Academic literature on the topic 'Multiferroic heterostructure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiferroic heterostructure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multiferroic heterostructure"

1

Hajlaoui, Thameur, Catalin Harnagea, and Alain Pignolet. "Magnetoelectric Coupling in Room Temperature Multiferroic Ba2EuFeNb4O15/BaFe12O19 Epitaxial Heterostructures Grown by Laser Ablation." Nanomaterials 13, no. 4 (February 17, 2023): 761. http://dx.doi.org/10.3390/nano13040761.

Full text
Abstract:
Multiferroic thin films are a promising class of multifunctional materials, since they allow the integration of multiple functionalities within a single device. In order to overcome the scarcity of single phase multiferroics, it is crucial to develop novel multiferroic heterostructures, combining good ferroelectric and ferromagnetic properties as well as a strong coupling between them. For this purpose, Ba2EuFeNb4O15/BaFe12O19 multiferroic magnetoelectric bilayers have been epitaxially grown on niobium doped SrTiO3 (100) single crystal substrates by pulsed laser deposition. The simultaneous presence of both ferroelectric and magnetic properties—due, respectively, to the Ba2EuFeNb4O15 and BaFe12O19 components—was demonstrated at room temperature, attesting the multiferroic nature of the heterostructure. More interestingly, a strong magnetoelectric coupling was demonstrated (i) by manipulating the ferroelectric properties via an external magnetic field, and conversely, (ii) by tuning the magnetic properties via an external electric field. This strong magnetoelectric coupling shows the high interdependence of both ferroic orders in the Ba2EuFeNb4O15/BaFe12O19 heterostructure, mediated by elastic (epitaxial) strain at the interfaces.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Jiawei, Aitian Chen, Peisen Li, and Sen Zhang. "Magnetoelectric Memory Based on Ferromagnetic/Ferroelectric Multiferroic Heterostructure." Materials 14, no. 16 (August 17, 2021): 4623. http://dx.doi.org/10.3390/ma14164623.

Full text
Abstract:
Electric-field control of magnetism is significant for the next generation of large-capacity and low-power data storage technology. In this regard, the renaissance of a multiferroic compound provides an elegant platform owing to the coexistence and coupling of ferroelectric (FE) and magnetic orders. However, the scarcity of single-phase multiferroics at room temperature spurs zealous research in pursuit of composite systems combining a ferromagnet with FE or piezoelectric materials. So far, electric-field control of magnetism has been achieved in the exchange-mediated, charge-mediated, and strain-mediated ferromagnetic (FM)/FE multiferroic heterostructures. Concerning the giant, nonvolatile, and reversible electric-field control of magnetism at room temperature, we first review the theoretical and representative experiments on the electric-field control of magnetism via strain coupling in the FM/FE multiferroic heterostructures, especially the CoFeB/PMN–PT [where PMN–PT denotes the (PbMn1/3Nb2/3O3)1−x-(PbTiO3)x] heterostructure. Then, the application in the prototype spintronic devices, i.e., spin valves and magnetic tunnel junctions, is introduced. The nonvolatile and reversible electric-field control of tunneling magnetoresistance without assistant magnetic field in the magnetic tunnel junction (MTJ)/FE architecture shows great promise for the future of data storage technology. We close by providing the main challenges of this and the different perspectives for straintronics and spintronics.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Rui, Jiawei Jiang, Wenbo Mi, and Haili Bai. "Ferroelectric polarization tailored interfacial charge distribution to modify magnetic properties of two-dimensional Janus FeBrI/In2S3 heterostructures." Applied Physics Letters 120, no. 16 (April 18, 2022): 162401. http://dx.doi.org/10.1063/5.0085128.

Full text
Abstract:
The discovery of two-dimensional magnetic and ferroelectric materials provides a feasible opportunity to realize the nonvolatile electrical control of magnetic properties in van der Waals multiferroic heterostructures. Here, based on the density of functional theory, we study the electronic structures and magnetic properties of the Janus FeBrI/In2S3 multiferroic heterostructure. The Curie temperature and magnetic anisotropy energy (MAE) can be modulated by the ferroelectric polarization due to the interfacial charge redistribution. According to the orbital-resolved magnetocrystalline anisotropy energy ( EMCA) and the second-order perturbation theory, the difference of EMCA mainly stems from the change in electronic states near the Fermi level, which is associated with interfacial charge redistribution in different ferroelectric polarization directions. These findings not only reveal the physical mechanism of the change of MAE in detail but also suggest a feasible strategy to modulate the magnetic properties.
APA, Harvard, Vancouver, ISO, and other styles
4

Guo, Xiaomei, Yingyin K. Zou, Kewen K. Li, Qiushui Chen, and Hua Jiang. "Formation of multiferroic thin-film heterostructure (BiAl:YIG/La:PMNT) via a wet chemical process." Journal of Materials Research 22, no. 8 (August 2007): 2125–29. http://dx.doi.org/10.1557/jmr.2007.0266.

Full text
Abstract:
A novel multiferroic thin-film heterostructure exhibiting both ferromagnetic (FM) and ferroelectric (FE) properties, as well as magneto-optic (MO) and electro-optic (EO) properties, was fabricated via a wet chemical route. Oxide buffer layers were used to allow the growth of ferroelectric lanthanum modified lead magnesium niobate titanate (La:PMNT) layer on top of ferromagnetic bismuth and aluminum substituted yttrium iron garnet (BiAl:YIG). X-ray diffractometer (XRD) analysis confirmed the formation of both crystalline structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to examine the surface and cross-section morphologies of the resulted heterostructure. Multiferroic properties of the film were investigated.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Guanjie, Xiaomin Li, Qiuxiang Zhu, Junliang Zhao, and Xiangdong Gao. "Integration of BaTiO3/CoFe2O4 multiferroic heterostructure on GaN semiconductor." CrystEngComm 21, no. 43 (2019): 6545–51. http://dx.doi.org/10.1039/c9ce00932a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kara-Murza S. V., Zhidel K. M., Korchikova N. V., Silcheva A. G., Tekhtelev Yu. V., Chizhov R. G., and Pavlenko A. V. "Investigation of the optical properties of a BiFeO-=SUB=-3-=/SUB=-/SrTiO-=SUB=-3-=/SUB=- heterostructure grown on an Al-=SUB=-2-=/SUB=-O-=SUB=-3-=/SUB=-(0001) substrate by RF cathode sputtering." Optics and Spectroscopy 130, no. 7 (2022): 839. http://dx.doi.org/10.21883/eos.2022.07.54724.3512-22.

Full text
Abstract:
The phase composition, structure, and optical properties of the BiFeO3/SrTiO3/Al2O3 (c-cut) heterostructure have been studied using XRD analysis, spectrophotometry, and multi-angle ellipsometry. BFO/STO/Al2O3 heterostructures have been obtained by high-frequency cathode sputtering in an oxygen atmosphere using the intermittent deposition technology. It was found that the BiFeO3 and SrTiO3 layers grew with an orientation in the direction of the [111] crystallographic axis parallel to the normal to the Al2O3 substrate. It has been shown that the damaged layer on the surface of the heterostructure does not exceed 2-3 nm, and no signs of the presence of boundary layers at the Al2O3-SrTiO3 and SrTiO3-BiFeO3 interfaces have been identified. The dispersion dependences of the refractive indices of BFO and STO layers are calculated. The reasons for the revealed regularities are discussed. Keywords: thin films, multiferroic, optical properties, ellipsometry, bismuth ferrite.
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Hang, Bo Wang, Ji Qi, Mei Liu, Fei Teng, Linglong Hu, Yuan Zhang, Chaoqun Qu, and Ming Feng. "Modulation of spin dynamics in Ni/Pb(Mg1/3Nb2/3)O3-PbTiO3 multiferroic heterostructure." Journal of Advanced Ceramics 11, no. 3 (January 6, 2022): 515–21. http://dx.doi.org/10.1007/s40145-021-0548-0.

Full text
Abstract:
AbstractMotivated by the fast-developing spin dynamics in ferromagnetic/piezoelectric structures, this study attempts to manipulate magnons (spin-wave excitations) by the converse magnetoelectric (ME) coupling. Herein, electric field (E-field) tuning magnetism, especially the surface spin wave, is accomplished in Ni/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) multiferroic heterostructures. The Kerr signal (directly proportional to magnetization) changes of Ni film are observed when direct current (DC) or alternative current (AC) voltage is applied to PMN-PT substrate, where the signal can be modulated breezily even without extra magnetic field (H-field) in AC-mode measurement. Deserved to be mentioned, a surface spin wave switch of “1” (i.e., “on”) and “0” (i.e., “off”) has been created at room temperature upon applying an E-field. In addition, the magnetic anisotropy of heterostructures has been investigated by E-field-induced ferromagnetic resonance (FMR) shift, and a large 490 Oe shift of FMR is determined at the angle of 45° between H-field and heterostructure plane.
APA, Harvard, Vancouver, ISO, and other styles
8

Kirby, S. D., M. Polking, and R. B. van Dover. "Epitaxial (SrTiO3∕NiO)n∕MgO multiferroic heterostructure." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 25, no. 1 (January 2007): 37–41. http://dx.doi.org/10.1116/1.2388952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Hongyang, Hideo Kimura, Zhenxiang Cheng, Xiaolin Wang, Qiwen Yao, Minoru Osada, and Baowen Li. "Room temperature multiferroic heterostructure: Nd: BiFeO3/YMnO3." Journal of Crystal Growth 365 (February 2013): 19–23. http://dx.doi.org/10.1016/j.jcrysgro.2012.12.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MA, C. B., X. G. TANG, D. G. CHEN, Q. X. LIU, Y. P. JIANG, D. P. XIONG, and Y. C. ZHOU. "REDUCED LEAKAGE CURRENT AND ENHANCED MAGNETIC PROPERTIES OF (Bi,Nd)FeO3 THIN FILMS GROWN ON (Ba,Sr)TiO3 BOTTOM LAYER." Functional Materials Letters 05, no. 03 (September 2012): 1250032. http://dx.doi.org/10.1142/s1793604712500324.

Full text
Abstract:
A multiferroic heterostructure composed of ( Bi 0.875 Nd 0.125) FeO 3 (BNF) are grown on ( Ba 0.65 Sr 0.35) TiO 3(BST) buffered Pt/Ti/SiO2/Si(100) substrate by rf-magnetron sputtering. The heterostructure BNF/BST exhibits a quite low leakage current (3.7 × 10-7 A/cm2 at 300 kV/cm) and dielectric loss (0.0036 at 100 kHz) at room temperature. The saturated magnetization and the coercive field of the BST/BNF heterostructure are 37.7 emu/cm3 and 357.6 Oe, respectively. The low leakage current owed to the action of BST in the charge transfer between BNF and the bottom electrode, the coupling reaction between BST and BNF films. And the better crystallization in BNF/BST heterostructure thin film lead to the ferromagnetic properties enhanced.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Multiferroic heterostructure"

1

Vaghefi, Seyedeh Pegah Mirzadeh. "Structural and physical properties studies on multiferroic oxide films and heterostructures." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18502.

Full text
Abstract:
Doutoramento em Engenharia Física
O presente trabalho de doutoramento é um estudo de propriedades físicas e aspectos estruturais de filmes de óxidos e heteroestruturas multiferróicas, englobando técnicas de caracterização do nível macroscópico ao microscópico. O objectivo principal é a compreensão de novas heteroestruturas epitaxiais multifuncionais e as suas interfaces para junções de túnel magnetoelétricas e filtros de spin. Os principais materiais em estudo foram manganitas à base de La dopadas com iões divalentes (ba, Sr), apresentando efeito magnetoelétrico, sendo preparadas em diferentes substratos e diferentes técnicas de crescimento, optimizadas para epitaxia e qualidade de interface. O estudo combinado de propriedades eléctricas e magnéticas permitiu estabelecer as condições necessárias para a aplicação dos materiais multiferróicos em estudo, por técnicas experimentais apresentadas neste trabalho. O trabalho consistiu no estudo sistemático de microestrutura de filmes finos de La0:7Sr0:3MnO3 em substratos de SrTiO3, preparados por pulsed laser deposition, o filme fino de La0:9Ba0:1MnO3 e a heteroestrutura La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substrato de Al2O3, e filme fino de La0:9Ba0:1MnO3, BaTiO3 e heteroestrutura de La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substrato de Si, preparado por RF magnetron sputtering. A caracterização estrutural das amostras foi feita principalmente por difracção de raio-X (XRD) convencional e de alta resolução e Microscopia de Transmissão de Alta Resolução (HRTEM). A composição química foi analisada por Electron Dispersion Spectroscopy (EDS), Rutherford backscattering spectroscopy (RBS) e energy filtered transmission electron microscopy (EFTEM). As medidas de magnetização forram realizada com a um magnetómetro superconducting quantum interference device (SQUID). A análise da topografia e efeitos locais foi realizada por microscopia de varimento de ponta usando microscopia da Força Atómica (AFM) e de resposta piezoeléctronica (PFM). Os resultados mostram claramente uma evolução da microestrutura dos filmes finos de La0:7Sr0:3MnO3, á medida que aumenta a sua espessura, passando de uma estrutura policristalina no filme mais fino (13.5 nm) a colunar inclinado (45 nm e 200 nm), a uma estrutura ramificada no filme mais espesso (320 nm). A alteração na estrutura do filme é devida à tensão pelo substrato e deformação da estrutura nas etapas iniciais de crescimento, onde se detectaram fronteiras anti-phase e maclas. A evolução da estrutura modificou as propriedades magnéticas dos filmes a baixa temperatura (abaixo da temperatura de transição estrutural do substrato de SrTiO3), mostrando magnetização em excesso e defeito, para espessuras abaixo e acima de 100 nm, respectivamente. Análises STEM-EELS e EFTEM mostraram a diferença em composição elementar dos filmes perto das fronteiras e na interface com o substrato.No âmbito do plano de trabalhos de doutoramento, o segundo substrato consiste em estudar as propriedades físicas e estruturais de filmes finos de La0:9Ba0:1MnO3 e heteroestruturas La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substratos de Al2O3, revelando estruturas altamente orientadas. A razão La/Ba do filme e heteroestrutura é drasticamente diferente do alvo providenciado, La0:7Ba0:3MnO3, como provado por XRD, RBS e transições de fase magnéticas. As propriedades magnéticas e eléctricas das estruturas mostraram uma forte dependência na cristalinidade do filme e da heteroestrutura. A parte final do trabalho é dedicada aos filmes de La0:9Ba0:1MnO3, BaTiO3 e a heteroestrutura de La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substrato de Si, que em comparação com as estruturas em substrato de ALO, provaram o efeito da cristalinidade nas propriedades magnéticas, eléctricas e de magneto-resistência do filme e heteroestrutura. Foi mostrado que um grau superior de cristalinidade leva a uma mais elevada magnetização, reduzindo a resistividade das estruturas. Pela primeira vez, um estudo de deformação de topografia por aplicação de uma tensão dc externa foi feito num filme fino de BaTiO3 em Si, usando uma técnica de poling num microscópio de força piezoresponse. Os resultados mostraram a capacidade de uma modificação controlada da superfície, por aplicação de uma voltagem externa nointervalo 14V < Vapp < 20V. Abaixo destes valores, não se observou alguma deformação na topografia, enquanto acima deste intervalo, a 30V, a superfície foi completamente danificada. A mudança topográfica produzida mostrou estabilidade no tempo, onde após a aplicação de 20V, a área modificada alcançou 83% da altura as-poled ( 9 nm) em 90 minutos, a 7,4 nm. A resposta assimétrica de piezoresponse da área poled foi associada à existência de um campo eléctrico interno na amostra, que foi também provado através de medidas de espectroscopia de switching no filme fino. A heteroestrutura no substrato de Si mostraram o mesmo fenómeno que a mono-camada de BaTiO3, onde o arranjo de heteroestrutura realça o efeito de voltagem aplicada na topografia. Aplicando 10V, a estrutura da superfície foi alterada na heteroestrutura e houve uma modificação visível da camada de BaTiO3, alterando também a topografia da camada superior de La0:9Ba0:1MnO3.
This present PhD work made a study of structural aspects and physical properties of the oxide films and multiferroic heterostructures, encompassing the techniques from macroscopic level to microscopic description. The understanding of novel multifunctional epitaxial heterostructures and their interfaces for magneto-electrically driven tunnel junctions and spin-filters is the central objective. The main materials in study were La based doped manganites with magnetoelectric effect prepared on different substrates and growth conditions, optimized for epitaxy and interface quality. The combined study of electric and magnetic properties allowed us examining the conditions required for application of the studied multiferroic materials and experimental techniques are presented in this work. The work consists of three main substrates, a systematic study of microstructure of La0:7Sr0:3MnO3 thin films on SrTiO3 substrate, prepared by pulsed laser deposition, the La0:9Ba0:1MnO3 thin film and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Al2O3 substrate, and the La0:9Ba0:1MnO3 thin film, BaTiO3 and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Si substrate, prepared by RF magnetron sputtering. Main structural characterization of samples was performed by conventional and high resolution X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM); chemical composition was determined by Electron Dispersion Spectroscopy (EDS), Rutherford Backscattering Spectroscopy (RBS) and Energy Filtered Transmission Electron Microscopy (EFTEM); Magnetization measurements done with a Superconducting Quantum Interface Device (SQUID) magnetometer. Surface probing of topography and local effects was performed, using Atomic Force (AFM) and Piezo-Response (PFM) Microscopy. Results clearly showed that there is an evolution in the microstructure of the La0:7Sr0:3MnO3 thin films, by increasing their thickness, changing from polycrystalline structure in the thinnest film (13.5 nm) to tilted columnar structure(45 nm and 200 nm) and to a branched structure in the thickest film (320 nm). The change in the structure of the film is due to the strain from the substrate and deformation of the structure in the early stages of the growth, where anti-phase boundaries and twinning were detected. The evolution of the structure modified the low temperature (below structural phase transition of SrTiO3 substrate) magnetic properties of the films, showing in-excess and in-defect magnetization, below and above 100 nm thickness, respectively. Also, STEM-EELS and EFTEM analysis showed the difference in the elemental composition of the films near the boundaries and interface with the substrate.In the scope of the PhD work plan, the second substrate consists of studying the structural and physical properties of La0:9Ba0:1MnO3 thin film and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Al2O3 substrate, where they showed highly oriented structure. The La/Ba ratio of the single layer film and heterostructure is drastically different from the target, La0:7Ba0.3MnO3, proven by XRD, RBS, and magnetic phase transitions. The magnetic and electrical properties of the structures showed strong dependence on the crystallinity of the samples. The final part of the work is devoted to the La0:9Ba0:1MnO3 and BaTiO3 thin films and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Si substrate, which in comparison with the structures on Al2O3 substrate, highlights the influence of crystallinity on magnetic, ferro-electrical and magnetoresistance properties of the film and heterostructure. It is shown that higher degree of crystallinity leads to higher magnetization and lowers the resistivity. For the first time, a study of the topography deformation by applying a dcexternal voltage was done on BaTiO3 thin film on Si, using a poling technique in a piezoresponse force microscope. The results show the ability of controlled modification of the surface, by applying an external voltage/electric field in the range of 14V< Vapp<20V. Below this range, no deformation is observed on the topography, and above this interval, at 30V, the surface is completely damaged. The produced topographical change show stabilization in respect to time, where after applying 20V, the modified area reaches its 83% of the as-poled height ( 9nm) in 90 minutes, to 7.4 nm. The asymmetrical response in the piezoresponse of the poled area is related to the existence of an internal built-in electric field in the sample, which is also confirmed by performing switching spectroscopy measurements on the single layer. The heterostructure on the Si substrate shows the same phenomena, as the BTO single layer, where the heterostructure arrangement enhances the applied voltage effect on the topography. With applying 10V, the structure of the surface changes in the heterostructure and a visible modification of BaTiO3 layer, changing also the topography of La0:9Ba0:1MnO3 top layer is observed.
APA, Harvard, Vancouver, ISO, and other styles
2

MOTTI, FEDERICO. "STRAIN-MEDIATED MAGNETO ELECTRIC COUPLING AND BEYOND: CASE STUDIES BY IN-OPERANDO SPECTROSCOPY." Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/696952.

Full text
Abstract:
The work presented in this thesis addresses the Electrical control of Magnetism. Its implementation in multiferroic heterostructures may provide an ideal solution to efficiently manipulate magnetism at the nanoscale. In-operando spectroscopic techniques, in which electric and magnetic field can be applied on the sample during the experiment, are a powerful tool to understand the different mechanisms at the origin of magneto-electric coupling in multiferroic heterostructures. In this thesis X-ray Magnetic Circular Dichroism (XMCD), Magneto Optical Kerr Effect (MOKE) and related techniques were employed in in-operando experiments to investigate two prototypical systems composed by ferromagnetic thin films deposited on ferroelectric crystals. In the first one ultrathin La0.65Sr0.35MnO3 (LSMO) films were deposited epitaxially on BaTiO3 (BTO) ferroelectric substrates. It was shown that magnetic phase transitions are induced in LSMO both by variations in temperature, corresponding to structural transitions of BTO, and also by applied electric field, which results in ferroelectric domain rotations in BTO. The results can be explained comprehensively in terms of strain, which tunes the competition between ferro- and antiferro-magnetic interactions in manganites. The second one concerns metallic Fe deposited on 60% PbMg1/3Nb2/3O3 - 40% PbTiO3 (PMN-PT) substrates. Local variations of the magnetic anisotropy, fully reversible, are observed when the ferroelectric polarization of PMN-PT is switched between opposite directions out-of-plane. Correspondingly, surface cracks appear and disappear reversibly on the surface of the sample. The relation between these morphological and magnetic modifications is discussed. These results elude interpretations based on the most common mechanisms for magneto-electric coupling, suggesting that morphology could be considered as a new ingredient for electrical control of magnetism.
APA, Harvard, Vancouver, ISO, and other styles
3

Jeon, Hyung Min. "Multifunctional Oxide Heterostructures For Next-Generation Tunable RF/Microwave Electronics." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1578950463103112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Min. "Structure-Property Relations on Strain-Mediated Multiferroic Heterostructures." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/95823.

Full text
Abstract:
Multiferroic thin-film heterostructures have attracted a great deal of attention due to the increasing demand for novel energy-efficient micro/nano-electronic devices. Both single phase multiferroic materials like BiFeO3 (BFO) thin films, and strain-mediated magnetoelectric (ME) nanocomposites, have the potential to fulfill a number of functional requirements in actual applications—principally, direct control of magnetization by the application of an electric field (E) and vice-versa. From the perspective of material science, however, it is essential to develop a fuller understanding of the complex fabrication-structure-property triangle relationship for these multiferroic thin films. Pulsed laser deposition (PLD) was used in this study to fabricate diverse epitaxial thin film heterostructures on top of single crystal substrates. The crystal structure, phase transition processes (amongst nanodomain distributions, dielectric phases, magnetic spin states, etc.), and various ME-related properties were characterized under different E or temperature environments. Resulting data enabled us to determine the structure-property relationships for a range of multiferroic systems. First, BFO-based heterostructures were studied. Epitaxial BFO thin films were deposited on top of (001)-oriented Pb(Mg1/3Nb2/3)O3-30PbTiO3 (PMN-30PT) single crystal substrates. The strain states of BFO and crystal structural phases were tunable by E applied on the PMN-30PT via both the in-plane and out-of-plane modes. The strain-mediated antiferromagnetic state changes of BFO were also studied using neutron diffraction spectroscopy under E. Then, CoFe2O4(CFO)/tetragonal BFO nanocomposites were successfully fabricated on top of (001)-oriented LaAlO3 single crystal substrates. The surface morphology, crystal structure, magnetic properties, and ME effects were evaluated and compared with CFO/rhombohedral BFO nanocomposites. To enhance the performance of ME heterostructures with PMN-PT substrates, PMN-30PT single crystals with nanograted electrodes were also studied, which evidenced an enhancement in piezoelectric properties and dielectric constant by 36.7% and 38.3%, respectively. X-ray diffraction reciprocal space mapping (RSM) was used to monitor E-induced changes in the apparent symmetry and domain distribution of near-surface regions for the nanograted PMN-30PT crystals. Finally, in order to add antiferroelectric thin films to the family of strain-mediated multiferroic nanocomposites, epitaxial antiferroelectric thin films were prepared. Epitaxial (Pb0.98La0.02)(Zr0.95Ti0.05)O3 (PLZT) thin films were deposited on differently oriented SrTiO3 single crystal substrates. A thickness dependent incommensurate/commensurate antiferroelectric-to-ferroelectric phase transition was identified. The crystal structure, phase transition characteristics and pathways, and energy storage behaviors from room temperature to 250 ℃ were studied, enabling a more systematic understanding of PLZT-based AFE epitaxial thin films. To summarize, a range of epitaxial thin films were prepared using PLD, whose crystal structures and multiferroic properties were related through the strain. Accordingly, properties such as dielectricity, antiferroelectricity, and antiferromagnetism could be adjusted by E. This study sheds further light on the potential for designing desirable strain-mediated multiferroic nano-/micro-devices in the future.
Doctor of Philosophy
As a general definition, the class of materials known as multiferroics possess more than one ferroic order parameter. Multiferroic thin-film heterostructures have attracted a great deal of attention due to the increasing demand for novel energy-efficient micro/nano-electronic devices. Both single phase multiferroic materials like BiFeO3 (BFO) thin films and strain-mediated magnetoelectric (ME) nanocomposites show significant potential for use in next-generation devices due to the fact that one can control magnetic properties via the application of an electric field (E) and vice-versa. From the perspective of material science, however, it is essential to develop a fuller understanding of the complex fabrication-structure-property triangle relationship for these multiferroic thin films. In this study, diverse epitaxial thin film heterostructures were fabricated on top of single crystal substrates. The crystal structure, phase transition processes (amongst nanodomain distributions, dielectric phases, magnetic spin states, etc.), and various ME-related properties were characterized under different E or temperature environments. Resulting data enabled us to determine the structure-property relationships for a range of multiferroic systems. First, BFO-based heterostructures were studied. Epitaxial BFO thin films were deposited on top of (001)-oriented Pb(Mg1/3Nb2/3)O3-30PbTiO3 (PMN-30PT) single crystal substrates. The strain states of BFO and crystal structural phases were tunable by E applied on the PMN-30PT via both the in-plane and out-of-plane modes. The strain-mediated antiferromagnetic state changes of BFO were studied using powerful neutron diffraction spectroscopy under E. Then, CoFe2O4(CFO)/tetragonal BFO nanocomposites were successfully fabricated on top of (001)-oriented LaAlO3 single crystal substrates. The surface morphology, crystal structure, magnetic properties, and ME effects were discussed and compared with CFO/rhombohedral BFO nanocomposites. To enhance the performance of ME heterostructures with PMN-PT substrates, PMN-PT single crystals with nanograted electrodes were also studied, which evidenced an enhancement in piezoelectric properties and dielectric constant by 36.7% and 38.3%, respectively. X-ray diffraction reciprocal space mapping (RSM) technique was used to monitor E-induced changes in the apparent symmetry and domain distribution of near-surface regions for nanograted PMN-PT crystals. Finally, in order to add antiferroelectric thin films to the family of strain-mediated multiferroic nanocomposites, epitaxial antiferroelectric thin films were prepared. Epitaxial (Pb0.98La0.02)(Zr0.95Ti0.05)O3 (PLZT) thin films were deposited on differently oriented SrTiO3 substrates. A thickness dependent incommensurate antiferroelectric-to-ferroelectric phase transition was identified. The crystal structure, phase transition characteristics and pathways, and energy storage behaviors from room temperature to 250 ℃ were studied, enabling a more systematic understanding of PLZT-based AFE epitaxial thin films. To summarize, a range of epitaxial perovskite thin films were prepared, whose crystal structures and multiferroic properties were related through the strain. Accordingly, the properties such as dielectricity, antiferroelectricity, and antiferromagnetism could be adjusted by E. This study sheds further light on the potential for designing desirable strain-mediated multiferroic nano-/micro-devices in the future.
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Weigang. "Electric field control of magnetic properties in multiferroic heterostructures." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/13425/.

Full text
Abstract:
Recently, the use of an electric field (E-field) to control the magnetic properties of thin magnetic films has drawn intensive interest due to their important potential applications such as magnetoelectric random access memory (MERAM) devices and magnetoelectric (ME) sensor. In this thesis, the work first includes a study of the strain-mediated ME coupling strength manipulation by either changing ferromagnetic layer thickness (30-100 nm) or inserting a thin Ti buffer layer (0-10 nm). A large remanence ratio (Mr/Ms) tunability of 95% has been demonstrated in the 65 nm CoFe/PMN-PT heterostructure, corresponding to a giant ME constant (α) of 2.5 × 10-6 s/m, when an external E-field of 9 kV/cm was applied. Also, a record high remanence ratio (Mr/Ms) tunability of 100% has been demonstrated in the 50 nm CoFe/8 nm Ti/PMN-PT heterostructure, corresponding to a large ME constant α of 2.1 × 10-6 s/m, when the E-field of 16 kV/cm was applied. Furthermore, the E-field induced magnetic response was repeatable and quick even after 30 repeats were made. Secondly, a study of non-volatile magnetization change has been demonstrated in the 65 nm CoFe/24 nm Metglas/PMN-PT. In this heterostructure, the E-field created two new non-volatile remanence states, although the as-grown magnetic anisotropy was altered permanently, when the E-field between -6 kV/cm to +6 kV/cm was applied. Based on giant magnetoresistance (GMR) or anisotropic magnetoresistance (AMR), the MERAM memory cell was proposed for the fast, low-power and high-density information storage.
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Xin. "Optical characterization of ferromagnetic and multiferroic thin-film heterostructures." W&M ScholarWorks, 2015. https://scholarworks.wm.edu/etd/1539623372.

Full text
Abstract:
This thesis presents optical characterization of the static and dynamic magnetic interactions in ferromagnetic and multiferroic heterostructures with time-resolved and interface-specific optical techniques. The focus of the thesis is on elucidating the underlying physics of key physical parameters and novel approaches, crucial to the performance of magnetic recording and spintronic devices.;First, time-resolved magneto-optical Kerr effect (TRMOKE) is applied to investigate the spin dynamics in L10 ordered FePt thin films, where perpendicular magnetic anisotropy Ku and intrinsic Gilbert damping alpha0 are determined. Furthermore, the quadratic dependence of Ku and alpha0 on spin-orbit coupling strength xi is demonstrated, where xi is continuously controlled through chemical substitution of Pt with Pd element. In addition, a linear correlation between alpha0 and electron scattering rate 1/T e is experimentally observed through modulating the anti-site disorder c in the L10 ordered structure. The results elucidate the basic physics of magnetic anisotropy and Gilbert damping, and facilitate the design and fabrication of new magnetic alloys with large perpendicular magnetic anisotropy and tailored damping properties.;Second, ultrafast excitation of coherent spin precession is demonstrated in Fe/CoO heterostructures and La0.67Ca0.33MnO 3 thin films using TRMOKE technique. In the Fe/CoO thin films, Instant non-thermal ferromagnet (FM) -- antiferromagnet (AFM) exchange torque on Fe magnetization through ultrafast photo-excited charge transfer possesses in the CoO layer is experimentally demonstrated at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery is notably faster than the demagnetization procedure. In the La0.67Ca 0.33MnO3 thin films, pronounced spin precessions are observed in a geometry with negligible canting of the magnetization, indicating that the transient exchange field is generated by the emergent AFM interactions due to charge transfer and modification of the kinetic energy of eg electrons under optical excitation. The results will help promoting the development of novel device concepts for ultrafast spin manipulation.;Last, the interfacial spin state of the multiferroic heterostructure PbZr0.52Ti0.4803/La0.67Sr0.33MnO 3 and its dependence on ferroelectric polarization is investigated with interface specific magnetization induced second harmonic generation (MSHG). The spin alignment of Mn ions in the first unit cell layer at the heterointerface can be tuned from FM to AFM exchange coupled, while the bulk magnetization remains unchanged as probed with MOKE. The discovery provides new insights into the basic physics of interfacial magneto-electric (ME) coupling.
APA, Harvard, Vancouver, ISO, and other styles
7

Fina, Martínez Ignasi. "Ferroelectricity and magnetoelectric coupling in magnetic ferroelectrics and artificial multiferroic heterostructures." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/81981.

Full text
Abstract:
Multiferroic materials are those materials in which more than one ferroic order coexist. The most technologically appealing multiferroic materials are those showing ferromagnetism and ferroelectricity. Coupling between the mentioned ferroic orders, called magnetoelectric coupling, can yield to new interesting functional applications. In spintronics this coupling would result in the possibility of building magnetic memories controlled by electric field, or transistors where charge is contact-less controlled by a magnetic field. The ultimate goal of the present thesis is to explore the control of the ferroelectric polarization and dielectric properties by magnetic field in thin films. To that purpose dielectric, ferroelectric and magnetoelectric characterization methods of different multiferroic materials have been developed and used. Two big groups of multiferroic materials can be found. On one hand, single-phase multiferroics are those that intrinsically display multiferroicity. On the other hand, multiferroic composites are those where multiferroicity results from the mixture of two different materials that display ferroelectric and ferromagnetic order separately. Single-phase multiferroics can be divided in two subgroups: those where ferroic orders have different sources and those, called magnetic ferroelectrics, where magnetic order induces ferroelectricity and, consequently, larger magnetoelectric coupling is expected. The single-phase multiferroic material studied in the present thesis is YMnO3 in its orthorhombic phase, and it belongs to the magnetic ferroelectrics family. Even though it shows collinear magnetic order in bulk, we will show that cycloidal order in thin film form can be stabilized, giving rise to the capability of controlling the ferroelectric polarization by magnetic field in a reversible manner. Multiferroic composite thin films can be built mainly in two different architectures: vertical (ferromagnetic/ferroelectric columns embedded in a ferroelectric/ferromagnetic matrix) and horizontal (multilayered structures alternating ferromagnetic and ferroelectric materials). Here we compare both, using a ferroelectric perovskite (BaTiO3) and a ferromagnetic spinel (CoFe2O4). We will show that horizontal heterostructures display better ferroelectric properties and larger magnetoelectric coupling, compared to vertical heterostructures, where leakage current is a limiting parameter. The control of dielectric/ferroelectric properties under appropriate heterostructure configuration (in horizontal heterostructures) or deposition conditions (in vertical heterostructures) has been also achieved.
Els materials multiferroics són aquells materials en què coexisteix més d'un ordre ferroic. D'aquests els més interessants són els que presenten ferromagnetisme i ferroelectricitat. La presencia d'acoblament entre aquests dos ordres ferroics, anomenat acoblament magnetoelèctric, obre un nou camp d'aplicacions. En spintrònica, aquest acoblament significaria poder construir memòries magnètiques controlades mitjançant camp elèctric, o transistors on la càrrega es controlaria mitjançant camp magnètic. L'objectiu final d'aquesta tesi és explorar el control de la polarització ferroelèctrica mitjançant camp magnètic en capes fines. Amb aquesta finalitat, s'han utilitzat mètodes de caracterització dielèctrica, ferroelèctrica i magnetoelèctrica en diferents materials multiferroics en capa fina. Existeixen dos grans grups de materials multiferroics. D'una banda, els materials de fase única són aquells que presenten multiferroïcitat de manera intrínseca. D'altra banda, els multiferroics de fase mixta són aquells en els quals la multiferroïcitat és resultat de la barreja de dos materials diferents que presenten ordre ferroelèctric i ferromagnétic per separat. Els materials de fase única es poden dividir en dos subgrups: aquells en què els ordres ferroics tenen diferent origen i aquells, anomenats ferroelèctrics magnètics, en què l'ordre magnètic indueix ferroelectricitat i, de manera conseqüent, s'espera un major acoblament magnetoelèctric. El material multiferroic de fase única estudiat en la present tesi és la o-YMnO(3) en la seva fase ortoròmbica que pertany a la família dels ferroelèctrics magnètics. Tot i que presenta ordre magnètic col.lineal en forma màssica, mostrarem que es pot estabilitzar l'odre cicloïdal en capa fina, permetent el control de la polarització ferroelèctrica mitjançant camp magnètic de manera reversible. Els multiferroics de fase mixta en capa fina es poden créixer utilitzant principalment dues arquitectures diferents: vertical (les columnes ferromagnètiques/ferroelèctriques en una matriu ferroelèctrica/ferromagnètica) i horitzontal (estructures multicapa alternant materials ferromagnètics i ferroelèctrics). Aquí comparem aquestes dues arquitectures, utilitzant una perovskita ferroelèctrica (BaTiO(3)) i una espinela ferromagnètica (CoFe(2)O(4)). Demostrarem que les heteroestructures horitzontals presenten millors propietats ferroelèctriques i un major acoblament magnetoelèctric comparades amb les heteroestructures verticals, en les quals el corrent de pèrdues sembla ser un paràmetre limitant. També s'han aconseguit controlar les propietats dielèctriques/ferroelèctriques mitjançant la modificació de la configuració en les heteroestructures horitzontals o mitjançant la modificació de les condicions de dipòsit en heteroestructures verticals.
Los materiales multiferroicos son aquellos en los que coexiste más de un orden ferroico. DE estos los más interesantes son los que presentan ferromagnetismo y ferroelectricidad. Su acoplamiento, llamado acoplamiento magnetoeléctrico, puede permitir la aplicación de nuevas funcionalidades en el campo de la tecnología. En espintrónica, este acoplamiento significará poder construir memorias magnéticas controladas mediante campo eléctrico, o transistores donde la carga se controlará mediante campo magnético. El objetivo final de esta tesis es explorar el control de la polarización ferroeléctrica mediante campo magnético en capas finas. Con este fin, se han utilizado métodos de caracterización dieléctrica, ferroeléctrica y magnetoeléctrica en diferentes materiales multiferroicos en capa fina. Existen dos grandes grupos de materiales multiferroicos. Por un lado, los materiales de fase única son aquellos que presentan multiferroicidad de forma intrínseca. Por otro lado, los multiferroicos de fase mixta son aquellos en los cuales la multiferroicidad es el resultado de la mezcla de dos materiales diferentes que presentan orden ferroeléctrico y ferromagnético por separado. Los materiales de fase única se pueden dividir en dos subgrupos: aquellos en los que los órdenes ferroicos tienen diferente origen y aquellos llamados ferroeléctricos magnéticos en los que el orden magnético induce ferroelectricidad y, por consiguiente, se espera un mayor acoplamiento magnetoeléctrico. El material multiferroico de fase única que se ha estudiado en esta tesis es la o-YMnO(3) en su fase ortorrómbica y pertenece a la familia de los ferroeléctricos magnéticos. Aunque presenta orden magnético colineal en forma másica, mostraremos que se puede estabilizar el orden cicloidal en capa fina, permitiendo el control de la polarización ferroeléctrica mediante campo magnético de forma reversible. Los multiferroicos de fase mixta en capa fina se pueden crecer utilizando principalmente dos arquitecturas diferentes: vertical (las columnas ferromagnéticas/ferroeléctricas en una matriz ferroeléctrica/ferromagnética) y horizontal (estructuras multicapa alternando materiales ferromagnéticos y ferroeléctricos). Aquí comparamos ambas, utilizando una perovskita ferroeléctrica (BaTiO(3)) y una espinela ferromagnética (CoFe(2)O(4)). Demostraremos que las heteroestructuras horizontales presentan mejores propiedades ferroeléctricas y un mayor acoplamiento magnetoeléctrico comparadas con las heteroestructuras verticales, en las cuales la corriente de pérdidas parece ser un parámetro limitante. También se han conseguido controlar las propiedades dieléctricas/ferroeléctricas mediante el cambio de configuración en heteroestructuras horizontales o mediante el cambio de las condiciones de depósito en heteroestructuras verticales.
APA, Harvard, Vancouver, ISO, and other styles
8

Mukherjee, Devajyoti. "Growth and Characterization of Epitaxial Thin Films and Multiferroic Heterostructures of Ferromagnetic and Ferroelectric Materials." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3622.

Full text
Abstract:
Multiferroic materials exhibit unique properties such as simultaneous existence of two or more of coupled ferroic order parameters (ferromagnetism, ferroelectricity, ferroelasticity or their anti-ferroic counterparts) in a single material. Recent years have seen a huge research interest in multiferroic materials for their potential application as high density non-volatile memory devices. However, the scarcity of these materials in single phase and the weak coupling of their ferroic components have directed the research towards multiferroic heterostructures. These systems operate by coupling the magnetic and electric properties of two materials, generally a ferromagnetic material and a ferroelectric material via strain. In this work, horizontal heterostructures of composite multiferroic materials were grown and characterized using pulsed laser ablation technique. Alternate magnetic and ferroelectric layers of cobalt ferrite and lead zirconium titanate, respectively, were fabricated and the coupling effect was studied by X-ray stress analysis. It was observed that the interfacial stress played an important role in the coupling effect between the phases. Doped zinc oxide (ZnO) heterostructures were also studied where the ferromagnetic phase was a layer of manganese doped ZnO and the ferroelectric phase was a layer of vanadium doped ZnO. For the first time, a clear evidence of possible room temperature magneto-elastic coupling was observed in these heterostructures. This work provides new insight into the stress mediated coupling mechanisms in composite multiferroics.
APA, Harvard, Vancouver, ISO, and other styles
9

Schöffmann, Patrick Verfasser], Thomas [Akademischer Betreuer] [Brückel, and Joachim [Akademischer Betreuer] Mayer. "Stoichiometric control and magnetoelectric coupling in artificial multiferroic heterostructures / Patrick Schöffmann ; Thomas Brückel, Joachim Mayer." Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1240765584/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Teferi, Mandefro Yehulie. "Developments of multiferroic heterostructures of thin film of Ni-Mn-Ga alloys and PMN-PT." Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/7541.

Full text
Abstract:
Mestrado em Ciência e Engenharia de Materiais
Ligas de forma ferromagnética em sistemas Ni-Mn-Ga são uma classe recente de materiais activos que podem gerar deformações de até 10% induzidas por um campo magnético por um rearranjo de maclas. Esta e outras propriedades físicas destas ligas têm importância tecnológica. Este trabalho investiga as propriedades de filmes finos de ligas de Ni-Mn-Ga sobre diferentes substratos, incluindo substratos activos (piezeléctricos). Para estudar as propriedades de filmes finos da liga, heteroestruturas sob a forma de Ni-Mn-Ga/substrato foram produzidas por RF sputtering com magnetrão utilizando temperaturas de deposição de 3200C, 3700C, 4000C sobre substratos de Al2O3, MgO, SrTiO3 e PMN-PT. A influência da temperatura do substrato durante a deposição nas propriedades estruturais e magnéticas de filmes finos foi estudada. Além disso, o acoplamento magnetoeléctrico entre Ni-Mn-Ga como filme fino material ferromagnético e PMN-PT como material piezoeléctrico foi investigada. O efeito magnetoeléctrico foi investigado apenas em filmes depositados a temperatura do substrato de 3700C e 4000C. As propriedades estruturais foram estudadas por difração de raios-X, as propriedades magnéticas foram investigadas por VSM, SQUID, e MFM, e o efeito magnetoeléctrico foi estudado por técnica lock-in. A medida estrutural mostrou que os filmes depositados são parcialmente cristalinos e o grau de cristalinidade aumenta como o aumento da temperatura do substrato. Fases austenita e martensita foram observadas nesses filmes. Os resultados da medição magnética mostram que todos os filmes depositados exibem comportamento ferromagnético e o comportamento ferromagnético é favorecido com o aumento da temperatura do substrato. Todos os filmes depositados na temperatura do substrato de 400ºC apresentam temperaturas dev Curie acima da temperatura ambiente: 337K para Ni-Mn- Ga/PMN-PT, 345K para Ni-Mn-Ga/STO e 348K para Ni-Mn-Ga/Al2O3. Nenhuma evidência separada de temperatura de transição estrutural foi observada para nos filmes. Os resultados das medições magnetoeléctricas mostram que as heteroestruturas multiferróicas Ni-Mn-Ga/PMN-PT apresentam efeito magnetoelétrico. O valor máximo medido para a tensão magnetoeléctrica induzida para filmes depositados à temperatura do substrato de 3700C e 4000C são 3.16mV/cmOe e 3.02mV/cmOe, respectivamente.
Ferromagnetic shape memory alloys (FSMAs) in Ni-Mn-Ga systems are a recent class of active materials that can generate large magnetic field induced strains up to 10% by twin rearrangement. This and other physical properties these alloys have many technological importance. This work investigates the properties of Ni-Mn-Ga alloy thin films on different substrates including active substrate (piezoelectric). To study the properties of thin films of the alloy, the heterostructures in the form of Ni-Mn-Ga/substrate were produced by RF magnetron deposition system using substrate deposition temperatures of 3200C, 3700C, and 4000C, where the substrates used were Al2O3, MgO, SrTiO3 and PMN-PT. The influences of deposition substrate temperature on structural and magnetic properties of sputtered thin films on the aforementioned substrates were studied. Moreover, magnetoelectric coupling between Ni-Mn- Ga thin film as ferromagnetic material and PMN-PT as piezoelectric material was investigated. The magnetoelectric effect was investigated only on films deposited at substrate temperature of 3700C and 4000C. The structural properties were studied by x-ray diffraction, magnetic properties were investigated by VSM, SQUID, and MFM, and the magnetoelectric effect was studied by lock-in technique. The structural measurement has shown that asdeposited films are partially crystalline and degree of crystallinity increases as substrate temperature increase. Austenite and martensite phases have been observed in these films. The magnetic measurement results show that all films as-deposited display ferromagnetic behaviour and ferromagnetic behaviour improvements are observed as substrate temperature increases. All films deposited at substrate temperature of 4000C exhibit Curie temperatures above room temperature which are 337K for Ni-Mn-Ga/PMN-PT, 345K for Ni-Mn- Ga/STO, 348K for Ni-Mn-Ga/Al2O3. No separate signature of structural transition temperature was observed for all these films. The magnetoelectric measurement results show that a heterostructure of Ni-Mn-Ga/PMN-PT multiferroic exhibit magnetoelectric effect. The measured maximum induced magnetoelectric voltage for films deposited at substrate temperature of 3700C and 4000C are 3.16mV/cmOe and 3.02mV/cmOe, respectively.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Multiferroic heterostructure"

1

Liu, Ming, and Ziyao Zhou. Integrated Multiferroic Heterostructures and Applications. Wiley-VCH Verlag GmbH, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Ming, and Ziyao Zhou. Integrated Multiferroic Heterostructures and Applications. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Ming, and Ziyao Zhou. Integrated Multiferroic Heterostructures and Applications. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Ming, and Ziyao Zhou. Integrated Multiferroic Heterostructures and Applications. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Ming, and Ziyao Zhou. Integrated Multiferroic Heterostructures and Applications. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Multiferroic heterostructure"

1

Peng, Wanjun, Ziyao Zhou, and Ming Liu. "Multiferroic Materials." In Integrated Multiferroic Heterostructures and Applications, 5–50. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527803675.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fang, Yue-Wen, Wen-Yi Tong, and Chun-Gang Duan. "Multiferroic Simulations." In Integrated Multiferroic Heterostructures and Applications, 121–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527803675.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Zhiguang, Menghui Li, Tianxiang Nan, and Nianxiang Sun. "Multiferroic Sensors." In Integrated Multiferroic Heterostructures and Applications, 203–10. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527803675.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hu, Zhongqiang, Qu Yang, Xinger Zhao, and Gail J. Brown. "Toward Multiferroic Memories." In Integrated Multiferroic Heterostructures and Applications, 175–202. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527803675.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cheng, Yuxin, Weixiao Hou, Mingmin Zhu, Bin Peng, Ziyao Zhou, and Ming Liu. "Mechanisms of Multiferroic Material." In Integrated Multiferroic Heterostructures and Applications, 51–119. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527803675.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peng, Wanjun, Brandon Howe, and Xi Yang. "Multiferroic RF/Microwave Devices." In Integrated Multiferroic Heterostructures and Applications, 157–74. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527803675.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Qu, Bin Peng, Ziyao Zhou, and Ming Liu. "Multiferroics in Future." In Integrated Multiferroic Heterostructures and Applications, 237–42. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527803675.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Yuan, Tian Wang, Zhongqiang Hu, and Bin Peng. "Integrated Multiferroic Inductors - Toward Reconfiguration." In Integrated Multiferroic Heterostructures and Applications, 211–36. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527803675.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Qu, Bin Peng, Ziyao Zhou, and Ming Liu. "Introduction to Multiferroics and Its Application." In Integrated Multiferroic Heterostructures and Applications, 1–4. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527803675.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burton, J. D., Yuewei Yin, X. G. Li, Young-Min Kim, Albina Y. Borisevich, Qi Li, Evgeny Y. Tsymbal, et al. "Nanosession: Multiferroic Thin Films and Heterostructures." In Frontiers in Electronic Materials, 323–34. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527667703.ch52.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Multiferroic heterostructure"

1

Eshghinejad, Ahmadreza, Wen-I. Liang, Qian Nataly Chen, Feiyue Ma, Ying-Hao Chu, and Jiangyu Li. "Probing Multiferroic Heterostructures of BiFeO3-LiMn2O4 Using Magnetic, Piezoelectric and Piezomagnetic Force Microscopies." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7513.

Full text
Abstract:
In this study magnetic force microscopy (MFM), piezoresponse force microscopy (PFM), and the newly developed piezomagnetic force microscopy (PmFM) techniques are used to probe the ferroelectric and ferromagnetic properties of BiFeO3-LiMn2O4 (BFO-LMO) heterostructures at nano-scale. The PmFM technique is also used to probe the ferromagnetic properties of CoFe2O4 (CFO) as a case study. The PFM and PmFM mappings of the BFO-LMO heterostructures clearly distinguish the BFO matrix and LMO nanopillars while the MFM mapping is ambiguous. The relatively high piezomagnetic response of BFO matrix is believed to be due to the Mn doping while the piezoelectric-like response of LMO nanopillars is due to the ionic activities and the vertical geometry of its heterostructure. Lastly, limitations of the PmFM technique are discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Keller, Scott M., Cheng-Yen Liang, Abdon Sepulveda, and Gregory P. Carman. "Voltage control of single magnetic domain nanoscale multiferroic heterostructure." In TRANSDUCERS 2015 - 2015 18th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2015. http://dx.doi.org/10.1109/transducers.2015.7181043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Q., J. Miao, Y. Wu, X. Xu, and Y. Jiang. "Interface charge induced non-volatile magnetic changes in La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 multiferroic heterostructure." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xie, L., T. Nan, Z. Hu, X. Wang, Y. Gao, X. Chen, M. Liu, and N. Sun. "Electric field control of the magnetization dynamics of ferromagnetic/ferroelectric multiferroic heterostructure." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, S., J. Miao, Y. Wu, X. Xu, and Y. Jiang. "Electric-field-controlled magnetization reversal in a NiFe/BiFeO3/SrRuO3/SrTiO3 (111) multiferroic heterostructure." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cheng, Chih-Cheng, Shin-Hung Lin, Yu-Jen Chen, Hsin-Min Wang, Hou-Jen Chu, Chiao-Fang Hung, Po-Jung Lin, and Tien-Kan Chung. "A Novel Nanoelectromagnetic System Using Multiferroic/Magnetoelectric Ni-Nano-Chevron/PMN-PT Heterostructure to Demonstrate an Electric-Field-Controlled Permanent Magnetic Single-Domain Transformation." In ASME-JSME 2018 Joint International Conference on Information Storage and Processing Systems and Micromechatronics for Information and Precision Equipment. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/isps-mipe2018-8502.

Full text
Abstract:
In this paper, we report a novel nanoelectromagnetic system using multiferroic/magnetoelectric Ni-nano-chevron/PMN-PT heterostructure to demonstrate an electric-field-controlled permanent magnetic single-domain transformation. The heterostructure consists of a magnetostrictive Ni-nano-chevron, Pt top and bottom electrodes, and a piezoelectric PMN-PT substrate. In initial state (as demagnetized), the magnetization of the magnetic single-domain is stably along the long axis of the nano-chevron. A magnetic field of 3000 Oe (along 45 degree of nano-chevron) is applied to magnetize the Ni-nano-chevron from stable single-domain to metastable two-domains. After this, an electric field of 0.8MV/m is applied to the PMN-PT substrate to produce the converse magnetoelectric effect to transform the two-domains. After the electric field is removed, the two-domains are further transformed back to the single-domain. Finally, when comparing the domains before and after applying our approach, approximately 50 % of single-domains are successfully and permanently switched (i.e., magnetization-direction is permanently rotated 180 degrees).
APA, Harvard, Vancouver, ISO, and other styles
7

Pawar, Shuvam, Anuj Kumar, and Davinder Kaur. "Dielectric enhancement of AlN based multiferroic heterostructure via insertion of NiMnIn thin layer between AlN film." In 2019 IEEE 9th International Nanoelectronics Conferences (INEC). IEEE, 2019. http://dx.doi.org/10.1109/inec.2019.8853839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghidini, Massimo, Arnaud Lesaine, Bonan Zhu, Xavier Moya, Wenjing Yan, Sam Crossley, Bhasi Nair, et al. "Magnetoelectric imaging of multiferroic heterostructures (Presentation Recording)." In SPIE Nanoscience + Engineering, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2015. http://dx.doi.org/10.1117/12.2190677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Savita, Nitin K. Puri, Vinay Gupta, and Monika Tomar. "Prominent photovoltaic response in multiferroic BFO/BTO heterostructures." In 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM). IEEE, 2016. http://dx.doi.org/10.1109/isaf.2016.7578092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Y., S. Zhang, P. Li, A. Chen, D. Li, S. Rizwan, J. Zhang, et al. "Electric-field control of magnetism in multiferroic heterostructures." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography