full textSanders, Elizabeth A. "Multilevel Analysis Methods for Partially Nested Cluster Randomized Trials." UNIVERSITY OF WASHINGTON, 2012. http://pqdtopen.proquest.com/#viewpdf?dispub=3452760.
Full textXi, Guoliang. "Income inequality and health in Ontario: A multilevel analysis." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26350.
Full textDriscoll, Ira, and University of Lethbridge Faculty of Arts and Science. "The aging hippocampus : a multilevel analysis in the rat." Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2005, 2005. http://hdl.handle.net/10133/12.
Full textiii, 236 leaves : ill. (some col.) ; 29 cm.
Cheung, Ka-yan, and 張嘉茵. "Multilevel modeling for the analysis of longitudinal periodontal data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46605496.
Full textRuiz, Amador Dolly Natalia. "Multilevel aging phenomena analysis in complex ultimate CMOS designs." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENT002/document.
Full textIntegrated circuits evolution is driven by the trend of increasing operating frequencies and downscaling of the device size, while embedding more and more complex functionalities in a single chip. However, the continuation of the device-scaling race generates a number of technology challenges. For instance, the downscaling of transistor channel lengths induce short-channel effects (drain-induced barrier lowering and punch-through phenomena); high electric field in the devices tend to increase Hot electron effect (or Hot Carrier) and Oxide Dielectric Breakdown; higher temperatures in IC products generates an increase of the Negative Bias Temperature Instability (NBTI) effect on pMOS devices. Today, it is considered that the above reliability mechanisms are ones of the main causes of circuit degradation performance in the field. This dissertation will address the Hot Carrier (HC) and NBTI impacts on CMOS product electrical performances. A CAD bottom-up approach will be proposed and analyzed, based on the Design–in Reliability (DiR) methodology. With this purpose, a detailed analysis of the NBTI and the HC behaviours and their impact at different abstraction level is provided throughout this thesis. First, a physical framework presenting the NBTI and the HC mechanisms is given, focusing on electrical parameters weakening of nMOS and pMOS transistors. Moreover, the main analytical HC and NBTI degradation models are treated in details. In the second part, the delay degradation of digital standard cells due to NBTI, HCI is shown; an in-depth electrical CAD analysis illustrates the combined effects of design parameters and HCI/NBTI on the timing performance of standard cells. Additionally, a gate level approach is developed, in which HC and NBTI mechanisms are individually addressed. The consequences of the degradation at system level are presented in the third part of the thesis. With this objective, data extracted from silicon measures are compared against CAD estimations on two complexes IPs fabricated on STCMOS 45nm technologies. It is expected that the findings of this thesis highly contribute to the understanding of the NBTI and HC reliability wearout mechanisms at the system level.STAR
Mahoe, Rochelle A. "A multilevel analysis of student persistence in high school." Thesis, University of Hawaii at Manoa, 2003. http://proquest.umi.com/pqdweb?index=0&did=765033461&SrchMode=1&sid=2&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1233163560&clientId=23440.
Full textFarrell, Patricio. "Multilevel collocation with radial basis functions." Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:9fd99f0f-2556-41eb-8bcd-5b9256296a17.
Full textPatil, Sandeep. "Analysis and Loss Estimation of Different Multilevel DC-DC Converter Modulesand Different Proposed Multilevel DC-DC Converter Systems." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1396628125.
Full textKhatiwada, Aastha. "Multilevel Models for Longitudinal Data." Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etd/3090.
Full textMarquez, Damian Jose Ignacio. "Multilevel acceleration of neutron transport calculations." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19731.
Full textCommittee Chair: Stacey, Weston M.; Committee Co-Chair: de Oliveira, Cassiano R.E.; Committee Member: Hertel, Nolan; Committee Member: van Rooijen, Wilfred F.G.
Bråthen, Eystein Widar. "Multilevel Analysis Applied to Fetal Growth Data with Missing Values." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9306.
Full textIntrauterine growth retardation means that the growth of a fetus is restricted as compared with its biological growth potential. This contributes to an increased risk for illnesses or death of the newborn. Therefore it is important to characterize, detect and to follow up clinically any suspected or confirmed growth restriction of the fetus. In this master thesis we aim to describe the course of growth during the pregnancy based on repeated ultrasound measurements and study how the growth depends on different background variables of the mother in analyzing the data from the SGA (small-for-getational age) - project. The SGA-project contains data from 5722 pregnancies that took place in Trondheim, Bergen and Uppsala from 1986-1988, named The Scandinavian SGA-studies. In this thesis we have confined ourselves to a random sample of 561 pregnancies. A problem with many studies of this kind is that the data set contain missing values. In the SGA data set under study there were missing values from one or more of the ultrasound measurements for approximately 40% of the women. Until recently, the most popular used missing-data method available has been complete case analysis, where only subjects with a complete set of data are being analysed. There exist a number of alternative ways of dealing with missing data. Bayesian multiple imputation (MI) has become a highly useful paradigm for handling missing values in many settings. In this paper we compare 2 general approaches that come highly recommended: Bayesian MI and maximum likelihood (ML), and point out some of its unique features. One aspect of MI is the separation of the imputation phase from the analysis phase. It can be advantageous in settings where the models underlying the two phases are different. We have used a multilevel analysis for the course of fetal growth. Multilevel analysis has a hierarchic structure with two levels of variation: variation between points in time for the same fetus (level 1) and variation between fetuses (level 2). Level 1 is modeled by regression analysis with gestational age as the independent variable and level 2 is modeled by regarding the regression coefficients as stochastic with a set of (non directly observed) values for individual fetuses and some background variables of the mother. The model we ended up with describes the devolopment in time of the abdominal diameter (MAD) of the fetus. It had several ``significant'' covariates (p-value < 0.05), they were gestational age (Time-variable), the body-mass index (BMI), age of the mother, an index varible wich tells if a mother has given birth to a low-weight child in an earlier pregnancy and the gender of the fetus. The last covariate was not significant in a strictly mathematical way, but since it is well known that the gender of the fetus has an important effect we included gender in the model as well. When we used the MI-method on the random sample (561) with missing values, the estimated standard deviations of the parameters have been reduced compared to those obtained from the complete case analysis. There were not a significant change in the parameter estimates except for the coefficient for the age of the mother. We also have found a procedure to verify if the MI-method gives us reasonable imputed values for the missing values by following the MCAR-procedure defined in Section 6. Another interesting observation from a simulation study is that estimates of the coefficients for variables used to generate the MAR and MNAR missing mechanism are ``suffering'' because they tend to be more biased compared to the values from the complete case analysis on the random sample (320) than the other variables. According to the MAR assumption such a procedure should give unbiased parameter estimates. {Key Words: Longitudinal data, multilevel analysis, missing data, multiple imputation (MI), Gibbs sampling, linear mixed-effects model and maximum likelihood (ML)-procedure.
Högberg, Björn. "Ageing, health inequalities and welfare state regimes – a multilevel analysis." Thesis, Umeå universitet, Sociologiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-100401.
Full textSica, Edgardo. "Eco-innovations and companies' financial constraints : a multilevel-perspective analysis." Thesis, University of Sussex, 2016. http://sro.sussex.ac.uk/id/eprint/63974/.
Full textRiddell, Abby Rubin. "School effectiveness in secondary education in Zimbabwe : a multilevel analysis." Thesis, University College London (University of London), 1988. http://discovery.ucl.ac.uk/10018436/.
Full textYu, Jianghui. "DC Fault Current Analysis and Control for Modular Multilevel Converters." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/78054.
Full textMaster of Science
Powell, Marvin. "A Multilevel Multitrait-Multimethod Analysis of the Child Behavior Checklist." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc862789/.
Full textLi, Chen. "State Space Modeling and Power Flow Analysis of Modular Multilevel Converters." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71811.
Full textMaster of Science
Kaplan, Matthew Frederick. "Implementation of automated multilevel substructuring for frequency response analysis of structures." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037508.
Full textOzdil, Utkun. "A Multilevel Structural Model Of Mathematical Thinking In Derivative Concept." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614000/index.pdf.
Full text(2) to investigate the extent of variation in the relationships among different mathematical thinking constructs at the within- and between-classroom levels
and (3) to examine the cross-level interactions among different types of mathematical thinking. Previous research was extended by investigating the factor structure of mathematical thinking in derivative at the within- and between-classroom levels, and further examining the direct, indirect, and cross-level relations among different types of mathematical thinking. Multilevel analyses of a cross-sectional dataset containing two independent samples of undergraduate students nested within classrooms showed that the within-structure of mathematical thinking includes enactive, iconic, algorithmic, algebraic, formal, and axiomatic thinking, whereas the between-structure contains formal-axiomatic, proceptual-symbolic, and conceptual-embodied thinking. Major findings from the two-level mathematical thinking model revealed that: (1) enactive, iconic, algebraic, and axiomatic thinking varied primarily as a function of formal and algorithmic thinking
(2) the strongest direct effect of formal-axiomatic thinking was on proceptual-symbolic thinking
(3) the nature of the relationships was cyclic at the between-classroom level
(4) the within-classroom mathematical thinking constructs significantly moderate the relationships among conceptual-embodied, proceptual-symbolic, and formal-axiomatic thinking
and (5) the between-classroom mathematical thinking constructs moderate the relationships among enactive, iconic, algorithmic, algebraic, formal, and axiomatic thinking. The challenges when using multilevel exploratory factor analysis, multilevel confirmatory factor analysis, and multilevel structural equation modeling with categorical variables are emphasized. Methodological and educational implications of findings are discussed.
Romaniuk, Helena. "Analysis of product usage panel data." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326798.
Full textSun, Yue. "A Multilevel Analysis of Student Engagement, Teacher Quality, and Math Achievement." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82721.
Full textPh. D.
鄧沛權 and Pui-kuen Tang. "Business network: network marketing : analysis of network marketing using business network theories." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31268316.
Full textTang, Pui-kuen. "Business network : network marketing : analysis of network marketing using business network theories /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18840127.
Full textNicolás, Apruzzese Joan. "Design and analysis of a novel multilevel active-clamped power-converter." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134933.
Full textChang, Chiung-Fang. "Fertility patterns among the minority populations of China: A multilevel analysis." Texas A&M University, 2003. http://hdl.handle.net/1969.1/1186.
Full textNovosel, Lorraine Marie. "Depressive symptomatology, patient-provider communication, and patient satisfaction : a multilevel analysis." [Tampa, Fla] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0001866.
Full textStornes, Per. "Working Conditions and Wellbeing : A multilevel analysis of 34 European countries." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for sosiologi og statsvitenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25735.
Full textVelasquez, Beatriz Caicedo. "Individual and neighbourhood determinants of adolescent aggressive behaviour : a multilevel analysis." Thesis, University of Bristol, 2012. http://hdl.handle.net/1983/5906ebe6-e711-4d84-b649-2bb0997be40b.
Full textHarling, Guy. "The social epidemiology of tuberculosis in South Africa : a multilevel analysis." Master's thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/9326.
Full textTuberculosis has long been considered a disease of poverty but there has been little research into the pathways through which low socio-economic status leads to increased risk of disease. This study reviews the existing literature on risk factors for tuberculosis disease with a particular focus on those variables that reflect the social setting in which an individual lives. It then conducts a multilevel analysis of South African data from the 1998 South African Demographic and Health Survey and the 1996 national census to evaluate individual-, household -and community-level risk factors for tuberculosis disease using a hierarchical regression model.
Benbrook, Jimmie Glen 1943. "A SYSTEM ANALYSIS OF A MULTILEVEL SECURE LOCAL AREA NETWORK (COMPUTER)." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/275531.
Full textPadmanaban, Sanjeevikumar <1978>. "Analysis and Implementation of Multiphase-Multilevel Inverter for Open-Winding Loads." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4351/4/padmanaban_sanjeevikumar_thesis.pdf.
Full textPadmanaban, Sanjeevikumar <1978>. "Analysis and Implementation of Multiphase-Multilevel Inverter for Open-Winding Loads." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4351/.
Full textPiombo, Sara <1969>. "Multilevel Analysis in Household Survey: An Application to Health Condition Data." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5220/1/piombo_sara_tesi.pdf.
Full textLo scopo di questa tesi è quello di applicare il modello di regressione multilivello nel contesto di indagini sulle famiglie. La struttura gerarchica in questo tipo di dati è caratterizzato da numerosi piccoli gruppi. Negli ultimi anni analisi comparative e multilivello sullo stato di salute percepito sono aumentate molto. L’obiettivo di questa tesi è di applicare un'analisi multilivello a tre livelli per la variabile risposta Physical Component Summary allo scopo di: valutare entità all'interno e tra varianza ad ogni livello (individuale, familiare e comune); indagare quali covariate influiscono sulla percezione dello stato di salute fisica ogni livello; confrontare le analisi model-based e di design-based al fine di stabilire se i pesi campionari siano informativiti per il modello di interesse; stimare una regressione quantile per i dati gerarchici. La popolazione target sono i residenti italiani di età compresa tra 18 anni. Il nostro studio rileva un’elevata omogeneità tra le unità di livello 1 e una correlazione intraclasse del 27% nel modello nullo a 2livelli. Quasi tutta la varianza è spiegata dalle covariate di livello. Nel nostro modello le variabili esplicative hanno un impatto maggiore sulla variabile risposta sono la disabilità, inabilità al lavoro, l’età e le malattie croniche (18 patologie). Un'ulteriore analisi viene eseguita utilizzando una nuova procedura di analisi: "Regressione lineare quantile multilivello”. Questa analisi ci dà la possibilità di descrivere più in generale la distribuzione condizionata della variabile risposta attraverso la stima dei suoi quantili. Questo ha portato un grande vantaggio nei nostri modelli rispetto al classico modello di regressione multilivello. La regressione mediana con effetti casuali si rivela più efficiente del regressione media nella rappresentazione della tendenza centrale. Un'analisi più dettagliata della distribuzione condizionata della variabile risposta in corrispondenza di altri quantili ha evidenziato che certe covariate hanno un effetto diverso lungo la distribuzione.
Piombo, Sara <1969>. "Multilevel Analysis in Household Survey: An Application to Health Condition Data." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5220/.
Full textLo scopo di questa tesi è quello di applicare il modello di regressione multilivello nel contesto di indagini sulle famiglie. La struttura gerarchica in questo tipo di dati è caratterizzato da numerosi piccoli gruppi. Negli ultimi anni analisi comparative e multilivello sullo stato di salute percepito sono aumentate molto. L’obiettivo di questa tesi è di applicare un'analisi multilivello a tre livelli per la variabile risposta Physical Component Summary allo scopo di: valutare entità all'interno e tra varianza ad ogni livello (individuale, familiare e comune); indagare quali covariate influiscono sulla percezione dello stato di salute fisica ogni livello; confrontare le analisi model-based e di design-based al fine di stabilire se i pesi campionari siano informativiti per il modello di interesse; stimare una regressione quantile per i dati gerarchici. La popolazione target sono i residenti italiani di età compresa tra 18 anni. Il nostro studio rileva un’elevata omogeneità tra le unità di livello 1 e una correlazione intraclasse del 27% nel modello nullo a 2livelli. Quasi tutta la varianza è spiegata dalle covariate di livello. Nel nostro modello le variabili esplicative hanno un impatto maggiore sulla variabile risposta sono la disabilità, inabilità al lavoro, l’età e le malattie croniche (18 patologie). Un'ulteriore analisi viene eseguita utilizzando una nuova procedura di analisi: "Regressione lineare quantile multilivello”. Questa analisi ci dà la possibilità di descrivere più in generale la distribuzione condizionata della variabile risposta attraverso la stima dei suoi quantili. Questo ha portato un grande vantaggio nei nostri modelli rispetto al classico modello di regressione multilivello. La regressione mediana con effetti casuali si rivela più efficiente del regressione media nella rappresentazione della tendenza centrale. Un'analisi più dettagliata della distribuzione condizionata della variabile risposta in corrispondenza di altri quantili ha evidenziato che certe covariate hanno un effetto diverso lungo la distribuzione.