Academic literature on the topic 'Multifunctional Carbon Fiber Reinforced Composites'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multifunctional Carbon Fiber Reinforced Composites.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multifunctional Carbon Fiber Reinforced Composites"

1

Zdraveva, Emilijia, Cristiana Gonilho-Pereira, Raul Manuel Esteves Sousa Fangueiro, Senentxu Lanceros-Méndez, Saíd Jalali, and M. Araújo. "Multifunctional Braided Composite Rods for Civil Engineering Applications." Advanced Materials Research 123-125 (August 2010): 149–52. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.149.

Full text
Abstract:
This paper presents the development of a braided reinforced composite rod (BCR) able to both reinforce and monitor the stress state of concrete elements. Carbon fibers have been used as sensing and reinforcing material along with glass fiber. Various composites rods have been produced using an author patented technique based on a modified conventional braiding machine. The materials investigated were prepared with different carbon fiber content as follows: BCR2 (77% glass/23% carbon fiber), BCR3 (53% glass/47% carbon fiber), BCR4 (100% carbon fiber). BCRs have been tested under bending while the variation of the electrical resistance was simultaneously monitored. The correlations obtained between deformation and electrical resistance show the suitability of the rods to be used as sensors. The fractional resistance change versus strain plots show that the gage factor increases with decreasing carbon fiber content.
APA, Harvard, Vancouver, ISO, and other styles
2

Ehlert, Gregory J., Hai Xiong Tang, Natalie R. Meeks, and Henry A. Sodano. "Poly(vinylidene fluoride) Interleaves for Multifunctional Fiber Reinforced Composites." Advances in Science and Technology 77 (September 2012): 138–45. http://dx.doi.org/10.4028/www.scientific.net/ast.77.138.

Full text
Abstract:
The integration of energy storage into structural multifunctional materials has found use in a wide variety of applications, such as future air and ground vehicles. However, the present realization of these materials cannot be used to increase the structural properties thus limiting its future use in these applications. Here, we developed a novel multifunctional composite material using polyvinylidene fluoride (PVDF) interleaves in carbon fiber composites. The carbon fibers function as both the structural reinforcement as well as the electrodes for the dielectric polymer. It has shown that energy storage functionality can be added into the composites with no reduction in the short beam shear strength. Currently, the breakdown strength is low due to challenges in the processing of the composites and the potential for regions of reduced thickness during pressing. In future research, the manufacturing process of the composites will be investigated to improve the breakdown strength in order to obtain high energy density in addition to preserving the outstanding mechanical properties. This new multifunctional material will open a door to the development of advanced structures that distribute energy storage throughout the composite thus eliminating their current ad hoc implementation.
APA, Harvard, Vancouver, ISO, and other styles
3

Atif Javaid, Atif Javaid, Ahmad Shahzaib Ahmad Shahzaib, Hammad Tahir Hammad Tahir, Munazza Ali Munazza Ali, and and Wajiha Younus and Wajiha Younus. "Investigation of Mechanical and Electrochemical Performance of Multifunctional Carbon-Fiber Reinforced Polymer Composites for Electrical Energy Storage Applications." Journal of the chemical society of pakistan 41, no. 3 (2019): 444. http://dx.doi.org/10.52568/000759/jcsp/41.03.2019.

Full text
Abstract:
Concept of structural supercapacitors, based on carbon fiber reinforced polymer composites, has been introduced that can act as a structural load bearing component as well as an electrical energy storing device simultaneously. This multifunctional carbon fiber reinforced structural supercapacitors are fabricated by using carbon fiber and glass fiber/filter paper as reinforcements and cross-linked polymer electrolyte as a matrix. Carbon fiber mats also simultaneously serve the role of electrodes in addition to reinforcements whereas the glass fiber mat/filter paper also acts as an insulator to avoid the short-circuiting of the carbon fiber electrodes. A polymer epoxy matrix is modified by introducing ions within the cross-linked structure in order to develop an optimized polymer electrolyte. Flexural tests of structural supercapacitor are conducted to evaluate the structural performance while charge/discharge tests are conducted to evaluate the electrochemical performance. Multifunctional structural supercapacitors are tested mechanically as well as electrochemically. A structural supercapacitor is fabricated showing simultaneously an energy density of 0.11 mWh m-3, a specific capacitance of 0.8 mF.cm-3 and a flexural modulus of 26.6 GPa simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
4

Barnett, Philip R., and Hicham K. Ghossein. "A Review of Recent Developments in Composites Made of Recycled Carbon Fiber Textiles." Textiles 1, no. 3 (October 9, 2021): 433–65. http://dx.doi.org/10.3390/textiles1030023.

Full text
Abstract:
Carbon fiber recycling has garnered significant attention in recent years due to the large volume of manufacturing waste and upcoming end-of-life products that will enter the waste stream as the current generation of aircraft is retired from service. Recycled carbon fibers have been shown to retain most of their virgin mechanical properties, but their length is generally reduced such that continuous fiber laminates cannot be remade. As such, these fibers are typically used in low-performance applications including injection molding, extrusion/compression molding, and 3D printing that further degrade the fiber length and resulting composite properties. However, recent advances in the processing of long discontinuous fiber textiles have led to medium- to high-performance composites using recycled carbon fibers. This review paper describes the recent advances in recycled carbon fiber textile processing that have made these improvements possible. The techniques used to manufacture high-value polymer composites reinforced with discontinuous recycled carbon fiber are described. The resulting mechanical and multifunctional properties are also discussed to illustrate the advantages of these new textile-based recycled fiber composites over the prior art.
APA, Harvard, Vancouver, ISO, and other styles
5

Mu, Shengchang, Jianguang Yue, Yu Wang, and Chuang Feng. "Electrical, Piezoresistive and Electromagnetic Properties of Graphene Reinforced Cement Composites: A Review." Nanomaterials 11, no. 12 (November 27, 2021): 3220. http://dx.doi.org/10.3390/nano11123220.

Full text
Abstract:
Due to their excellent combination of mechanical and physical properties, graphene and its derivatives as reinforcements have been drawing tremendous attention to the development of high-performance and multifunctional cement-based composites. This paper is mainly focused on reviewing existing studies on the three material properties (electrical, piezoresistive and electromagnetic) correlated to the multifunction of graphene reinforced cement composite materials (GRCCMs). Graphene fillers have demonstrated better reinforcing effects on the three material properties involved when compared to the other fillers, such as carbon fiber (CF), carbon nanotube (CNT) and glass fiber (GF). This can be attributed to the large specific surface area of graphene fillers, leading to improved hydration process, microstructures and interactions between the fillers and the cement matrix in the composites. Therefore, studies on using some widely adopted methods/techniques to characterize and investigate the hydration and microstructures of GRCCMs are reviewed and discussed. Since the types of graphene fillers and cement matrices and the preparation methods affect the filler dispersion and material properties, studies on these aspects are also briefly summarized and discussed. Based on the review, some challenges and research gaps for future research are identified. This review is envisaged to provide a comprehensive literature review and more insightful perspectives for research on developing multifunctional GRCCMs.
APA, Harvard, Vancouver, ISO, and other styles
6

Rashid, Iqra Abdul, Ayesha Afzal, Muhammad Fayzan Shakir, and Asra Tariq. "Multi-Functional Carbon Fiber Reinforced Composites for Fire Retardant Applications." Key Engineering Materials 875 (February 2021): 23–28. http://dx.doi.org/10.4028/www.scientific.net/kem.875.23.

Full text
Abstract:
Development of multifunctional flame retardant (FR) polymer composite was done. Flame retardant polymer composite was prepared by modifying diglycidylether of bisphenol-A (DGEBA) epoxy. Modification involved two types of FR. Reactive type FR used was phosphoric acid and additive type FR used was magnesium hydroxide. Composite was fabricated using resin infusion under flexible tooling (RIFT) process. Different FR epoxy samples were evaluated by compression test, UL 94. The carbon fiber reinforced polymer composite with attributes of flame retardancy were characterized using in-plane shear test, to estimate the structural properties, and UL-94 test, to estimate the fire performance. FR composite exhibited UL-94 rating of V-1 and a shear modulus of 9.7 GPa, which proved it to multifunctional.
APA, Harvard, Vancouver, ISO, and other styles
7

Bezsmertna, Viktoriia, Oleksandra Mazna, Valerii Kohanyiy, Yurii Vasilenkov, Iryna Bilan, Maryna Shevtsova, and Vadym Stavychenko. "Multifunctional polymer-based composite materials with weft-knitted carbon fibrous fillers." MATEC Web of Conferences 304 (2019): 01012. http://dx.doi.org/10.1051/matecconf/201930401012.

Full text
Abstract:
The production technology of reinforcement filler for new multifunctional polymer based composites with weft-knitted structure had been proposed. In such reinforcement filler high-strength carbon fibers (CFs) from PAN precursors (wefts) were laid in a knitted fabric as straight continuous yarns, so in such case these CFs were not twisted by knitting machine to form the loops. Various kinds of chemical and inorganic fibers can be used as base yarn in this case, in particular glass, aramid, carbon fibers from hydrate cellulose and etc. Properties of multifunctional polymer-based composite materials with weft-knitted fillers depend upon fiber composition, relative content of weft and base yarns, scheme filler stacking (1D, 2D and 3D composites). The electrical conductivity of weft-knitted fabrics shows the strong anisotropy along high-strength fibers in comparison with looped rows, depending on the direction of high-strength CFs (weft). Investigation of shielding properties of polymer based composites reinforced by carbon weft-knitted fabrics showed the possibility of using them as shielding materials with the ability to absorb electromagnetic radiation.
APA, Harvard, Vancouver, ISO, and other styles
8

Lingappan, Niranjanmurthi, Sungmook Lim, Guk-Hwan Lee, Huynh Thanh Tung, Van Hoang Luan, and Wonoh Lee. "Recent advances on fiber-reinforced multifunctional composites for structural supercapacitors." Functional Composites and Structures 4, no. 1 (February 2, 2022): 012001. http://dx.doi.org/10.1088/2631-6331/ac4de9.

Full text
Abstract:
Abstract Engineering the conventional electrode designs as well as exploring prospective materials and prominent electrolytes, all of which are critically required to tackle the fundamental limitations associated with the current sustainable energy technologies. Structural supercapacitors (SSCs) have recently emerged as next-generation energy storage and conversion devices by virtue of their abilities to store the electrochemical energy whilst sustain high mechanical loads simultaneously. Composite materials as well as electrolytes with multifunctional characteristics, especially outstanding electrical/ionic conductivities and high mechanical robustness represent the key requirements to realize such exemplary multifunctional devices. In this review, we provide an overview, structural design, and the recent progress of the SSCs devices enabled by various carbon fiber-reinforced composites electrodes. Special emphases are given to the assessment on the significance of solid polymer electrolytes and their composites in SSCs. Finally, we conclude with feasible applications of the SSCs and outline the challenges that still need to be addressed for deploying high-performance SSCs for practical applications.
APA, Harvard, Vancouver, ISO, and other styles
9

Karakassides, Anastasios, Angeliki Karakassides, Michaella Konstantinidou, Alkiviadis S. Paipetis, and Pagona Papakonstantinou. "Enhanced out of Plane Electrical Conductivity in Polymer Composites Induced by CO2 Laser Irradiation of Carbon Fibers." Applied Sciences 10, no. 10 (May 21, 2020): 3561. http://dx.doi.org/10.3390/app10103561.

Full text
Abstract:
The creation of a hierarchical interface between the carbon fiber (CF) and the epoxy resin matrix of fiber-reinforced polymer (CFRP) composites has become an effective strategy for introducing multifunctional properties. Although the efficacy of many hierarchical interfaces has been established in lab-scale, their production is not amenable to high-volume, continuous, cost effective fiber production, which is required for the large-scale commercialization of composites. This work investigates the use of commercially available CO2 laser as a means of nano-structuring the surface of carbon fiber (CF) tows in an incessant throughput procedure. Even though the single carbon fiber tensile strength measurements showed a decrease up to 68% for the exposed CFs, the electrical conductivity exhibited an increment up to 18.4%. Furthermore, results on laminates comprised of irradiated unidirectional CF cloth, demonstrated an enhancement in out of plane electrical conductivity up to 43%, while preserved the Mode-I interlaminar fracture toughness of the composite, showing the potential for multifunctionality. This work indicates that the laser-induced graphitization of the CF surface can act as an interface for fast and cost-effective manufacturing of multifunctional CFRP composite materials.
APA, Harvard, Vancouver, ISO, and other styles
10

Monteserín, Cristina, Miren Blanco, Nieves Murillo, Ana Pérez-Márquez, Jon Maudes, Jorge Gayoso, Jose Manuel Laza, Estíbaliz Hernáez, Estíbaliz Aranzabe, and Jose Luis Vilas. "Novel Antibacterial and Toughened Carbon-Fibre/Epoxy Composites by the Incorporation of TiO2 Nanoparticles Modified Electrospun Nanofibre Veils." Polymers 11, no. 9 (September 19, 2019): 1524. http://dx.doi.org/10.3390/polym11091524.

Full text
Abstract:
The inclusion of electrospun nanofiber veils was revealed as an effective method for enhancing the mechanical properties of fiber-reinforced epoxy resin composites. These veils will eventually allow the incorporation of nanomaterials not only for mechanical reinforcement but also in multifunctional applications. Therefore, this paper investigates the effect of electrospun nanofibrous veils made of polyamide 6 modified with TiO2 nanoparticles on the mechanical properties of a carbon-fiber/epoxy composite. The nanofibers were included in the carbon-fiber/epoxy composite as a single structure. The effect of positioning these veils in different composite positions was investigated. Compared to the reference, the use of unmodified and TiO2 modified veils increased the flexural stress at failure and the fracture toughness of composites. When TiO2 modified veils were incorporated, new antibacterial properties were achieved due to the photocatalytic properties of the veils, widening the application area of these composites.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Multifunctional Carbon Fiber Reinforced Composites"

1

Hart, Robert James. "Electrical resistance based damage modeling of multifunctional carbon fiber reinforced polymer matrix composites." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5493.

Full text
Abstract:
In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large delamination extending beyond the electrode locations, the oblique resistance increased by 30%. This result suggests that for damage sensing applications, the spacing of electrodes relative to the size of the delamination is important. Finally CT image data was used to model 3-D void distributions and the electrical response of such specimens were compared to models with no voids. As the void content increased, the electrical resistance increased non-linearly. The relationship between void content and electrical resistance was attributed to a combination of three factors: (i) size and shape, (ii) orientation, and (iii) distribution of voids. As a whole, the current thesis provides a comprehensive framework for developing predictive, resistance-based damage sensing models for CFRP laminates of various layup and thickness.
APA, Harvard, Vancouver, ISO, and other styles
2

Raimondo, Marialuigia. "Improving the aircraft safety by advanced structures and protecting nanofillers." Doctoral thesis, Universita degli studi di Salerno, 2014. http://hdl.handle.net/10556/1480.

Full text
Abstract:
2012 - 2013
Inspection and Maintenance are important aspects when considering the availability of aircraft for revenue flights. Modern airframe design is exploiting new exciting developments in materials and structures to construct ever more efficient air vehicle able to enable efficient maintenance. The improvement in the aircraft safety by advanced structures and protecting nanofillers is a revolutionary approach that should lead to the creation of novel generation of multifunctional aircraft materials with strongly desired properties and design flexibilities. In recent years, the development of new nanostructured materials has enabled an evolving shift from single purpose materials to multifunctional systems that can provide greater value than the base materials alone; these materials possess attributes beyond the basic strength and stiffness that typically drive the science and engineering of the material for structural systems. Structural materials can be designed to have integrated electrical, electromagnetic, flame resistance, and possibly other functionalities that work in synergy to provide advantages that reach beyond that of the sum of the individual capabilities. Materials of this kind have tremendous potential to impact future structural performance by reducing size, weight, cost, power consumption and complexity while improving efficiency, safety and versatility. It is a well-known fact that, actually, also a very advanced design of an aircraft has to take required inspection intervals into account. An aircraft with inherent protective abilities could help to significantly extend the inspection intervals, thereby increasing aircraft availability. The challenge in this research is to develop and apply a multifunctional composite for structural applications. The aim of this project is the formulation, preparation and characterization of structural thermosetting composites containing dispersed protective nanofillers. This project specifically targets composites tailored for multifunctional applications such as lightning strike protection, and flame resistance. These composites were designed to enable their application on next generation aircrafts. With regard to the objectives of this PhD project the multifunctional composite systems were developed with the aim of overcoming the following drawbacks of the composite materials: • reduced electrical conductivity; • poor flame resistance. The thermosetting material was projected considering compatibility criteria so that to integrate different functions into a material that is capable of bearing mechanical loads and serves as a structural material element. [edited by author]
XII n.s.
APA, Harvard, Vancouver, ISO, and other styles
3

Song, Yi. "Multifunctional Composites Using Carbon Nanotube Fiber Materials." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1353156345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Breña, Sergio F. "Strengthening reinforced concrete bridges using carbon fiber reinforced polymer composites /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Afroze, Jannatul Dil. "Graphene aerogel based multifunctional composites." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/28813.

Full text
Abstract:
Graphene oxide (GO) nanosheets can be assembled into multifunctional three-dimensional graphene aerogels (3D GAs) via hydrothermal assembly for sensing and energy storage applications. However, due to strong van der Waals forces, GO nanosheets often stack together, significantly compromising their performance. A well-designed and highly interconnected 3D GAs are still one of the biggest and most debated challenges in achieving multifunctional compressible materials. To address these issues, first, a novel two-step freezing method was demonstrated to synthesize a unique core-shell structured 3D graphene aerogel (3D GA). In this method, a dual temperature gradient was created to control the ice crystal growth, leading to the formation of a well-structured 3D GA with honeycomb-like densely packed core and sparsely packed shell. A high-performance multifunctional 3D GAs with carbon materials was prepared using a hydrothermal assisted two-step freezing method followed by natural drying to increase the structural stability and surface area of GAs by preventing the stack of graphene sheets during their assembly. The carbon materials significantly prevent the restacking of graphene sheets caused by van der walls forces and make available a space between graphene layers, facilitating a strong structure and superb electrical conductivity by facilitating an excellent pathway for electron transport. The GAs were applied in strain sensors to detect various human bio-signals. Furthermore, the GAs were used as free-standing electrodes to create flexible supercapacitors, demonstrating satisfactory electrochemical performances. Overall, we show that 3D graphene/nano carbon hybrid aerogels have excellent multifunctional properties for applications in flexible electronics and energy storage devices.
APA, Harvard, Vancouver, ISO, and other styles
6

Sheats, Matthew Reed. "Rehabilitation of reinforced concrete pier caps using carbon fiber reinforced composites." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

LOPES, BRUNO JORDAO. "DEVELOPMENT AND CHARACTERIZATION OF CARBON FIBER REINFORCED THERMOPLASTIC COMPOSITES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34967@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
O objetivo deste trabalho foi produzir, caracterizar e avaliar o comportamento mecânico de um compósito de matriz termoplástica (ABS) reforçado por fibras de carbono para uso futuro em manufatura aditiva. Misturas foram produzidas contendo diferentes quantidades (0 por cento, 5 por cento e 16,7 por cento) e comprimentos (3 mm e 6 mm) de fibras. Cada mistura foi processada através de uma extrusora dupla rosca para a produção de pellets. Os pellets de cada mistura (incluindo pellets de ABS puro) foram analisados para a caracterização do material processado. Posteriormente, corpos de prova foram extrusados para a determinação das propriedades mecânicas e análise da superfície de fratura. As técnicas utilizadas para a caracterização do material foram: espectroscopia no infravermelho (FTIR), análise termogravimétrica (TGA), reometria capilar e microscopia eletrônica de varredura (MEV). Para a avaliação do comportamento mecânico, os corpos de prova extrusados foram ensaiados para a determinação da resistência à tração, módulo de elasticidade e ductilidade. Em seguida, as superfícies de fratura dos corpos de prova foram analisadas no MEV. Foi verificada a possibilidade de degradação da matriz polimérica e formação de vazios durante o processamento inicial do material, que foram eliminados após a segunda extrusão. As fibras de carbono causaram aumento no módulo de elasticidade e diminuição da ductilidade do compósito, apesar de pouco influenciarem as propriedades reológicas. Além disto, pequenas variações na estabilidade térmica foram observadas. Ao final, em anexo, foi elaborado um panorama sobre a Manufatura Aditiva (MA) e a oportunidade de utilização de compósitos em técnicas de impressão 3D.
The goal of this work was to produce, characterize and analyze the mechanical behavior of a carbon fiber reinforced thermoplastic composite with future applications in additive manufacturing. Mixtures were produced with varying carbon fiber content (0 per cent, 5 per cent, and 16,7 per cent) and initial length (3 mm and 6 mm). Each mixture was processed via a twin-screw extruder to produce pellets. Pellets from each mixture (including pure ABS) were analyzed to investigate the processed material properties. Afterwards, test specimens were extruded from each mixture s pellets for mechanical testing and fracture surface analysis. The following techniques were used for material characterization: Fourrier-Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), capillary rheology and Scanning Electron Microscopy (SEM). For the evaluation of mechanical properties, the extruded test specimens yield strength, Young s modulus and ductility were determined. Also, the fracture surfaces were observed using SEM. The effects of processing parameters and of the introduction of carbon fibers in the ABS polymer were determined. Results pointed out the possibility of degradation during initial processing and the formation of voids in the pellets structure, which were eliminated during the second extrusion. Results also showed an increase in modulus and a decrease in ductility of the composite, whereas rheological properties seemed largely unaffected. Additionally, small variations in thermal stability were observed with varying carbon fiber content and length. Finally, as an annex, a brief overview of Additive Manufacturing and the opportunities for using carbon fiber reinforced thermoplastics in 3D printing techniques is presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Rubin, Ariel. "Strenghtening of reinforced concrete bridge decks with carbon fiber composites." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Durkin, Craig Raymond. "Low-Cost Continuous Production of Carbon Fiber-Reinforced Aluminum Composites." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19857.

Full text
Abstract:
The research conducted in this study was concerned with the development of low-cost continuous production of carbon fiber/aluminum composites. Two coatings, alumina and zirconia, were applied to the fibers to protect against interfacial degradation. They were applied using a sol-gel method and common metal salts. The fibers were infiltrated with molten aluminum using an ultrasound sonicator. The resultant composites were well-infiltrated and were tested in tension to determine their mechanical properties. Strengths were only 15-35% of the theoretical values predicted by the rule of mixtures. The composite microstructure revealed a sizable void fraction and that the fibers within the composites did not contain any coating on their surface. It was hypothesized that this was a result of few exposed graphite plane edges on the fiber surface, causing poor adhesion of the oxide coating to the fiber surface. To improve adhesion, an amorphous carbon coating was applied to the fiber surface, but still the oxide coatings were removed from the fibers upon infiltration. It was found, however, that the carbon coating on its own did strengthen the interface between the fiber and the aluminum.
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, James Khian-Heng. "Alternative Carbon Fiber Reinforced Polymer (CFRP) Composites for Cryogenic Applications." MSSTATE, 2004. http://sun.library.msstate.edu/ETD-db/theses/available/etd-04082004-154654/.

Full text
Abstract:
A cheaper access to space is needed in current times and new technologies need to be developed to reduce the cost of space access to increase productivity. This thesis presents a study on carbon fiber reinforced polymer (CFRP) composites which is an enabling technology for cost reduction in space vehicles. A literature review of the behavior of CFRP composite has been conducted and it was found that the currently used IM7/977 carbon fiber reinforced epoxy composites do not microcrack at a lower number of thermal cycles. Nano-composites and Thermoplastic matrix composites have been found as two promising alternatives for cryogenic applications. With the use of nano sized inclusions in currently used epoxy resins, coefficient of thermal expansion can be reduced while increase in strength and fracture toughness can be achieved. Some thermoplastics were found to have non-linear stress-strain relationships with signs of ductility even at 4.2K. Both of these resin systems show promise in reducing microcracking at cryogenic temperatures.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Multifunctional Carbon Fiber Reinforced Composites"

1

United States. National Aeronautics and Space Administration., ed. Carbon-rich ceramic composites from ethynyl aromatic precursors. [Washington, DC: National Aeronautics and Space Administration, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

United States. National Aeronautics and Space Administration., ed. Carbon-rich ceramic composites from ethynyl aromatic precursors. [Washington, DC: National Aeronautics and Space Administration, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

United States. National Aeronautics and Space Administration., ed. Carbon-rich ceramic composites from ethynyl aromatic precursors. [Washington, DC: National Aeronautics and Space Administration, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tredway, W. K. Carbon fiber reinforced glass matrix composites for satellite applications. East Hartford, Ct: United Technologies Research Center, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bansal, Narottam P. Effects of fiber coating composition on mechanical behavior of silicon carbide fiber-reinforced celsian composites. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Purba, Burt K. Reinforcement of circular concrete columns with carbon fiber reinforced polymer (CFRP) jackets. Halifax, N.S: Nova Scotia CAD/CAM Centre, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moss, A. C. Fracture characteristics of carbon and aramis unidirectional composites in interlaminar shear and open hole tensile tests. Amsterdam: National Aerospace Laboratory, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Center, Langley Research, ed. Processing and properties of fiber reinforced polymeric matrix composites: I.IM7/LARC(TM)-PETI-7 polyimide composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1935-, Adams Donald Frederick, and Langley Research Center, eds. Mechanical properties of neat polymer matrix materials and their unidirectional carbon fiber-reinforced composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1935-, Adams Donald Frederick, and Langley Research Center, eds. Mechanical properties of several neat polymer matrix materials and unidirectional carbon-fiber reinforced composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Multifunctional Carbon Fiber Reinforced Composites"

1

Li, M., V. Lin, J. Lynch, and V. C. Li. "Multifunctional Carbon Black Engineered Cementitious Composites for the Protection of Critical Infrastructure." In High Performance Fiber Reinforced Cement Composites 6, 99–106. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2436-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mucha, H., B. Wielage, and W. Krenkel. "Investigations of Phenolic Resins as Carbon Precursors for C-Fiber Reinforced Composites." In Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials III, 177–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470584392.ch21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Celik, Eren, Gamze Sacmaozu, and Alaeddin Burak Irez. "Development of Carbon-Glass Fiber Reinforced Hybrid Composites: Applications in Offshore Wind Turbine Blades." In Mechanics of Composite, Hybrid and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3, 17–22. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86741-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Korach, Chad S., Heng-Tseng Liao, Derek Wu, Peter Feka, and Fu-pen Chiang. "Combined Effects of Moisture and UV Radiation on the Mechanics of Carbon Fiber Reinforced Vinylester Composites." In Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 2, 117–22. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4241-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nakano, K., A. Hiroyuki, and K. Ogawa. "Carbon Fiber Reinforced Silicon Carbide Composites." In Developments in the Science and Technology of Composite Materials, 419–24. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0787-4_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sharma, Raghunandan, Kamal K. Kar, Malay K. Das, Gaurav K. Gupta, and Sudhir Kumar. "Short Carbon Fiber-Reinforced Polycarbonate Composites." In Composite Materials, 199–221. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49514-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ho, C. T., and D. D. L. Chung. "Carbon Fiber Reinforced Tin-Superconductor Composites." In Superconductivity and Applications, 581–90. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7565-4_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bergmann, H. W. "Mechanisms of Fracture in Fiber-Reinforced Laminates." In Carbon Fibres and Their Composites, 184–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70725-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Park, Soo-Jin, and Min-Kang Seo. "Carbon Fiber-Reinforced Polymer Composites: Preparation, Properties, and Applications." In Polymer Composites, 135–83. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645213.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fitzer, Erich, and Antonios Gkogkidis. "Carbon-Fiber-Reinforced Carbon Composites Fabricated by Liquid Impregnation." In ACS Symposium Series, 346–79. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0303.ch024.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Multifunctional Carbon Fiber Reinforced Composites"

1

Palmeri, Marc, Karl Putz, Thillaiyan Ramanathan, Thomas Tsotsis, and L. Brinson. "Development of Multifunctional, Toughened Carbon Fiber-Reinforced Composites." In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thakre, Piyush R., and Dimitris C. Lagoudas. "Multifunctional Multi-Scale Carbon-Fiber/Epoxy Matrix Composites Reinforced With Carbon Nanotubes." In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1483.

Full text
Abstract:
In the present work, apart from developing a processing method for multi-scale laminates, characterization efforts are focused on finding longitudinal, transverse and in-plane shear modulus using flexure and in-plane shear testing of unidirectional, [0°]10, and multidirectional, [±45°]2s, laminates. A comparison of the above mentioned macroscale properties is presented for three types of composites, i.e., composites embedded with functionalized nanotubes, un-functionalized or pristine nanotubes and base composite without nanotubes. Classical laminate theory is used to model a representative laminate system. Transverse and longitudinal properties are presented and compared with experimental observations. Transmission and scanning electron microscopy is performed to study the nanotube dispersion and the morphology of fracture surfaces at different length scales.
APA, Harvard, Vancouver, ISO, and other styles
3

Guadagno, Liberata, Marialuigia Raimondo, Umberto Vietri, Giuseppina Barra, Luigi Vertuccio, Ruggero Volponi, Giovanni Cosentino, Felice De Nicola, Andrea Grilli, and Paola Spena. "Development of multifunctional carbon fiber reinforced composites (CFRCs) - Manufacturing process." In TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dittrich, Rosemarie, Eberhard Mu¨ller, and Uta Popp. "C/SiC Composites by Electrophoretical Infiltration." In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17014.

Full text
Abstract:
Due to its high thermodynamical stability carbon fiber reinforced silicon carbide is an interesting material for high temperature applications. Studies are described to find an innovative route for fabricating C/SiC composites by using electrophoresis for infiltrating carbon fiber mats with non-aqueous suspensions of mixtures of silicon carbide powders, stabilizers and sintering aids. The suitability of nano-scaled and submicron powders is discussed. Based on investigations of the interaction between the SiC particle surfaces and the carbon fibers essential technological parameters of the electrophoretic infiltration are defined. The fabrication of C/SiC composites by lamination of single infiltrated fiber mats and a subsequent thermal process is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
5

AJAYI, TOSIN D., YUJUN JIA, and CHERYL XU. "MULTIFUNCTIONAL CERAMIC COMPOSITE SYSTEM FOR SIMULTANEOUS THERMAL PROTECTION AND ELECTROMAGNETIC INTERFERENCE (EMI) SHIELDING FOR CARBON FIBER REINFORCED POLYMER COMPOSITES (CFRP)." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35871.

Full text
Abstract:
Achieving high electrical conductivity while maintaining good thermal insulation are often contradictory in the material design for the goal of simultaneous thermal protection and electromagnetic interference (EMI) shielding. The reason is that materials with high electrical conductivity often pertain high thermal conductivity. To address this challenge, this study reports a multifunctional ceramic composite system for carbon fiber reinforced polymer (CFRP) composites. The fabricated multifunctional ceramic composite system has a multi-layer structure. The polymer derived SiCN ceramic reinforced with yttria stabilized zirconia fibers serves as the thermal protection and impedance matching layer, while the carbon nanotubes provide the EMI shielding. Thermal conductance of the multi-layered ceramic composite is about 22.5% lower compared to that of the carbon fiber reinforced polymer composites. Thermal insulation test during the steady-state condition shows that the hybrid composite can be used up to 300oC while keeping the temperature reaching the surface of carbon fiber reinforced polymer (CFRP) composites at around 167.8oC. Flame test was used to characterize the thermal protection capability under transient condition. The hybrid composite showed a temperature difference of 72.9oC and 280.7oC during the low and high temperature settings, respectively. The average total shielding efficiency per thickness of the fabricated four-layered ceramic composite system was 21.45 dB/mm, which showed high reflection dominant EMI shielding. The average total shielding efficiency per thickness of the eight-layered composite system was 16.57 dB/mm, revealing high absorption dominant EMI shielding. Typical CFRP composites reveal reflection dominant EMI shielding. Results of this study showed that materials with good thermal insulation and EMI shielding can be obtained simultaneously by confining the electron movement inside the materials and refraining their movement at the skin surface.
APA, Harvard, Vancouver, ISO, and other styles
6

Aly-Hassan, Mohamed S., Yuka Kobayashi, Asami Nakai, and Hiroyuki Hamada. "Tensile and Shear Properties of Biaxial Flat Braided Carbon/Epoxy Composites With Dispersed Carbon Nanofibers in the Matrix." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47057.

Full text
Abstract:
In laminated flat braided composites there are no fibers through the thickness direction except at the edges due to the fiber continuity of the braiding technique. A delamination along the interlaminar planes can be propagated because of the lack of fibers in the Z- or third-direction to the composite. The delamination initiates essentially as a result of arising the stresses concentrations around the transverse or matrix cracks that appear due to the mismatch of the thermal expansion coefficients of the fibers and matrix during the fabrication process. The delamination renders low interlaminar composite properties and represents a fundamental weakness of laminated flat braided composites especially with increasing the braiding angle, and thus minimizes the shear stress transfer. In this research, laminated flat braided carbon fabrics were performed via flattening tubular braided fabrics with braiding angle of ±45° by applying carefully compressive loads laterally on the tubular fabrics. Then, carbon fiber reinforced epoxy matrix composites were fabricated from the above-mentioned biaxial fabrics with and without uniformly dispersed carbon nanofibers throughout the epoxy matrix. Three loading percentages of carbon nanofibers (specifically, 0.5, 1, and 2 wt%) were dispersed in the matrix of the composites to enhance the matrix and interlaminar/inter-ply properties. The influence of matrix and interlaminar properties improvements on the in-plane tensile and shear response of the laminated flat braided composites was clarified via conducting of ±45° laminates tensile tests. The experimental results of tensile tests revealed that the tensile and in-plane shear properties as well as the fracture behavior of the composites are substantially influenced by the incorporation of the dispersed carbon nanofibers in the matrix of the composites. A pulsed thermography technique was used to inspect the occurrence of the delamination after the fracture under tensile loadings. The thermal wave image and logarithmic temperature-time curves of the pulsed thermography inspection illustrated that the composites with dispersed carbon nanofibers rendered higher interlaminar properties than that of composites without nanofibers. The main conclusion of this research can be summarized that dispersion of carbon nanofibers through the epoxy matrix of laminated flat braided composites is not only enhanced the matrix properties but also improved the interphase morphology between the composite plies that maximized the stress transfer of the composites. In other words, the fabricated braided composites with braiding angle of ±45° are predominantly by both of matrix and interlaminar properties.
APA, Harvard, Vancouver, ISO, and other styles
7

Aly-Hassan, Mohamed S. "Novel Multifunctional Composites by Functionally Dispersed Carbon Nanotubes Throughout the Matrix of Carbon/Carbon Composites." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47024.

Full text
Abstract:
Recently, increasing demands for smarter and smaller products calls for the development of multifunctional composites. These materials are used not only as structural materials but also satisfy the needs for additional functionalities such as thermal, electrical, magnetic, optical, chemical, biological, etc. In this research, a novel carbon nanotubes dispersion approach leads to a new generation of multifunctional composites with additionally novel thermal functionality, we called it heat-directed functionality. These distinctive composites have unique capability which can conduct the majority of the transferred heat by conduction to the preferred area or direction of the thermal structure. This unique heat-directed property can be attained by varying the in-plane thermal conductivity. Varying the in-plane thermal conductivity of the composites functionally is achieved by dispersing highly heat-conductive materials such as carbon nanotubes throughout the matrix functionally, not uniformly. Therefore, in this research three phase carbon/carbon composites have been fabricated with functionally dispersed carbon nanotubes throughout the carbon matrix of continuously plain woven carbon fiber fabrics in order to attain this useful property. The fabricated heat-directed carbon/carbon composites have been examined experimentally and numerically. The in-situ full-field infrared measurements and finite element analysis of the designed composites showed that the heat transfer direction can be substantially controlled by just functionally dispersed a few percentages of carbon nanotubes through the matrix of traditional long carbon fiber-reinforced carbon matrix composites. This exceptional property can play a significant performance improvement in heat transfer process along the in-plane of the materials as well as helping to decrease the heating up of the Earth, global warming, due to the escaped heat of many engineering applications. In other words, the efficient heat energy management or heat energy saving via using the introduced multifunctional carbon/carbon composites with heat-directed functionality can significantly help with both sides of the equation of efficient energy consumption and friendly-environment applications.
APA, Harvard, Vancouver, ISO, and other styles
8

BISWAS, PIAS KUMAR, MAYUR JADHAV, ASEL ANAND HABARAKADA LIYANAGE, HAMID DALIR, and MANGILAL AGARWAL. "MULTIFUNCTIONAL ENERGY STORAGE INTEGRATION INTO ELECTROSPUN EPOXY-CNT NANOFIBER ENHANCED CFRP COMPOSITE STRUCTURE." In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36403.

Full text
Abstract:
This work presents and assesses a structural integrity concept for a multifunctional carbon fiber reinforced composite with an embedded lithium-ion battery. In order to find a better packaging strategy for embedding lithium-ion batteries at its core, we compared adaptable composite structures made of traditional carbon fiber reinforced polymer (CFRPs), air-sprayed, and electrospun epoxy-multiwalled carbon nanotubes (epoxy-CNT) enhanced CFRPs. The electrospinning technique is well recognized across the world as a versatile and cost-effective way of producing continuous nanofilaments. It was precisely applied to the prepreg surface to provide efficient interfacial bonding and adhesion between the layers. The mechanical and physical characteristics of CFRPs reinforced with electrospun epoxy-carbon nanotubes have been demonstrated to be superior to those of conventional CFRP prepreg composites. Simultaneously, the air sprayed epoxy-carbon nanotube enhanced CFRP provides more mechanical strength than conventional CFRP prepreg but less than electrospun fiber-enhanced composites. The new multifunctional energy storage composite (MESC) might be a design factor in terms of economic feasibility. These components also help to the battery's structural load-bearing implementation and effective load transmission without damaging the battery's chemical composition. MESC design validation, manufacturing procedures, and experimental characterization (mechano-electrical) are all investigated in this paper. The electrochemical characterization findings demonstrate that the MESCs function similarly to ordinary lithium-ion pouch cells without any external packaging and under all loading circumstances. The mechanical strength and stiffness of the MESC cells, especially the electrospun epoxy-CNT enhanced MESC, are tested in three-point bending tests. The results show that the electrospun epoxy-CNT enhanced MESC has a lot more strength and stiffness than traditional pouch cells and air-sprayed CFRP at a lower weight and thickness. This mechanical robustness of the MESCs enables them to be manufactured as energy-storage devices for electric vehicles.
APA, Harvard, Vancouver, ISO, and other styles
9

Gou, Jihua, Haichang Gu, and Gangbing Song. "Structural Damping Enhancement of Nanocomposites With Engineered Vapor Grown Carbon Nanofiber Paper." In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17044.

Full text
Abstract:
Due to their nanometer size and low density, the surface area to mass ratio of carbon nanotubes and carbon nanofibers is extremely large. In addition, the large aspect ratio and high elastic modulus of carbon nanotubes and carbon nanofibers allow for large differences in strain between the constituents in the nanocomposites, which could enhance the interfacial energy dissipation ability. While there are many reported benefits of carbon nanotubes and carbon nanofibers in the nanocomposites, the potential of carbon nanotubes and carbon nanofibers to enhance the structural damping properties of nanocomposites has not been fully explored. This paper presents a novel process to manufacture multifunctional and cost-effective hybrid nanocomposites through integrating engineered carbon nanofiber paper into traditional fiber reinforced composites to improve the structural damping properties. The vacuum-assisted resin transfer molding (VARTM) process was employed to fabricate the nanocomposites by using engineered carbon nanofiber papers as inter-layers or surface layers of traditional composite laminates. To characterize the structural damping properties, the influence of frequency dependence was analyzed through the experiments conducted using the nanocomposite beams. It was found that there is up to 200–700% increase of the damping ratios at higher frequencies. It was found that the connectivities between carbon nanofibers and short glass fibers within the carbon nanofiber paper were responsible for the significant energy dissipation in the nanocomposites during structural vibration applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Plaseied, Atousa, and Ali Fatemi. "Mechanical Properties and Deformation Behavior of a Carbon Nanofiber Polymer Composite Material." In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17043.

Full text
Abstract:
Tensile behavior of a carbon nanofiber reinforced vinyl ester polymer composite was studied using dog-bone shaped specimens to obtain its mechanical properties. Pyrograf III which is a very fine, highly graphitic and yet low cost carbon nanofiber was used as the fiber material. Vinyl ester with low molecular weight which was used as the matrix material is a thermoset with high tensile strength at room temperature. When small amounts of carbon nanofibers are combined with vinyl ester, the stiffness of the resulting composite can improve if the fiber-matrix adhesion is good. The mechanical properties can improve further after surface treatment (functionalization) of carbon nanofibers. This surface treatment adds some functional groups chemically to the nanofiber’s surface which increases the adhesion between nanofiber and matrix resin. Understanding the mechanical behavior of these composites is crucial to their effective application. In this research the stiffness, strength, and tensile deformation behavior of these nanocomposites were investigated. The effects of matrix curing systems and composition, strain rate, nanofiber concentration, nanofiber surface treatment and environment such as low and high temperatures and humidity were also characterized. Based on the mechanical properties simple models were used to represent tensile stress-strain and deformation behaviors of the nanocomposite. The experimental results were also applied to these models to examine their predictive capability.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Multifunctional Carbon Fiber Reinforced Composites"

1

Wilkerson, Justin, Daniel Ayewah, and Daniel Davis. Fatigue Characterization of Functionalized Carbon Nanotube Reinforced Carbon Fiber Composites. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada515475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Seferis, James C. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada581879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seleson, Pablo, Bo Ren, C. T. Wu, Danielle Zeng, and Marco Pasetto. An Advanced Meso-Scale Peridynamic Modeling Technology using High-Performance Computing for Cost-Effective Product Design and Testing of Carbon Fiber Reinforced Polymer Composites in Light-weight Vehicles. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1844868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography