Academic literature on the topic 'Multiferroics BiFeO3 Nanoparticles'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiferroics BiFeO3 Nanoparticles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multiferroics BiFeO3 Nanoparticles"

1

Zhang, Yuan, Yi Zhang, Quan Guo, Dongwen Zhang, Shuaizhi Zheng, Ming Feng, Xiangli Zhong, et al. "Enhanced electromagnon excitations in Nd-doped BiFeO3 nanoparticles near morphotropic phase boundaries." Physical Chemistry Chemical Physics 21, no. 38 (2019): 21381–88. http://dx.doi.org/10.1039/c9cp04194j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Xian Ming, and Wen Liang Gao. "Synthesis and Characterization of Multiferroic NiFe2O4/BiFeO3 Nanocomposites by Modified Pechini Method." Advanced Materials Research 197-198 (February 2011): 456–59. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.456.

Full text
Abstract:
Spinel-perovskite multiferroics of NiFe2O4/BiFeO3 nanoparticles were prepared by modified Pechini method. The structure and morphology of the composites were examined by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the composites consisted of spinel NiFe2O4 and perovskite BiFeO3 after annealed at 700°C for 2h, and the particle size ranges from 40 to 100nm. VSM and ME results indicated that the nanocomposites exhibited both tuning magnetic properties and a ME effect. The ME effect of the nanocomposites strongly depended on the magnetic bias and magnetic field frequency.
APA, Harvard, Vancouver, ISO, and other styles
3

Mukherjee, A., Sk M. Hossain, M. Pal, and S. Basu. "Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles." Applied Nanoscience 2, no. 3 (May 5, 2012): 305–10. http://dx.doi.org/10.1007/s13204-012-0114-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mahesh, Dabbugalla, and Swapan K. Mandal. "Multiferroicity in ZnO nanodumbbell/BiFeO3 nanoparticle heterostructures." International Journal of Modern Physics B 30, no. 12 (May 6, 2016): 1650074. http://dx.doi.org/10.1142/s0217979216500740.

Full text
Abstract:
We report here on the multiferroic properties of ZnO–BiFeO3 (BiFeO3 referred hereinafter as BFO) nanocomposite structures obtained by using a facile solution-based synthesis route. ZnO is found to grow in the form of well-crystallized and self-assembled dumbbell-like structures. BFO nanoparticles (NPs) are deposited onto ZnO nanodumbbells (NDs) to obtain ZnO–BFO heterostructures. The nanocomposites show prominent ferroelectric polarization hysteresis loop along with enhanced magnetization in comparison to pure BFO NPs. The ordered alignment of spins along with the suppression of Fe–O–Fe antiferromagnetic super-exchange interactions at the ZnO/BFO interface plausibly gives rise to observed multiferroic properties.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Xiong, Yin Lin, and Jin Guo Jiang. "Multiferroic Bismuth Ferrite Nanoparticles: Rapid Sintering Synthesis, Characterization, and Optical Properties." Advanced Materials Research 152-153 (October 2010): 81–85. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.81.

Full text
Abstract:
The homogeneous multiferroic BiFeO3 nanoparticles with average particle size of 85 nm have been successfully synthesized by a simple sol-gel route. The prepared sample was characterized by a variety of techniques, such as X-ray diffractometry, thermogravimetric analysis and differential thermal analysis, differential scanning calorimeter analysis, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The obtained results shows that rapid sintering and subsequently quenching to room temperature are the two vital important factors for the preparation of pure BiFeO3. The magnetic phase transition (TN = 369 °C) and the ferroelectric phase transition (TC = 824.5 °C) were determined, revealing the antiferromagnetic and ferroelectric nature of the as-prepared BiFeO3 nanoparticles. The optical properties of the nanopowders were investigated. The strong band-gap absorption at 486 nm (2.55 eV) of the BiFeO3 nanoparticles may bring some novel applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Apostolova, Iliana, Angel Apostolov, and Julia Wesselinowa. "Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles." Magnetochemistry 9, no. 6 (May 26, 2023): 142. http://dx.doi.org/10.3390/magnetochemistry9060142.

Full text
Abstract:
The magnetic, electric, and optical properties in Tb-doped BiFeO3 nanoparticles as functions of size and doping concentrations were investigated using a microscopic model, taking into account both linear and quadratic magnetoelectric (ME) coupling. We observed improved multiferroic properties and band-gap tuning. The magnetization and polarization increased with the decreased nanoparticle size and increased Tb-doping substitution x. The Neel temperature remained nearly unchanged whereas the Curie temperature was reduced with the increased x. There was doping-induced ME coupling. The dielectric constant is discussed as a function of the size, doping, and the magnetic field. The band gap decreased with the decreased size or increased Tb dopants due to competing effects of the compressive strain, oxygen defects on the surface, and Coulomb interactions. Increasing the Tb dopants and decreasing the nanoparticle size improved the ME effect.
APA, Harvard, Vancouver, ISO, and other styles
7

Shirolkar, Mandar M., Changshan Hao, Xiaolei Dong, Ting Guo, Lei Zhang, Ming Li, and Haiqian Wang. "Tunable multiferroic and bistable/complementary resistive switching properties of dilutely Li-doped BiFeO3 nanoparticles: an effect of aliovalent substitution." Nanoscale 6, no. 9 (2014): 4735–44. http://dx.doi.org/10.1039/c3nr05973a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lone, Irfan H., Abul Kalam, Jahangeer Ahmed, Norah Alhokbany, Saad M. Alshehri, and Tokeer Ahmad. "Quenching Assisted Reverse Micellar Synthesis and Electrical Properties of High Surface Area BiFeO3 Nanoparticles." Journal of Nanoscience and Nanotechnology 20, no. 6 (June 1, 2020): 3823–31. http://dx.doi.org/10.1166/jnn.2020.17527.

Full text
Abstract:
Multiferroic compounds are prime important materials for future electronic and magnetic devices and overcome the fundamental limits of conventional materials. In present work, we reported the preparation of purely one phase of nano-sized BiFeO3 compound by microemulsion micellar method for the first time by employing rapid quenching of sample at 500 °C, that is the main driving force to get the pure phase of BiFeO3 nanoparticles at low temperature method. The nanoparticles that we obtained were almost uniform with sphere shaped and these prepare nanoparticles possess high surface. The increase in permittivity in the form of dielectric constants were reported that depends on temperature and frequency that supports the ferroelectric nature and was further confirmed by the ferroelectric loops even at the room temperature has been found in theses prepared nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
9

Shirolkar, Mandar M., Jieni Li, Xiaolei Dong, Ming Li, and Haiqian Wang. "Controlling the ferroelectric and resistive switching properties of a BiFeO3thin film prepared using sub-5 nm dimension nanoparticles." Physical Chemistry Chemical Physics 19, no. 38 (2017): 26085–97. http://dx.doi.org/10.1039/c7cp04341d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wesselinowa, J. M., and I. Apostolova. "Theoretical study of multiferroic BiFeO3 nanoparticles." Journal of Applied Physics 104, no. 8 (October 15, 2008): 084108. http://dx.doi.org/10.1063/1.3006003.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Multiferroics BiFeO3 Nanoparticles"

1

Bai, Xiaofei. "Effet de taille et du dopage sur la structure, les transitions et les propriétés optiques de particules du multiferroïque BiFeO₃ pour des applications photocatalytiques." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC013/document.

Full text
Abstract:
Ce travail de thèse expérimentale a été consacré à la synthèse par des méthodes de chimie par voie humide de nanoparticules à base du multiferroïque BiFeO3 et à leur caractérisation, avec comme objectif finale des applications photocatalytiques. Ce matériau présente une bande interdite, avec un gap de 2.6eV, qui permet la photo-génération de porteurs de charges dans le visible faisant ainsi de BiFeO3 un système intéressant pour des processus photo-induits. Ce travail s’est en particulier focalisé à caractériser les propriétés de nanoparticules à base de BiFeO3 en vue de comprendre l’effet de ses propriétés sur leur potentiel dans des applications liées à la photocatalyse. Tout d’abord, l’étude des effets de taille sur les propriétés structurales, de transitions de phase, et physico-chimiques des particules a été réalisée, en gardant comme principal objectif de découpler les propriétés liées à la surface de celles du massif/cœur de la particule. Pour cela, une maîtrise et une optimisation des procédés de synthèse de particules aux échelles nano- et micro-micrométriques de BiFeO3 a été nécessaire pour obtenir des composés de taille variable et de très bonne qualité cristalline. Malgré la diminution de la taille des particules, on constate que, grâce au contrôle de paramètres de synthèse, nos nanoparticules présentent des propriétés très proches à celles du massif de BiFeO3, gardant la structure rhomboédrique R3c avec des faibles effets de contrainte. Afin de contrôler indirectement par le dopage les propriétés optiques des composés à base de BiFeO3, on a réussi à réaliser un dopage très homogène en La3+, et un dopage partiel en Ca2+, sur le site de Bi3+. Les propriétés optiques des nanoparticules et leurs applications dans les premières expériences photocatalytiques sur la dégradation du colorant rhodamine B ont montré la complexité de la physico-chimie de leur surface et du processus d’interaction lumière-particule. Après analyse des données d’absorbance optique en fonction de la taille de nanoparticules, on observe que la bande interdite déduite pour ces différentes particules n’est pas le facteur prédominant sur les performances photocatalytiques. D’autres facteurs ont pu être identifiés comme étant à l’origine de la localisation de charges photo-générées, tels que des états de surface liés à une fine couche de peau ou skin layer sur les nanoparticules, présentant des défauts structuraux, une réduction de l’état d’oxydation du Fe3+ vers le Fe2+ et la stabilisation d’autres adsorbats, tels que FeOOH ; tous ces facteurs peuvent contribuer au changement dans les performances photocatalytiques. Les résultats photocatalytiques restent très encourageants pour poursuivre les études de nanoparticules à base de BiFeO3, montrant une dégradation de la rhodamine B à 50% au bout de 4h de réaction photocatalytique pour certaines des nanoparticules étudiées
This experimental PhD work has been dedicated to the synthesis, by wet chemistry methods, and characterization of nanoparticles based on multiferroic BiFeO3, with the aim of using them for photocatalytic applications. This material presents a bandgap of 2.6eV, which allows the charge carrier photoexcitation in the visible range, making BiFeO3 a very interesting system for photoinduced processes. This thesis has been particularly focused on characterizing the properties of BiFeO3 nanoparticles in view of understanding the relationship of their properties on their potential use for photocatalytic applications. First of all, the topic of the size effect on the structural properties, phase transitions, and physics and chemistry of the particles has been developed, keeping as first aim to separate the properties related to the surface from those arising from the bulk/core of the particle. To do so, the mastering and optimization of the synthesis processes of BiFeO3 particles at the nano and microscale were needed, to finally obtain different size compounds with high crystalline quality. Despite the size reduction of the particles, we notice that, thanks to the control of the synthesis process, our BiFeO3 nanoparticles present properties very close to those of the bulk BiFeO3 material, keeping the rhombohedral structure R3c with weak strain effects. In order to indirectly tune the optical properties exploiting the doping, we have succeeded in realizing a homogenous La3+ doping, and a partial Ca2+ doping, on the Bi3+ site. The optical properties of the nanoparticles and their use on the first photocatalytic experiments for degrading rhodamine B dye have shown the complexity of the physics and chemistry phenomena at their surface and of the light-particle processes. After analyzing optical absorbance data as a function of the particle size, we observe that the deduced bandgap for different particles is not the main parameter directing the photocatalytic performances. Other factors have been identified to be at the origin of the localization of the photoexcited charges, as the surface states linked to the skin layer of the nanoparticles, depicting structural defects, a reduction of the oxidation state of Fe3+ towards Fe2+ and the stabilization of other adsorbates, such as FeOOH; all these parameters may contribute to the change on the photocatalytic performances. The photocatalytic results are very encouraging, motivating to continue the study of BiFeO3 based nanoparticles, though depicting a 50% rhodamine B degradation after 4h of photocatalytic reaction using some of the present nanoparticles
APA, Harvard, Vancouver, ISO, and other styles
2

Jahjah, Walaa. "NanOstructures MultIferroïques INtrinsèques et extrinsèques : vers un contrôle Électrique des propriétés magnétiquEs (NOMINÉE) Influence of mesoporous or parasitic BiFeO3 structural state on the magnetization reversal in multiferroic BiFeO3/Ni81Fe19polycrystalline bilayers, in Journal of Applied Physics 124 (23), December 2018 Spin pumping as a generic probe for linear spin fluctuations: demonstration with ferromagnetic and antiferromagnetic orders, metallic and insulating electrical states, in Applied Physics Express 12(2), January 2019 Thickness dependence of magnetization reversal and magnetostriction in Fe81Ga19 thin films, in Physical Review Applied 12, August 2019." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0070.

Full text
Abstract:
Nous menons trois études expérimentales du comportement de renversement de l’aimantation (RM) dans trois types différents de bicouches, et sous différents types de contraintes. Nous étudions l’influence sur les propriétés magnétiques de l’état structural du BiFe03, de contraintes mécaniques magnétoélastiques dans le Fe81Ga19, couplées ensuite à des contraintes électriques et même thermiques.Une bicouche polycristalline composée d’un ferromagnétique Ni81Fe19, et d’un multiferroïque intrinsèque BiFe03, est déposée par pulvérisation cathodique. Sa structure et sa morphologie sont caractérisées par diffraction des rayons X, et microscopie électronique à transmission, révélant deux états structuraux fondamentalement différents du BiFe03 dûs à des défauts. Le RM est analysé par magnétométrie à échantillon vibrant, fournissant des mesures angulaires à température ambiante. L’état parasité avec la phase parasite Bi2O3 augmente les valeurs du champ d’échange en fonction de la concentration de celle-ci, qui est contrôlable. Un état mésoporeux est aussi mis en évidence, et empêche l’établissement de l’anisotropie unidirectionnelle du couplage d’échange.Des couches minces magnétostrictives de Fe81Ga19 sont déposées sur des substrats de verre. Leurs caractérisations mettent en évidence une dépendance en épaisseur des propriétés magnétiques, en correspondance avec l’état structural.Deux directions cristallographiques remarquables pour toutes les épaisseurs permettent un RM cohérent. La couche la plus mince présente un coefficient de magnétostriction de 20 ppm, qui diminue pour les couches plus épaisses. Cette tendance est associée à une texture de surface prédominante qui se réduit au profit du volume polycristallin sans orientation préférentielle.De telles couches de Fe81Ga19 sont déposées sur des substrats monocristallins ferroélectriques de PMN-PZT pour former un multiferroïque extrinsèque. Le RM et le caractère d’anisotropie sont contrôlés par un champ électrique. Le composite révèle un fort couplage magnétoélectrique inverse entre les deux phases piézoélectrique et magnétostrictive, de valeur parmi les meilleurs rapportées à ce jour. Des mesures à basses températures montrent un effet magnéto-mécanique dû à la contrainte thermique et imposé par la nature du substrat
We conducted three experimental studies of magnetization reversal (MR) behavior in three different types of bilayers, under different types of strain. We studied the influence on the magnetic properties of the structural state in the BiFe03, of magnetoelastic mechanical strain in the Fe81Ga19, which we then coupled to electrical and even thermal strainA bilayer consisted of using a ferromagnetic Ni81Fe19, and an intrinsic multiferroic BiFe03. These polycrystalline thin films are deposited by sputtering. Their structure and morphology are characterized by X-ray diffraction, and transmission electron microscopy, revealing two fundamentally different structural states of the BiFeO3 due to defects. The MR is analyzed by vibrating sample vector magnetometry, providing angular measurements it room temperature. The parasitic state with the parasitic phase Bi2O3 increases the values of the exchange field according to its concentration, which we can control. A mesoporous state is also highlighted, and prevents the establishment of the unidirectional anisotropy.Magnetostrictive thin films of Fe81Ga19 are deposited on glass substrates. Their characterizations reveal thicknessdependent magnetic properties, in correspondence with the structural state. Two remarkable crystallographic directions for the whole range of thicknesses allow a coherent MR. The thinner films have a magnetostriction coefficient value of 20 ppm, which decreases for the thicker films. This trend is associated with a predominant surface texture which is reduced in favor of the polycrystalline volume with non-preferential orientation.Such Fe81Ga19 films are deposited on single-cristalline ferroelectric substrates of PMN-PZT to form an extrinsic multiferroic.The MR and the anisotropy character are controlled by an electric field. The composite reveals a strong inverse magnetoelectric coupling αCME between the two piezoelectric and magnetostrictive phases, of value among the best reported so far. Measurements at low temperatures show a magnetomechanical effect due to thermal stress, and imposed by the nature of the substrate
APA, Harvard, Vancouver, ISO, and other styles
3

Allen, Marc Alexander. "Theoretical investigation of size effects in multiferroic nanoparticles." Thesis, 2020. http://hdl.handle.net/1828/11972.

Full text
Abstract:
Over the last two decades, great progress has been made in the understanding of multiferroic materials, ones where multiple long-range orders simultaneously exist. However, much of the research has focused on bulk systems. If these materials are to be incorporated into devices, they would not be in bulk form, but would be miniaturized, such as in nanoparticle form. Accordingly, a better understanding of multiferroic nanoparticles is necessary. This manuscript examines the multiferroic phase diagram of multiferroic nanoparticles related to system size and surface-induced magnetic anisotropy. There is a particular focus on bismuth ferrite, the room-temperature antiferromagnetic-ferroelectric multiferroic. Theoretical results will be presented which show that at certain sizes, a bistability develops in the cycloidal wavevector. This implies bistability in the ferroelectric and magnetic moments of the nanoparticles. This novel magnetoelectric bistability may be of use in the creation of an electrically-written, magnetically-read memory element.
Graduate
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Multiferroics BiFeO3 Nanoparticles"

1

Mandal, Satish Kumar, Savita, Pradip Kumar Priya, Ram Pratap Yadav, Hari Pratap Bhasker, Raj Kumar Anand, and Amreesh Chandra. "A Detailed Study of Structural, Dielectric and Luminescence Properties of Sm3+ Doped BiFeO3 Nanoceramics." In Materials Science: A Field of Diverse Industrial Applications, 110–19. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815051247123010008.

Full text
Abstract:
Observation of at least two coexisting switchable ferroic states viz., ferromagnetic, ferroelectric, and/or ferroelastic at room temperature with promising coupling among order parameters, has made BiFeO3 a highly explored material in the field of multiferroics and/or magnetoelectric multiferroics, which creates the possibility for its application in various technological devices such as spintronics, spin-valve, DRAM, actuators, sensors, solar-cells photovoltaic, etc. Intrinsically, its low coupling coefficients, difficulty to prepare in pure phase in bulk, high leakage current, etc. have restricted BiFeO3 from technological reliability. However, the effect of doping with iso- and alio-valent ions, nanostructure, thin-film-form and nanoparticles, etc., has been carried out to improve its physical properties by several research groups over the decades. In this chapter, the structural, luminescence, and dielectric properties of samarium (Sm3+) doped BiFeO3 nanoceramics synthesized using a modified gelcombustion route are discussed in detail. The effect of Sm3+ doping in BiFeO3 is explored using the X-ray diffraction (XRD) technique. The XRD studies exhibit a possible structural phase transition above Sm3+ doping of 15% from rhombohedral (R3c) space group to the orthorhombic (Pbnm) space group. The dielectric study shows interesting behavior accompanied by structural transition. Our study suggests that Sm3+ doping plays an important role in governing the structural, luminescence, and dielectric properties of BiFeO3 samples.
APA, Harvard, Vancouver, ISO, and other styles
2

Bhushan, Bhavya, and Amiya Priyam. "Aliovalent Doping of Multiferroic BiFeO3 Nanoparticles for Enhanced Functionality." In Smart Ceramics, 187–223. Pan Stanford, 2018. http://dx.doi.org/10.1201/9781315163598-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Multiferroics BiFeO3 Nanoparticles"

1

Sinha, A. K., B. Bhushan, D. Rout, R. K. Sharma, J. Gupta, S. Sen, M. D. Mukadam, S. S. Meena, and S. M. Yusuf. "Structural and magnetic properties of Cr doped BiFeO3 multiferroic nanoparticles." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dhir, Gitanjali, Poonam Uniyal, and N. K. Verma. "Calcination temperature influenced multiferroic properties of Ca-doped BiFeO3 nanoparticles." In NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Puhan, A., B. Bhushan, D. Rout, A. K. Nayak, and A. Priyam. "Structural and optical properties of Ba,Cr Co-doped BiFeO3 multiferroic nanoparticles." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Puhan, A., B. Bhushan, V. Kumar, H. S. Panda, and D. Rout. "Structural and dielectric properties of Ba, Cr co-doped BiFeO3 multiferroic nanoparticles." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shisode, M. V., Prashant B. Kharat, Dhananjay N. Bhoyar, Vithal Vinayak, M. K. Babrekar, and K. M. Jadhav. "Structural and multiferroic properties of Ba2+ doped BiFeO3 nanoparticles synthesized via sol-gel method." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lotey, Gurmeet Singh, and N. K. Verma. "Structural, electrical, magnetic and multiferroism in Dy-doped BiFeO[sub 3] nanoparticles." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Layek, Samar, Sujit Das, H. C. Verma, Alka B. Garg, R. Mittal, and R. Mukhopadhyay. "Preparation and Magnetic Studies on 10% Co-doped BiFeO[sub 3] Multiferroic Nanoparticles." In SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3605879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dubey, Astita, M. Escobar Castillo, Vladimir V. Shvartsman, Doru C. Lupascu, Soma Salamon, and Heiko Wende. "Tuning the optical, structural and multiferroic properties of Bismuth Ferrite (BiFeO3) Nanoparticles by Doping with Ba." In 2019 IEEE International Symposium on Applications of Ferroelectrics (ISAF). IEEE, 2019. http://dx.doi.org/10.1109/isaf43169.2019.9034963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lotey, Gurmeet Singh, Gitanjali Dhir, and N. K. Verma. "Effect of reduced size and Ba doping on multiferroic properties of BiFeO[sub 3] nanoparticles." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography