To see the other types of publications on this topic, follow the link: Multiferroic heterostructure.

Dissertations / Theses on the topic 'Multiferroic heterostructure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic 'Multiferroic heterostructure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Vaghefi, Seyedeh Pegah Mirzadeh. "Structural and physical properties studies on multiferroic oxide films and heterostructures." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18502.

Full text
Abstract:
Doutoramento em Engenharia Física
O presente trabalho de doutoramento é um estudo de propriedades físicas e aspectos estruturais de filmes de óxidos e heteroestruturas multiferróicas, englobando técnicas de caracterização do nível macroscópico ao microscópico. O objectivo principal é a compreensão de novas heteroestruturas epitaxiais multifuncionais e as suas interfaces para junções de túnel magnetoelétricas e filtros de spin. Os principais materiais em estudo foram manganitas à base de La dopadas com iões divalentes (ba, Sr), apresentando efeito magnetoelétrico, sendo preparadas em diferentes substratos e diferentes técnicas de crescimento, optimizadas para epitaxia e qualidade de interface. O estudo combinado de propriedades eléctricas e magnéticas permitiu estabelecer as condições necessárias para a aplicação dos materiais multiferróicos em estudo, por técnicas experimentais apresentadas neste trabalho. O trabalho consistiu no estudo sistemático de microestrutura de filmes finos de La0:7Sr0:3MnO3 em substratos de SrTiO3, preparados por pulsed laser deposition, o filme fino de La0:9Ba0:1MnO3 e a heteroestrutura La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substrato de Al2O3, e filme fino de La0:9Ba0:1MnO3, BaTiO3 e heteroestrutura de La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substrato de Si, preparado por RF magnetron sputtering. A caracterização estrutural das amostras foi feita principalmente por difracção de raio-X (XRD) convencional e de alta resolução e Microscopia de Transmissão de Alta Resolução (HRTEM). A composição química foi analisada por Electron Dispersion Spectroscopy (EDS), Rutherford backscattering spectroscopy (RBS) e energy filtered transmission electron microscopy (EFTEM). As medidas de magnetização forram realizada com a um magnetómetro superconducting quantum interference device (SQUID). A análise da topografia e efeitos locais foi realizada por microscopia de varimento de ponta usando microscopia da Força Atómica (AFM) e de resposta piezoeléctronica (PFM). Os resultados mostram claramente uma evolução da microestrutura dos filmes finos de La0:7Sr0:3MnO3, á medida que aumenta a sua espessura, passando de uma estrutura policristalina no filme mais fino (13.5 nm) a colunar inclinado (45 nm e 200 nm), a uma estrutura ramificada no filme mais espesso (320 nm). A alteração na estrutura do filme é devida à tensão pelo substrato e deformação da estrutura nas etapas iniciais de crescimento, onde se detectaram fronteiras anti-phase e maclas. A evolução da estrutura modificou as propriedades magnéticas dos filmes a baixa temperatura (abaixo da temperatura de transição estrutural do substrato de SrTiO3), mostrando magnetização em excesso e defeito, para espessuras abaixo e acima de 100 nm, respectivamente. Análises STEM-EELS e EFTEM mostraram a diferença em composição elementar dos filmes perto das fronteiras e na interface com o substrato.No âmbito do plano de trabalhos de doutoramento, o segundo substrato consiste em estudar as propriedades físicas e estruturais de filmes finos de La0:9Ba0:1MnO3 e heteroestruturas La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substratos de Al2O3, revelando estruturas altamente orientadas. A razão La/Ba do filme e heteroestrutura é drasticamente diferente do alvo providenciado, La0:7Ba0:3MnO3, como provado por XRD, RBS e transições de fase magnéticas. As propriedades magnéticas e eléctricas das estruturas mostraram uma forte dependência na cristalinidade do filme e da heteroestrutura. A parte final do trabalho é dedicada aos filmes de La0:9Ba0:1MnO3, BaTiO3 e a heteroestrutura de La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substrato de Si, que em comparação com as estruturas em substrato de ALO, provaram o efeito da cristalinidade nas propriedades magnéticas, eléctricas e de magneto-resistência do filme e heteroestrutura. Foi mostrado que um grau superior de cristalinidade leva a uma mais elevada magnetização, reduzindo a resistividade das estruturas. Pela primeira vez, um estudo de deformação de topografia por aplicação de uma tensão dc externa foi feito num filme fino de BaTiO3 em Si, usando uma técnica de poling num microscópio de força piezoresponse. Os resultados mostraram a capacidade de uma modificação controlada da superfície, por aplicação de uma voltagem externa nointervalo 14V < Vapp < 20V. Abaixo destes valores, não se observou alguma deformação na topografia, enquanto acima deste intervalo, a 30V, a superfície foi completamente danificada. A mudança topográfica produzida mostrou estabilidade no tempo, onde após a aplicação de 20V, a área modificada alcançou 83% da altura as-poled ( 9 nm) em 90 minutos, a 7,4 nm. A resposta assimétrica de piezoresponse da área poled foi associada à existência de um campo eléctrico interno na amostra, que foi também provado através de medidas de espectroscopia de switching no filme fino. A heteroestrutura no substrato de Si mostraram o mesmo fenómeno que a mono-camada de BaTiO3, onde o arranjo de heteroestrutura realça o efeito de voltagem aplicada na topografia. Aplicando 10V, a estrutura da superfície foi alterada na heteroestrutura e houve uma modificação visível da camada de BaTiO3, alterando também a topografia da camada superior de La0:9Ba0:1MnO3.
This present PhD work made a study of structural aspects and physical properties of the oxide films and multiferroic heterostructures, encompassing the techniques from macroscopic level to microscopic description. The understanding of novel multifunctional epitaxial heterostructures and their interfaces for magneto-electrically driven tunnel junctions and spin-filters is the central objective. The main materials in study were La based doped manganites with magnetoelectric effect prepared on different substrates and growth conditions, optimized for epitaxy and interface quality. The combined study of electric and magnetic properties allowed us examining the conditions required for application of the studied multiferroic materials and experimental techniques are presented in this work. The work consists of three main substrates, a systematic study of microstructure of La0:7Sr0:3MnO3 thin films on SrTiO3 substrate, prepared by pulsed laser deposition, the La0:9Ba0:1MnO3 thin film and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Al2O3 substrate, and the La0:9Ba0:1MnO3 thin film, BaTiO3 and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Si substrate, prepared by RF magnetron sputtering. Main structural characterization of samples was performed by conventional and high resolution X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM); chemical composition was determined by Electron Dispersion Spectroscopy (EDS), Rutherford Backscattering Spectroscopy (RBS) and Energy Filtered Transmission Electron Microscopy (EFTEM); Magnetization measurements done with a Superconducting Quantum Interface Device (SQUID) magnetometer. Surface probing of topography and local effects was performed, using Atomic Force (AFM) and Piezo-Response (PFM) Microscopy. Results clearly showed that there is an evolution in the microstructure of the La0:7Sr0:3MnO3 thin films, by increasing their thickness, changing from polycrystalline structure in the thinnest film (13.5 nm) to tilted columnar structure(45 nm and 200 nm) and to a branched structure in the thickest film (320 nm). The change in the structure of the film is due to the strain from the substrate and deformation of the structure in the early stages of the growth, where anti-phase boundaries and twinning were detected. The evolution of the structure modified the low temperature (below structural phase transition of SrTiO3 substrate) magnetic properties of the films, showing in-excess and in-defect magnetization, below and above 100 nm thickness, respectively. Also, STEM-EELS and EFTEM analysis showed the difference in the elemental composition of the films near the boundaries and interface with the substrate.In the scope of the PhD work plan, the second substrate consists of studying the structural and physical properties of La0:9Ba0:1MnO3 thin film and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Al2O3 substrate, where they showed highly oriented structure. The La/Ba ratio of the single layer film and heterostructure is drastically different from the target, La0:7Ba0.3MnO3, proven by XRD, RBS, and magnetic phase transitions. The magnetic and electrical properties of the structures showed strong dependence on the crystallinity of the samples. The final part of the work is devoted to the La0:9Ba0:1MnO3 and BaTiO3 thin films and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Si substrate, which in comparison with the structures on Al2O3 substrate, highlights the influence of crystallinity on magnetic, ferro-electrical and magnetoresistance properties of the film and heterostructure. It is shown that higher degree of crystallinity leads to higher magnetization and lowers the resistivity. For the first time, a study of the topography deformation by applying a dcexternal voltage was done on BaTiO3 thin film on Si, using a poling technique in a piezoresponse force microscope. The results show the ability of controlled modification of the surface, by applying an external voltage/electric field in the range of 14V< Vapp<20V. Below this range, no deformation is observed on the topography, and above this interval, at 30V, the surface is completely damaged. The produced topographical change show stabilization in respect to time, where after applying 20V, the modified area reaches its 83% of the as-poled height ( 9nm) in 90 minutes, to 7.4 nm. The asymmetrical response in the piezoresponse of the poled area is related to the existence of an internal built-in electric field in the sample, which is also confirmed by performing switching spectroscopy measurements on the single layer. The heterostructure on the Si substrate shows the same phenomena, as the BTO single layer, where the heterostructure arrangement enhances the applied voltage effect on the topography. With applying 10V, the structure of the surface changes in the heterostructure and a visible modification of BaTiO3 layer, changing also the topography of La0:9Ba0:1MnO3 top layer is observed.
APA, Harvard, Vancouver, ISO, and other styles
2

MOTTI, FEDERICO. "STRAIN-MEDIATED MAGNETO ELECTRIC COUPLING AND BEYOND: CASE STUDIES BY IN-OPERANDO SPECTROSCOPY." Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/696952.

Full text
Abstract:
The work presented in this thesis addresses the Electrical control of Magnetism. Its implementation in multiferroic heterostructures may provide an ideal solution to efficiently manipulate magnetism at the nanoscale. In-operando spectroscopic techniques, in which electric and magnetic field can be applied on the sample during the experiment, are a powerful tool to understand the different mechanisms at the origin of magneto-electric coupling in multiferroic heterostructures. In this thesis X-ray Magnetic Circular Dichroism (XMCD), Magneto Optical Kerr Effect (MOKE) and related techniques were employed in in-operando experiments to investigate two prototypical systems composed by ferromagnetic thin films deposited on ferroelectric crystals. In the first one ultrathin La0.65Sr0.35MnO3 (LSMO) films were deposited epitaxially on BaTiO3 (BTO) ferroelectric substrates. It was shown that magnetic phase transitions are induced in LSMO both by variations in temperature, corresponding to structural transitions of BTO, and also by applied electric field, which results in ferroelectric domain rotations in BTO. The results can be explained comprehensively in terms of strain, which tunes the competition between ferro- and antiferro-magnetic interactions in manganites. The second one concerns metallic Fe deposited on 60% PbMg1/3Nb2/3O3 - 40% PbTiO3 (PMN-PT) substrates. Local variations of the magnetic anisotropy, fully reversible, are observed when the ferroelectric polarization of PMN-PT is switched between opposite directions out-of-plane. Correspondingly, surface cracks appear and disappear reversibly on the surface of the sample. The relation between these morphological and magnetic modifications is discussed. These results elude interpretations based on the most common mechanisms for magneto-electric coupling, suggesting that morphology could be considered as a new ingredient for electrical control of magnetism.
APA, Harvard, Vancouver, ISO, and other styles
3

Jeon, Hyung Min. "Multifunctional Oxide Heterostructures For Next-Generation Tunable RF/Microwave Electronics." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1578950463103112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Min. "Structure-Property Relations on Strain-Mediated Multiferroic Heterostructures." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/95823.

Full text
Abstract:
Multiferroic thin-film heterostructures have attracted a great deal of attention due to the increasing demand for novel energy-efficient micro/nano-electronic devices. Both single phase multiferroic materials like BiFeO3 (BFO) thin films, and strain-mediated magnetoelectric (ME) nanocomposites, have the potential to fulfill a number of functional requirements in actual applications—principally, direct control of magnetization by the application of an electric field (E) and vice-versa. From the perspective of material science, however, it is essential to develop a fuller understanding of the complex fabrication-structure-property triangle relationship for these multiferroic thin films. Pulsed laser deposition (PLD) was used in this study to fabricate diverse epitaxial thin film heterostructures on top of single crystal substrates. The crystal structure, phase transition processes (amongst nanodomain distributions, dielectric phases, magnetic spin states, etc.), and various ME-related properties were characterized under different E or temperature environments. Resulting data enabled us to determine the structure-property relationships for a range of multiferroic systems. First, BFO-based heterostructures were studied. Epitaxial BFO thin films were deposited on top of (001)-oriented Pb(Mg1/3Nb2/3)O3-30PbTiO3 (PMN-30PT) single crystal substrates. The strain states of BFO and crystal structural phases were tunable by E applied on the PMN-30PT via both the in-plane and out-of-plane modes. The strain-mediated antiferromagnetic state changes of BFO were also studied using neutron diffraction spectroscopy under E. Then, CoFe2O4(CFO)/tetragonal BFO nanocomposites were successfully fabricated on top of (001)-oriented LaAlO3 single crystal substrates. The surface morphology, crystal structure, magnetic properties, and ME effects were evaluated and compared with CFO/rhombohedral BFO nanocomposites. To enhance the performance of ME heterostructures with PMN-PT substrates, PMN-30PT single crystals with nanograted electrodes were also studied, which evidenced an enhancement in piezoelectric properties and dielectric constant by 36.7% and 38.3%, respectively. X-ray diffraction reciprocal space mapping (RSM) was used to monitor E-induced changes in the apparent symmetry and domain distribution of near-surface regions for the nanograted PMN-30PT crystals. Finally, in order to add antiferroelectric thin films to the family of strain-mediated multiferroic nanocomposites, epitaxial antiferroelectric thin films were prepared. Epitaxial (Pb0.98La0.02)(Zr0.95Ti0.05)O3 (PLZT) thin films were deposited on differently oriented SrTiO3 single crystal substrates. A thickness dependent incommensurate/commensurate antiferroelectric-to-ferroelectric phase transition was identified. The crystal structure, phase transition characteristics and pathways, and energy storage behaviors from room temperature to 250 ℃ were studied, enabling a more systematic understanding of PLZT-based AFE epitaxial thin films. To summarize, a range of epitaxial thin films were prepared using PLD, whose crystal structures and multiferroic properties were related through the strain. Accordingly, properties such as dielectricity, antiferroelectricity, and antiferromagnetism could be adjusted by E. This study sheds further light on the potential for designing desirable strain-mediated multiferroic nano-/micro-devices in the future.
Doctor of Philosophy
As a general definition, the class of materials known as multiferroics possess more than one ferroic order parameter. Multiferroic thin-film heterostructures have attracted a great deal of attention due to the increasing demand for novel energy-efficient micro/nano-electronic devices. Both single phase multiferroic materials like BiFeO3 (BFO) thin films and strain-mediated magnetoelectric (ME) nanocomposites show significant potential for use in next-generation devices due to the fact that one can control magnetic properties via the application of an electric field (E) and vice-versa. From the perspective of material science, however, it is essential to develop a fuller understanding of the complex fabrication-structure-property triangle relationship for these multiferroic thin films. In this study, diverse epitaxial thin film heterostructures were fabricated on top of single crystal substrates. The crystal structure, phase transition processes (amongst nanodomain distributions, dielectric phases, magnetic spin states, etc.), and various ME-related properties were characterized under different E or temperature environments. Resulting data enabled us to determine the structure-property relationships for a range of multiferroic systems. First, BFO-based heterostructures were studied. Epitaxial BFO thin films were deposited on top of (001)-oriented Pb(Mg1/3Nb2/3)O3-30PbTiO3 (PMN-30PT) single crystal substrates. The strain states of BFO and crystal structural phases were tunable by E applied on the PMN-30PT via both the in-plane and out-of-plane modes. The strain-mediated antiferromagnetic state changes of BFO were studied using powerful neutron diffraction spectroscopy under E. Then, CoFe2O4(CFO)/tetragonal BFO nanocomposites were successfully fabricated on top of (001)-oriented LaAlO3 single crystal substrates. The surface morphology, crystal structure, magnetic properties, and ME effects were discussed and compared with CFO/rhombohedral BFO nanocomposites. To enhance the performance of ME heterostructures with PMN-PT substrates, PMN-PT single crystals with nanograted electrodes were also studied, which evidenced an enhancement in piezoelectric properties and dielectric constant by 36.7% and 38.3%, respectively. X-ray diffraction reciprocal space mapping (RSM) technique was used to monitor E-induced changes in the apparent symmetry and domain distribution of near-surface regions for nanograted PMN-PT crystals. Finally, in order to add antiferroelectric thin films to the family of strain-mediated multiferroic nanocomposites, epitaxial antiferroelectric thin films were prepared. Epitaxial (Pb0.98La0.02)(Zr0.95Ti0.05)O3 (PLZT) thin films were deposited on differently oriented SrTiO3 substrates. A thickness dependent incommensurate antiferroelectric-to-ferroelectric phase transition was identified. The crystal structure, phase transition characteristics and pathways, and energy storage behaviors from room temperature to 250 ℃ were studied, enabling a more systematic understanding of PLZT-based AFE epitaxial thin films. To summarize, a range of epitaxial perovskite thin films were prepared, whose crystal structures and multiferroic properties were related through the strain. Accordingly, the properties such as dielectricity, antiferroelectricity, and antiferromagnetism could be adjusted by E. This study sheds further light on the potential for designing desirable strain-mediated multiferroic nano-/micro-devices in the future.
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Weigang. "Electric field control of magnetic properties in multiferroic heterostructures." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/13425/.

Full text
Abstract:
Recently, the use of an electric field (E-field) to control the magnetic properties of thin magnetic films has drawn intensive interest due to their important potential applications such as magnetoelectric random access memory (MERAM) devices and magnetoelectric (ME) sensor. In this thesis, the work first includes a study of the strain-mediated ME coupling strength manipulation by either changing ferromagnetic layer thickness (30-100 nm) or inserting a thin Ti buffer layer (0-10 nm). A large remanence ratio (Mr/Ms) tunability of 95% has been demonstrated in the 65 nm CoFe/PMN-PT heterostructure, corresponding to a giant ME constant (α) of 2.5 × 10-6 s/m, when an external E-field of 9 kV/cm was applied. Also, a record high remanence ratio (Mr/Ms) tunability of 100% has been demonstrated in the 50 nm CoFe/8 nm Ti/PMN-PT heterostructure, corresponding to a large ME constant α of 2.1 × 10-6 s/m, when the E-field of 16 kV/cm was applied. Furthermore, the E-field induced magnetic response was repeatable and quick even after 30 repeats were made. Secondly, a study of non-volatile magnetization change has been demonstrated in the 65 nm CoFe/24 nm Metglas/PMN-PT. In this heterostructure, the E-field created two new non-volatile remanence states, although the as-grown magnetic anisotropy was altered permanently, when the E-field between -6 kV/cm to +6 kV/cm was applied. Based on giant magnetoresistance (GMR) or anisotropic magnetoresistance (AMR), the MERAM memory cell was proposed for the fast, low-power and high-density information storage.
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Xin. "Optical characterization of ferromagnetic and multiferroic thin-film heterostructures." W&M ScholarWorks, 2015. https://scholarworks.wm.edu/etd/1539623372.

Full text
Abstract:
This thesis presents optical characterization of the static and dynamic magnetic interactions in ferromagnetic and multiferroic heterostructures with time-resolved and interface-specific optical techniques. The focus of the thesis is on elucidating the underlying physics of key physical parameters and novel approaches, crucial to the performance of magnetic recording and spintronic devices.;First, time-resolved magneto-optical Kerr effect (TRMOKE) is applied to investigate the spin dynamics in L10 ordered FePt thin films, where perpendicular magnetic anisotropy Ku and intrinsic Gilbert damping alpha0 are determined. Furthermore, the quadratic dependence of Ku and alpha0 on spin-orbit coupling strength xi is demonstrated, where xi is continuously controlled through chemical substitution of Pt with Pd element. In addition, a linear correlation between alpha0 and electron scattering rate 1/T e is experimentally observed through modulating the anti-site disorder c in the L10 ordered structure. The results elucidate the basic physics of magnetic anisotropy and Gilbert damping, and facilitate the design and fabrication of new magnetic alloys with large perpendicular magnetic anisotropy and tailored damping properties.;Second, ultrafast excitation of coherent spin precession is demonstrated in Fe/CoO heterostructures and La0.67Ca0.33MnO 3 thin films using TRMOKE technique. In the Fe/CoO thin films, Instant non-thermal ferromagnet (FM) -- antiferromagnet (AFM) exchange torque on Fe magnetization through ultrafast photo-excited charge transfer possesses in the CoO layer is experimentally demonstrated at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery is notably faster than the demagnetization procedure. In the La0.67Ca 0.33MnO3 thin films, pronounced spin precessions are observed in a geometry with negligible canting of the magnetization, indicating that the transient exchange field is generated by the emergent AFM interactions due to charge transfer and modification of the kinetic energy of eg electrons under optical excitation. The results will help promoting the development of novel device concepts for ultrafast spin manipulation.;Last, the interfacial spin state of the multiferroic heterostructure PbZr0.52Ti0.4803/La0.67Sr0.33MnO 3 and its dependence on ferroelectric polarization is investigated with interface specific magnetization induced second harmonic generation (MSHG). The spin alignment of Mn ions in the first unit cell layer at the heterointerface can be tuned from FM to AFM exchange coupled, while the bulk magnetization remains unchanged as probed with MOKE. The discovery provides new insights into the basic physics of interfacial magneto-electric (ME) coupling.
APA, Harvard, Vancouver, ISO, and other styles
7

Fina, Martínez Ignasi. "Ferroelectricity and magnetoelectric coupling in magnetic ferroelectrics and artificial multiferroic heterostructures." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/81981.

Full text
Abstract:
Multiferroic materials are those materials in which more than one ferroic order coexist. The most technologically appealing multiferroic materials are those showing ferromagnetism and ferroelectricity. Coupling between the mentioned ferroic orders, called magnetoelectric coupling, can yield to new interesting functional applications. In spintronics this coupling would result in the possibility of building magnetic memories controlled by electric field, or transistors where charge is contact-less controlled by a magnetic field. The ultimate goal of the present thesis is to explore the control of the ferroelectric polarization and dielectric properties by magnetic field in thin films. To that purpose dielectric, ferroelectric and magnetoelectric characterization methods of different multiferroic materials have been developed and used. Two big groups of multiferroic materials can be found. On one hand, single-phase multiferroics are those that intrinsically display multiferroicity. On the other hand, multiferroic composites are those where multiferroicity results from the mixture of two different materials that display ferroelectric and ferromagnetic order separately. Single-phase multiferroics can be divided in two subgroups: those where ferroic orders have different sources and those, called magnetic ferroelectrics, where magnetic order induces ferroelectricity and, consequently, larger magnetoelectric coupling is expected. The single-phase multiferroic material studied in the present thesis is YMnO3 in its orthorhombic phase, and it belongs to the magnetic ferroelectrics family. Even though it shows collinear magnetic order in bulk, we will show that cycloidal order in thin film form can be stabilized, giving rise to the capability of controlling the ferroelectric polarization by magnetic field in a reversible manner. Multiferroic composite thin films can be built mainly in two different architectures: vertical (ferromagnetic/ferroelectric columns embedded in a ferroelectric/ferromagnetic matrix) and horizontal (multilayered structures alternating ferromagnetic and ferroelectric materials). Here we compare both, using a ferroelectric perovskite (BaTiO3) and a ferromagnetic spinel (CoFe2O4). We will show that horizontal heterostructures display better ferroelectric properties and larger magnetoelectric coupling, compared to vertical heterostructures, where leakage current is a limiting parameter. The control of dielectric/ferroelectric properties under appropriate heterostructure configuration (in horizontal heterostructures) or deposition conditions (in vertical heterostructures) has been also achieved.
Els materials multiferroics són aquells materials en què coexisteix més d'un ordre ferroic. D'aquests els més interessants són els que presenten ferromagnetisme i ferroelectricitat. La presencia d'acoblament entre aquests dos ordres ferroics, anomenat acoblament magnetoelèctric, obre un nou camp d'aplicacions. En spintrònica, aquest acoblament significaria poder construir memòries magnètiques controlades mitjançant camp elèctric, o transistors on la càrrega es controlaria mitjançant camp magnètic. L'objectiu final d'aquesta tesi és explorar el control de la polarització ferroelèctrica mitjançant camp magnètic en capes fines. Amb aquesta finalitat, s'han utilitzat mètodes de caracterització dielèctrica, ferroelèctrica i magnetoelèctrica en diferents materials multiferroics en capa fina. Existeixen dos grans grups de materials multiferroics. D'una banda, els materials de fase única són aquells que presenten multiferroïcitat de manera intrínseca. D'altra banda, els multiferroics de fase mixta són aquells en els quals la multiferroïcitat és resultat de la barreja de dos materials diferents que presenten ordre ferroelèctric i ferromagnétic per separat. Els materials de fase única es poden dividir en dos subgrups: aquells en què els ordres ferroics tenen diferent origen i aquells, anomenats ferroelèctrics magnètics, en què l'ordre magnètic indueix ferroelectricitat i, de manera conseqüent, s'espera un major acoblament magnetoelèctric. El material multiferroic de fase única estudiat en la present tesi és la o-YMnO(3) en la seva fase ortoròmbica que pertany a la família dels ferroelèctrics magnètics. Tot i que presenta ordre magnètic col.lineal en forma màssica, mostrarem que es pot estabilitzar l'odre cicloïdal en capa fina, permetent el control de la polarització ferroelèctrica mitjançant camp magnètic de manera reversible. Els multiferroics de fase mixta en capa fina es poden créixer utilitzant principalment dues arquitectures diferents: vertical (les columnes ferromagnètiques/ferroelèctriques en una matriu ferroelèctrica/ferromagnètica) i horitzontal (estructures multicapa alternant materials ferromagnètics i ferroelèctrics). Aquí comparem aquestes dues arquitectures, utilitzant una perovskita ferroelèctrica (BaTiO(3)) i una espinela ferromagnètica (CoFe(2)O(4)). Demostrarem que les heteroestructures horitzontals presenten millors propietats ferroelèctriques i un major acoblament magnetoelèctric comparades amb les heteroestructures verticals, en les quals el corrent de pèrdues sembla ser un paràmetre limitant. També s'han aconseguit controlar les propietats dielèctriques/ferroelèctriques mitjançant la modificació de la configuració en les heteroestructures horitzontals o mitjançant la modificació de les condicions de dipòsit en heteroestructures verticals.
Los materiales multiferroicos son aquellos en los que coexiste más de un orden ferroico. DE estos los más interesantes son los que presentan ferromagnetismo y ferroelectricidad. Su acoplamiento, llamado acoplamiento magnetoeléctrico, puede permitir la aplicación de nuevas funcionalidades en el campo de la tecnología. En espintrónica, este acoplamiento significará poder construir memorias magnéticas controladas mediante campo eléctrico, o transistores donde la carga se controlará mediante campo magnético. El objetivo final de esta tesis es explorar el control de la polarización ferroeléctrica mediante campo magnético en capas finas. Con este fin, se han utilizado métodos de caracterización dieléctrica, ferroeléctrica y magnetoeléctrica en diferentes materiales multiferroicos en capa fina. Existen dos grandes grupos de materiales multiferroicos. Por un lado, los materiales de fase única son aquellos que presentan multiferroicidad de forma intrínseca. Por otro lado, los multiferroicos de fase mixta son aquellos en los cuales la multiferroicidad es el resultado de la mezcla de dos materiales diferentes que presentan orden ferroeléctrico y ferromagnético por separado. Los materiales de fase única se pueden dividir en dos subgrupos: aquellos en los que los órdenes ferroicos tienen diferente origen y aquellos llamados ferroeléctricos magnéticos en los que el orden magnético induce ferroelectricidad y, por consiguiente, se espera un mayor acoplamiento magnetoeléctrico. El material multiferroico de fase única que se ha estudiado en esta tesis es la o-YMnO(3) en su fase ortorrómbica y pertenece a la familia de los ferroeléctricos magnéticos. Aunque presenta orden magnético colineal en forma másica, mostraremos que se puede estabilizar el orden cicloidal en capa fina, permitiendo el control de la polarización ferroeléctrica mediante campo magnético de forma reversible. Los multiferroicos de fase mixta en capa fina se pueden crecer utilizando principalmente dos arquitecturas diferentes: vertical (las columnas ferromagnéticas/ferroeléctricas en una matriz ferroeléctrica/ferromagnética) y horizontal (estructuras multicapa alternando materiales ferromagnéticos y ferroeléctricos). Aquí comparamos ambas, utilizando una perovskita ferroeléctrica (BaTiO(3)) y una espinela ferromagnética (CoFe(2)O(4)). Demostraremos que las heteroestructuras horizontales presentan mejores propiedades ferroeléctricas y un mayor acoplamiento magnetoeléctrico comparadas con las heteroestructuras verticales, en las cuales la corriente de pérdidas parece ser un parámetro limitante. También se han conseguido controlar las propiedades dieléctricas/ferroeléctricas mediante el cambio de configuración en heteroestructuras horizontales o mediante el cambio de las condiciones de depósito en heteroestructuras verticales.
APA, Harvard, Vancouver, ISO, and other styles
8

Mukherjee, Devajyoti. "Growth and Characterization of Epitaxial Thin Films and Multiferroic Heterostructures of Ferromagnetic and Ferroelectric Materials." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3622.

Full text
Abstract:
Multiferroic materials exhibit unique properties such as simultaneous existence of two or more of coupled ferroic order parameters (ferromagnetism, ferroelectricity, ferroelasticity or their anti-ferroic counterparts) in a single material. Recent years have seen a huge research interest in multiferroic materials for their potential application as high density non-volatile memory devices. However, the scarcity of these materials in single phase and the weak coupling of their ferroic components have directed the research towards multiferroic heterostructures. These systems operate by coupling the magnetic and electric properties of two materials, generally a ferromagnetic material and a ferroelectric material via strain. In this work, horizontal heterostructures of composite multiferroic materials were grown and characterized using pulsed laser ablation technique. Alternate magnetic and ferroelectric layers of cobalt ferrite and lead zirconium titanate, respectively, were fabricated and the coupling effect was studied by X-ray stress analysis. It was observed that the interfacial stress played an important role in the coupling effect between the phases. Doped zinc oxide (ZnO) heterostructures were also studied where the ferromagnetic phase was a layer of manganese doped ZnO and the ferroelectric phase was a layer of vanadium doped ZnO. For the first time, a clear evidence of possible room temperature magneto-elastic coupling was observed in these heterostructures. This work provides new insight into the stress mediated coupling mechanisms in composite multiferroics.
APA, Harvard, Vancouver, ISO, and other styles
9

Schöffmann, Patrick Verfasser], Thomas [Akademischer Betreuer] [Brückel, and Joachim [Akademischer Betreuer] Mayer. "Stoichiometric control and magnetoelectric coupling in artificial multiferroic heterostructures / Patrick Schöffmann ; Thomas Brückel, Joachim Mayer." Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1240765584/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Teferi, Mandefro Yehulie. "Developments of multiferroic heterostructures of thin film of Ni-Mn-Ga alloys and PMN-PT." Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/7541.

Full text
Abstract:
Mestrado em Ciência e Engenharia de Materiais
Ligas de forma ferromagnética em sistemas Ni-Mn-Ga são uma classe recente de materiais activos que podem gerar deformações de até 10% induzidas por um campo magnético por um rearranjo de maclas. Esta e outras propriedades físicas destas ligas têm importância tecnológica. Este trabalho investiga as propriedades de filmes finos de ligas de Ni-Mn-Ga sobre diferentes substratos, incluindo substratos activos (piezeléctricos). Para estudar as propriedades de filmes finos da liga, heteroestruturas sob a forma de Ni-Mn-Ga/substrato foram produzidas por RF sputtering com magnetrão utilizando temperaturas de deposição de 3200C, 3700C, 4000C sobre substratos de Al2O3, MgO, SrTiO3 e PMN-PT. A influência da temperatura do substrato durante a deposição nas propriedades estruturais e magnéticas de filmes finos foi estudada. Além disso, o acoplamento magnetoeléctrico entre Ni-Mn-Ga como filme fino material ferromagnético e PMN-PT como material piezoeléctrico foi investigada. O efeito magnetoeléctrico foi investigado apenas em filmes depositados a temperatura do substrato de 3700C e 4000C. As propriedades estruturais foram estudadas por difração de raios-X, as propriedades magnéticas foram investigadas por VSM, SQUID, e MFM, e o efeito magnetoeléctrico foi estudado por técnica lock-in. A medida estrutural mostrou que os filmes depositados são parcialmente cristalinos e o grau de cristalinidade aumenta como o aumento da temperatura do substrato. Fases austenita e martensita foram observadas nesses filmes. Os resultados da medição magnética mostram que todos os filmes depositados exibem comportamento ferromagnético e o comportamento ferromagnético é favorecido com o aumento da temperatura do substrato. Todos os filmes depositados na temperatura do substrato de 400ºC apresentam temperaturas dev Curie acima da temperatura ambiente: 337K para Ni-Mn- Ga/PMN-PT, 345K para Ni-Mn-Ga/STO e 348K para Ni-Mn-Ga/Al2O3. Nenhuma evidência separada de temperatura de transição estrutural foi observada para nos filmes. Os resultados das medições magnetoeléctricas mostram que as heteroestruturas multiferróicas Ni-Mn-Ga/PMN-PT apresentam efeito magnetoelétrico. O valor máximo medido para a tensão magnetoeléctrica induzida para filmes depositados à temperatura do substrato de 3700C e 4000C são 3.16mV/cmOe e 3.02mV/cmOe, respectivamente.
Ferromagnetic shape memory alloys (FSMAs) in Ni-Mn-Ga systems are a recent class of active materials that can generate large magnetic field induced strains up to 10% by twin rearrangement. This and other physical properties these alloys have many technological importance. This work investigates the properties of Ni-Mn-Ga alloy thin films on different substrates including active substrate (piezoelectric). To study the properties of thin films of the alloy, the heterostructures in the form of Ni-Mn-Ga/substrate were produced by RF magnetron deposition system using substrate deposition temperatures of 3200C, 3700C, and 4000C, where the substrates used were Al2O3, MgO, SrTiO3 and PMN-PT. The influences of deposition substrate temperature on structural and magnetic properties of sputtered thin films on the aforementioned substrates were studied. Moreover, magnetoelectric coupling between Ni-Mn- Ga thin film as ferromagnetic material and PMN-PT as piezoelectric material was investigated. The magnetoelectric effect was investigated only on films deposited at substrate temperature of 3700C and 4000C. The structural properties were studied by x-ray diffraction, magnetic properties were investigated by VSM, SQUID, and MFM, and the magnetoelectric effect was studied by lock-in technique. The structural measurement has shown that asdeposited films are partially crystalline and degree of crystallinity increases as substrate temperature increase. Austenite and martensite phases have been observed in these films. The magnetic measurement results show that all films as-deposited display ferromagnetic behaviour and ferromagnetic behaviour improvements are observed as substrate temperature increases. All films deposited at substrate temperature of 4000C exhibit Curie temperatures above room temperature which are 337K for Ni-Mn-Ga/PMN-PT, 345K for Ni-Mn- Ga/STO, 348K for Ni-Mn-Ga/Al2O3. No separate signature of structural transition temperature was observed for all these films. The magnetoelectric measurement results show that a heterostructure of Ni-Mn-Ga/PMN-PT multiferroic exhibit magnetoelectric effect. The measured maximum induced magnetoelectric voltage for films deposited at substrate temperature of 3700C and 4000C are 3.16mV/cmOe and 3.02mV/cmOe, respectively.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Yue. "Magnetoelectric Thin Film Heterostructures and Electric Field Manipulation of Magnetization." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52989.

Full text
Abstract:
The coupling of magnetic and electric order parameters, i.e., the magnetoelectric effect, has been widely studied for its intriguing physical principles and potentially broad industrial applications. The important interactions between ferroic orderings -- ferromagnetism, ferroelectricity and ferroelasticity -- will enable the manipulation of one order through the other in miniaturized materials, and in so doing stimulate emerging technologies such as spintronics, magnetic sensors, quantum electromagnets and information storage. By growing ferromagnetic-ferroelectric heterostructures that are able to magneto-electrically couple via interface elastic strain, the various challenges associated with the lack of single-phase multiferroic materials can be overcome and the magnetoelectric (ME) coupling effect can be substantially enhanced. Compared with magnetic field-controlled electric phenomena (i.e., the direct magnetoelectric coupling effect), the converse magnetoelectric effect (CME), whereby an electric field manipulates magnetization, is more exciting due to easier implementation and handling of electric fields or voltages. CME also affords the possibility of fabricating highly-efficient electric-write/magnetic-read memories. This study involved two avenues of inquiry: (a) exploring the strain-mediated electric field manipulation of magnetization in ferroelectric-ferromagnetic heterostructures, and (b) investigating coupling and switching behaviors at the nanoscale. Accordingly, a series of magnetoelectric heterostructures were prepared and characterized, and their electric field tunability of magnetic properties was explored by various techniques and custom-designed experiments. Firstly, the relevant properties of the individual components in the heterostructures were systematically investigated, including the piezoelectricity and ferroelectric/ferroelastic phase transformations of the ferroelectric substrates, lead magnesium niobate-lead titanate, or Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT). This investigation revealed significant information on the structure-property relationships in crystals oriented at <110>, as well as shed light on the effect of ferroelectric phase transformation on magnetoelectric coupling. This investigation of electric field controlled strain, in contrast to many prior studies, enables a more rational and detailed understanding of the magnetoelectric effect in complex ferroelectric-ferromagnetic heterostructures. The magnetoelectric thin film heterostructures were fabricated by depositing ferromagnetic iron-gallium (Fe-Ga) or cobalt ferrite (CoFe2o4 or CFO) films on top of differently-oriented ferroelectric PMN-PT substrates. Through significant electric field-induced strain in the piezoelectric substrate, the magnetic remanence and coercive field, as well as the magnetization direction of the ferromagnetic overlayer, can be substantially tuned. These goals were achieved by the interfacial strain modification of the magnetic anisotropy energy profile. The observation and analysis of the electric field tunability of magnetization and the establishment of novel controlling schemes provide valuable directions for both theoretical development and future application endeavors.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
12

Shang, Jing. "2D Magnetic and multiferroic materials: Fundamental physics and application exploration from theoretical simulation." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/227367/1/Jing_Shang_Thesis.pdf.

Full text
Abstract:
This thesis aims to propose the feasible approaches to control and manipulate the magnetism in two-dimensional (2D) magnets through magnetoelectric coupling by using density functional theory (DFT) calculations. It is found that the goal can be achieved by building 2D magnetic-ferroelectric heterostructures or seeking for the multiferroic candidates. The effective manipulations of magnetic states are expected to not only provide new insights into the fundamental research, but also pave the solid foundations for the spintronic applications.
APA, Harvard, Vancouver, ISO, and other styles
13

Ye, Jingfan [Verfasser], Peter [Akademischer Betreuer] Böni, Peter [Gutachter] Böni, and Rudolf [Gutachter] Hackl. "In situ Polarised Neutron Reflectometry and Investigations of Exchange Biased and Multiferroic Heterostructures / Jingfan Ye ; Gutachter: Peter Böni, Rudolf Hackl ; Betreuer: Peter Böni." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1195708653/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sallagoity, David. "Synthèse et étude d’hétérostructures diélectrique/magnétique dans des membranes d’alumine nanoporeuses." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0210/document.

Full text
Abstract:
Le contrôle de la polarisation et de l’aimantation par le biais de champs magnétiques et électriques respectifs font des systèmes magnétoélectriques des candidats prometteurs à de nombreuses applications, parmi lesquelles les dispositifs micro-ondes, les dispositifs de stockage de données à haute densité, etc. L’élaboration d’hétérostructures toujours plus innovantes reste un défi majeur dans le but d’optimiser les densités d’interfaces entre les phases ferroélectriques et ferromagnétiques,et ainsi promouvoir les interactions de couplage mécaniques. Au cours de ce projet de thèse, deux stratégies sont mises en oeuvre pour la conception des matériaux : i) une structure coeur-écorce de type (1-1) composée de nanofils ferromagnétiques (1) dans des nanotubes ferroélectriques (1) àl’intérieur d’une membrane nanoporeuse tridimensionnelle auto supportée etii) une structure en couche mince de type (1-3) constituée de nanofils ferromagnétiques (1) supportés sur un substrat rigide et encapsulés dans une matrice ferroélectrique (3)
Controlling polarization or magnetization by an applied magneticand electric field respectively make magnetoelectric systems promisingcandidates for applications in microwave devices, high density data storagedevices, etc. Designing innovative magnetoelectric heterostructures is thus achallenge to optimize interface density between both ferroelectric andferromagnetic phases, and promote mechanical coupling interactions. In thisthesis project, two strategies are followed for material design: i) 1-1 coreshellstructure with ferromagnetic nanowires (1) inside ferroelectricnanotubes in a self-supported tridimensionnal porous template (1) and ii) 1-3structure where ferromagnetic nanowires (1) are supported on a substrateand embedded in a ferroelectric matrix (3)
APA, Harvard, Vancouver, ISO, and other styles
15

Liao, Jeng-Hwa, and 廖政華. "A Study of Multiferroic Exchange Coupling in La1-xSrxMnO3–Pb(Zr0.5Ti0.5)O3 Heterostructure Systems." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/39933668598751276668.

Full text
Abstract:
博士
國立清華大學
材料科學工程學系
95
Abstract Multiferroics, which combine ferromagnetism and ferroelectricity in one body, exhibit novel characteristics and could not be achieved separately in either ferroelectric or ferromagnetic (FM) materials. In this study, the multiferroic exchange coupling between the ferromagnetic, La1-xSrxMnO3 (LSMO), and ferroelectric, Pb(Zr1-xTix)O3 (PZT), materials was demonstrated under the condition that the PZT was unpolarized or polarized with an applied voltage, Va = ±7V. Epitaxial LSMO films (x = 0.25) deposited on SrTiO3 (STO) substrate display a decrease in Curie temperature (Tc) with reducing the film thickness down to 5 nm. The 5-nm-thick film, i.e. the thickness of the dead layer, displays an insulative characteristic and the phase-separation phenomenon was demonstrated by the thermally-activated hopping transport model. The conductive atomic force microscopy images also confirm the results. On the other hand, the strain effect on the magnetotransport properties of epitaxial LSMO films (x = 0.1) on STO and LaAlO3 (LAO) substrate, respectively, is also demonstrated. The strain relaxation of films results in the formation of spin-canted antiferromagnetic (AFM) insulative phase. The characteristics of AFM insulative phase become apparent with increasing the film thickness, which leads to a clear AFM transition in the films grown on LAO and a reduction of magnetization and Tc in those on STO. In chapter 6, the magnetic properties of Pb(Zr0.5Ti0.5)O3/La0.9Sr0.1MnO3 bilayers epitaxially grown on Nb-doped STO show a divergence between field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements, which suggests the presence of a magnetic inhomogeneity composing of ferromagnetic grains embedded in non-ferromagnetic matrix at the interface. The polarization state of the PZT induces a spin-pinning effect on the spin clusters, causing a variation of the M/M(10K) ratio in ZFC, the divergent temperature, and the hysteresis loop characteristics. In chapter 7, the ferroelectric field effect on modulating the magnetic properties of La0.75Sr0.25MnO3/PZT/La0.75Sr0.25MnO3 trilayers epitaxially deposited on Nb-doped STO was investigated. The polarization of the PZT leads to a spin-pinning effect, which decreases the Tc and the magnetization of the LSMO layers and increases the coercive field for magnetic switching. A possible presence of a FM-AFM exchange coupling between the FM and the spin-pinned layers is also demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
16

Mosey, Aaron. "Voltage Controlled Non-Volatile Spin State and Conductance Switching of a Molecular Thin Film Heterostructure." Thesis, 2021. http://dx.doi.org/10.7912/C2/10.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Thermal constraints and the quantum limit will soon put a boundary on the scale of new micro and nano magnetoelectronic devices. This necessitates a push into the limits of harnessable natural phenomena to facilitate a post-Moore’s era of design. Requirements for thermodynamic stability at room temperature, fast (Ghz) switching, and low energy cost narrow the list of candidates. Here we show voltage controllable, room temperature, stable locking of the spin state, and the corresponding conductivity change, when molecular spin crossover thin films are deposited on a ferroelectric substrate. This opens the door to the creation of a non-volatile, room temperature, molecular multiferroic gated voltage controlled device.
APA, Harvard, Vancouver, ISO, and other styles
17

Amorim, Carlos de Oliveira. "Experimental and modeling studies of magnetoelectric multiferroic heterostructured materials." Doctoral thesis, 2019. http://hdl.handle.net/10773/27751.

Full text
Abstract:
Multiferroic materials are a very exotic type of materials which present simultaneously two or more ferroic properties. Magnetoelectric multiferroics, in particular, are a very prominent class of materials, mainly due to their outstanding foreseen applications such as magnetic sensors, energy harvester/conversion devices, and high efficiency memories. However, intrinsic magnetoelectric materials are quite rare and do not have, yet, the adequate properties to the everyday applications. One of the reasons for this to occur is due to the requirements for magnetism and ferroelectricity in matter being a priori contradictory, since the former needs unfilled dn orbitals, while the latter favours d0 orbitals. Nevertheless, extrinsic magnetoelectric multiferroics do not suffer from this problem because they do not share the same phase, hence being a very promising approach to engineer adequate magnetoelectric multiferroics. This thesis focus on the study of Fe and BaTiO3 systems as a means of achieving novel magnetoelectric effects. It is shown that a peculiar type of BaTiO3:Fe auto-composite presents an ordered magnetic behaviour, despite the concentration of Fe being as low as 113 atomic ppm. The Fe magnetization displays two abrupt changes in its spontaneous value, one with M/M ≈ 32% and the other with M/M ≈ 14%. These magnetic transitions are correlated the BaTiO3 orthorhombic↔tetragonal and tetragonal↔cubic ferroelectric phase transitions. This magnetoelectric auto-composite was the motivation to resort to Density Functional Theory (DFT) modeling as a means to discover the microscopic mechanism(s) behind such a strong magnetoelectric effect. The study of an iron monolayer placed upon several possible BaTiO3 unit cells lead to the discovery of several interfaces with abrupt changes in their spontaneous magnetization, either through the enhancement and reduction of the Fe magnetic moments, or through the change between antiferromagnetic and ferromagnetic order of the Fe monolayer. However, the highlight of these DFT studies lies in the discovery of a particular kind of interfaces, namely in the BTO221_2ndFe and BTO99_2ndFe supercells, where there is a High-Spin–Low-Spin state transition which can quench completely the atomic magnetic moment of each of Fe atom, depending on the local crystal field felt by the Fe atoms. Based on this specific effect, where it is possible to turn on and off the magnetic moments of the Fe atoms, a magnetoelectric multiferroic device was proposed. Knowing the importance of the crystal field for the High-Spin–Low-Spin state transition, a thorough study regarding the Electric Field Gradient (EFG) of each possible BaTiO3 site was performed, resorting to a combined study of DFT and Perturbed Angular Correlations (PAC) spectroscopy. In this study, it was concluded that the PAC spectroscopy is not the most adequate hyperfine technique to be used in a quantitative study of the BaTiO3/Fe interfaces EFG tensor, due to the non-negligible effects of the radioactive probe on the BaTiO3 matrix. Finally, the deposition of BTO/Fe heterostructures on LaAlO3, MgO, Al2O3 and SrTiO3 substrates using RF-Sputtering, and the Molecular Beam Epitaxy (MBE) deposition of Fe layers on BaTiO3 cut at the (100), (110) and (111) planes were performed as an attempt to recreate the interfaces with the most appealing magnetoelectric effects predicted in the DFT modeling. The thin films deposited using sputtering showed the growth of many Fe, Ba-Ti-O and Fe-Ti-O oxides depending strongly on their substrate, as well as in the deposition and annealing conditions. Still no magnetoelectric coupling was observed in such thin films. On the other hand the Fe thin films deposited on BaTiO3 substrates showed large magnetoelectric couplings between the BaTiO3 ferroelectric phase transitions and the magnetization of the Fe layers (similarly to what happened in the BaTiO3:Fe auto-composite). The magnitude of this magnetoelectric couplings is strongly correlated with the BTO interface where the Fe was deposited, showing a huge change in spontaneous magnetization and coercivity for the rhombohedral↔orthorhombic ferroelectric phase transition up to M/M ≈ 148% and HC/HC ≈ 183% respectively for the (110) case.
Materiais Multiferróicos são um tipo de materiais bastante exótico que apresentam simultaneamente dois ou mais tipos de propriedades ferróicas. Multiferróicos magnetoelétricos, em particular, são uma classe de materiais muito proeminente, principalmente devido às suas espantosas aplicações tecnológicas, tais como sensores magnéticos, dispositivos de conversão/colheita de energia, e memórias the alta eficiência. Todavia, materiais magnetoelétricos intrínsecos são verdadeiramente raros e ainda não possuem propriedades adequadas ao uso do dia-a-dia. Uma das razões para que isto aconteça prende-se com o facto dos requisitos para existência de magnetismo e ferroeletricidade na matéria serem a priori contraditórios, uma vez que enquanto os primeiros necessitam de orbitais dn semipreenchidas, os últimos tendem a favorecer orbitais d0. Porém, Multiferróicos magnetoelétricos extrínsecos não sofrem desta limitação pois não partilham a mesma fase sendo portanto uma abordagem promissora para a construção de um bom Multiferróico magnetoelétrico. Esta tese focar-se-á no estudo de sistemas contendo Fe e BaTiO3 como meio de se alcançarem novos efeitos magnetoelétricos. Um auto-compósito de BaTiO3:Fe é apresentado, que apesar da sua diminuta concentração de Fe (apenas 113 ppm atómicas), ainda assim apresenta um comportamento magnético ordenado. A magnetização do Fe apresenta duas variações bruscas no seu valor espontâneo, uma com M/M ≈ 32% e outra com M/M ≈ 14%. Estas transições magnéticas estão correlacionadas com as transições de fase ferroelétricas do BaTiO3 (ortorrômbica↔tetragonal e tetragonal↔cúbica). Este auto-compósito magnetoelétrico foi a motivação par ao uso da Teoria de Densidade Funcional (DFT) como meio para descobrir os mecanismos microscópicos por trás deste acoplamento magnetoelétrico tão intenso. O estudo de uma mono-camada de Fe colocada sobre várias células unitárias de BaTiO3 levaram à descoberta de várias interfaces com mudanças abruptas na sua magnetização espontânea, ora através do aumento ou diminuição dos momentos magnéticos do Fe, ora através da mudança entre a natureza antiferromagnética ou ferromagnética da camada de Fe. Contudo, o destaque dos estudos de DFT reside na descoberta de um tipo particular de interfaces onde ocorre uma transição de estado High-Spin–Low-Spin que consegue colapsar completamente o momento magnético atómico dos átomos de Fe, dependendo do campo cristalino local sentido por esses mesmos átomos. Baseado neste efeito, um dispositivo Multiferróico magnetoelétrico foi proposto. Sabendo a importância do campo cristalino para as transições de estado High-Spin–Low-Spin state, um estudo minucioso foi feito relativo ao gradiente de campo elétrico (EFG) nos sítios possíveis do BaTiO3, usando um estudo combinado entre Correlações Angulares Perturbadas (PAC) e DFT. Neste estudo, concluiu-se que PAC não é uma técnica hiperfina adequada para o estudo quantitativo do tensor EFG de interfaces de BaTiO3/Fe, dados os efeitos não desprezáveis das sondas radioativas na matriz de BaTiO3. Finalmente, foi feita a deposição de Heteroestruturas de BTO/Fe em substratos de LaAlO3, MgO, Al2O3 e SrTiO3 usando RF-Sputtering, assim como deposição de camadas de Fe em substratos de BaTiO3 cortados nos planos (100), (110) e (111) planes, usando Molecular Beam Epitaxy (MBE), numa tentativa de recrear as interfaces com efeitos magnetoelétricos mais apelativos, previstos pela modelação DFT. Os filmes finos depositados por sputtering mostraram o crescimento de múltiplos óxidos de Fe, Ba-Ti-O e Fe-Ti-O dependendo fortemente do substrato onde foram crescidos, assim como das condições de deposição e tratamentos térmicos. Porém, nenhum efeito magnetoelétrico foi observado nestes filmes. Por outro lado, os filmes depositados nos substratos de BaTiO3 mostraram grandes acoplamentos magnetoelétricos entre as fases ferroelétricas do BTO e a magnetização das camadas de Fe (à semelhança do que aconteceu no auto-compósito de BaTiO3:Fe). A ordem de grandeza destes acoplamentos está fortemente correlacionada com a interface do BTO onde o Fe foi depositado, apresentando uma enorme variação na magnetização espontânea e na coercividade para o caso da transição romboédrica↔ortorrômbica, até M/M ≈ 148% e HC/HC ≈ 183% respetivamente para o caso da orientação (110).
Tese realizada com apoio financeiro da FCT através da bolsa SFRH/BD/93336/2013.
Programa Doutoral em Física
APA, Harvard, Vancouver, ISO, and other styles
18

Chaudhuri, Ayan Roy. "Studies On Epitaxial Perovskite Biferroic Heterostructures." Thesis, 2009. http://hdl.handle.net/2005/670.

Full text
Abstract:
The present research work focuses on the fabrication and characterization of epitaxial heterostructures of 0.7 Pb(Mg1/3N2/3)O3 – 0.3 PbTiO3 (PMN-PT) and La0.6Sr0.4MnO3 (LSMO) using multi target pulsed laser ablation technique. Different heterostructures such as bilayered thin films with different individual layer thickness; symmetric and asymmetric superlattices of different periodicities were fabricated. Roles of individual layer thickness, elastic strain and interfaces between PMN-PT and LSMO layers on different physical properties were studied. An attempt has been made to understand the influence of the charge depleted interface states in addition to the probable strain mediated elastic coupling effect on the observed magneto-dielectric response in these engineered heterostructures. Chapter 1 provides a brief introduction to the multiferroic materials, occurrence of magnetoelectric (ME) coupling in them, their possible technological applications and the challenges involved. A short historical account of the multiferroic research is discussed to emphasize the importance of artificial multiferroics, particularly the engineered thin film heterostructures. Finally the specific objectives of the current research are outlined. Chapter 2 deals with the various experimental studies carried out in this research work. It gives the details of the experimental set up and the basic operation principles of various structural and physical characterizations of the materials prepared. A brief explanation of material fabrication, structural, micro structural and physical property measurements is discussed. Chapter 3 addresses the phase formation, structural and microstructural features of the engineered heterostructures fabricated epitaxially on single crystalline LaAlO3 (100) substrates. A thin layer of LaNiO3 used as the bottom electrode material for electrical characterizations was grown on the bare substrate prior to the fabrication of the PMN-PT/LSMO heterostructures. The structural and microstructural features of different individual layers were also studied by fabricating single layer thin films of the materials. The effects of individual layer thicknesses on the surface roughness, grain size and lattice strain of the heterostructures are discussed. Chapter 4 deals with the ferroelectric studies of the PMN-PT/LSMO epitaxial heterostructures. Polarization hysteresis (P-E), capacitance – voltage (C-V) and pulsed polarization (PUND) measurements were carried out as functions of applied voltage, frequency and delay time to characterize the ferroelectric properties of the heterostructures. All the bilayered heterostructures exhibited robust ferroelectric response and contribution of non – remnant components to their polarization behaviour were observed from the P-E studies. The symmetric superlattices did not exhibit any ferroelectricity due to high leakage current conduction. After optimizing the LSMO and PMN-PT layer thicknesses ferroelectricity was observed in the asymmetric superlattices accompanied by substantial reduction in the leakage current conduction. The P-E loops were found to be asymmetrically shifted along the electric field axis in all the superlattices indicating the presence of dielectric passive layers and strong depolarizing fields at the interfaces between PMN-PT and LSMO. Chapter 5 deals with the ferromagnetic studies of the PMN-PT/LSMO heterostructures. All the heterostructures exhibited ferromagnetic behaviour in the temperature range of 10 K – 300 K with an in plane magnetic easy axis ([100]) compared to the out of plane ([001]) direction. The magnetization behaviour of the bilayers and superlattices as a function of magnetic field strength, temperature and different individual layer thickness of PMN-PT and LSMO are discussed in terms of the oxygen deficiency, magnetic dead layers and lattice strain effects in these engineered epitaxial heterostructures. Chapter 6 addresses the magneto-dielectric response, dielectric properties and ac conduction properties of the engineered biferroic heterostructures. In order to investigate the manifestation of strain mediated ME coupling in these heterostructures their dielectric response as a function of ac electric signal frequency have been studied under different static magnetic fields over a wide range of temperatures. The appearance of magneto-capacitance and its dependence on magnetic field strength and temperature along with the magnetoresistive characteristics of the heterostructures suggested that the charge depleted interfaces between PMN-PT and LSMO can have an effect on the observed dielectric response in addition to the probable strain mediated ME coupling. Dielectric characterization of the heterostructures performed over a wide range of temperature indicated a Maxwell-Wagner type relaxation mechanism. The manifestation of Maxwell-Wagner effect and the very low activation energy of ac conductivity obtained from the ac conduction studies revealed the strong influence of the charge depleted interfaces between PMN-PT and LSMO on the dielectric properties of the heterostructures. Chapter 7 deals with the dc leakage current conduction characteristics of the heterostructures. The leakage current characterization was performed over a wide range of temperature and analyzed in the framework of different models to investigate the leakage mechanism. All the heterostructures were found to obey the power law I∝Vα over the entire range of temperature with different values of α at different applied voltages. The bilayered heterostructures exhibited ohmic conduction in the lower electric field region and space charge limited conduction was observed at higher electric fields. On the other hand the low field dc conduction behaviour of the superlattices could not be attributed unambiguously to a single mechanism. Depending on the superlattice periodicity the low field conduction behaviour was dominated by either Poole-Frenkel (PF) emission or a combined contribution from the PF effect and ohmic conduction. At higher electric fields all the superlattices exhibited space charge limited conduction. Chapter 8 gives the summary and conclusions of the present study and also discusses about the future work that could give more insight into the understanding of the engineered epitaxial biferroic heterostructures.
APA, Harvard, Vancouver, ISO, and other styles
19

(9767150), Aaron George Mosey. "VOLTAGE CONTROLLED NON-VOLATILE SPIN STATE AND CONDUCTANCE SWITCHING OF A MOLECULAR THIN FILM HETEROSTRUCTURE." Thesis, 2021.

Find full text
Abstract:
Thermal constraints and the quantum limit will soon put a boundary on the scale of new micro and nano magnetoelectronic devices. This necessitates a push into the limits of harnessable natural phenomena to facilitate a post-Moore’s era of design. Requirements for thermodynamic stability at room temperature, fast (Ghz) switching, and low energy cost narrow the list of candidates. Molecular electronic frontier orbital structure of some d-block transition metal ions in crystal fields will deform in response to their local energetic environment, giving rise to the eg and t2g suborbitals. More specifically, in an mononuclear Fe(II) complex, the energetic scale between these two orbitals yields an S=0 low spin diamagnetic state and an S=2 high spin paramagnetic state. Spin crossover complex [Fe{H2B (pz) 2 }2 (bipy)] will show locking of its spin state well above the transition temperature, with an accompanied change of conductivity, when placed in a polar environment. Here we show voltage controllable, room temperature, stable locking of the spin state, and the corresponding conductivity change, when molecular thin films of [Fe{H2B (pz) 2 }2 (bipy)] are deposited on a ferroelectric polyvinylidene fluoride hexafluropropylene substrate. This opens the door to the creation of a thermodynamically stable, room temperature, molecular multiferroic gated voltage device.
APA, Harvard, Vancouver, ISO, and other styles
20

Carvell, Jeffrey David. "Induced magnetoelectric coupling at a ferroelectric-ferromagnetic interface." 2013. http://hdl.handle.net/1805/3664.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Preparation and characterization of multiferroic materials in which ferroelectricity and ferromagnetism coexist would be a milestone for functionalized materials and devices. First, electric properties of polyvinylidene (PVDF) films fabricated using the Langmuir-Schaefer method have been studied. Films of different thickness were deposited on silicon substrates and analyzed using several techniques. X-ray diffraction (XRD) data showed that PVDF films crystallize at an annealing temperature above 130 °C. Polarization versus electric field (PE) ferroelectric measurements were done for samples prepared with electrodes. PE measurements show that the coercivity of the films increases as the maximum applied electric field increases. The coercivity dependence on the frequency of the applied electric field can be fitted as . The results also show that the coercivity decreases with increasing the thickness of PVDF film due to the pinning effect. Next, we have demonstrated that those PVDF properties can be controlled by applying an external magnetic field. Samples were created in a layered heterostructure, starting with a Fe thin film, PVDF above that, and followed by another thin film of Fe. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to study the interface between PVDF polymer films and ferromagnetic iron thin films. Conventional EXAFS was applied to identify the structure of a Fe film sandwiched between two PVDF layers. An electric signal was then applied to the polymer to study the effects polarizing the polymer has on the Fe atoms at the interface. This shows that the Fe atoms diffuse into the PVDF layer at the interface between the two layers. Polarizing the film causes further diffusion of Fe atoms into the polymer. We also found that as the applied magnetic field is changed, the switching of electric polarization for the PVDF displayed a dependence on the external magnetic field. We also noticed that both the coercivity and polarization for the PVDF polymer display hysteretic features as the applied magnetic field is changed. We also found that the thickness of both the iron layers and the PVDF layer has an effect on the magnetoelectric coupling in our samples. The same strain applied to a thicker PVDF layer becomes tougher to flip the polarization compared to a thinner PVDF layer. As the iron film thickness increases, the strain also increases, and the polarization of the PVDF polymer is more easily flipped. We also found that the magnetoelectric sensitivity increases as both the PVDF and iron layers increase in thickness. We have shown that it is possible to control the ferroelectric properties of a PVDF film by tuning the magnetic field in a heterostructure. Our experiments show a coupling between the electric polarization and applied magnetic field in multiferroic heterostructures much larger than any previously reported values. Previous reports have used inorganic materials for the ferroelectric layer. Organic polymers have an electric dipole originating at the molecular level due to atoms with different electronegativity that are free to rotate. To flip the polarization, the chains must rotate and the position of the atoms must change. This increases the force felt locally by those chains. Using this polymer, we are able to increase the magnetoelectric coupling.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography