Journal articles on the topic 'Multiferroic Behavior'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multiferroic Behavior.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gilioli, Edmondo, and Lars Ehm. "High pressure and multiferroics materials: a happy marriage." IUCrJ 1, no. 6 (October 31, 2014): 590–603. http://dx.doi.org/10.1107/s2052252514020569.
Full textHemberger, J., P. Lunkenheimer, R. Fichtl, S. Weber, V. Tsurkan, and A. Loidl. "Multiferroic behavior in." Physica B: Condensed Matter 378-380 (May 2006): 363–66. http://dx.doi.org/10.1016/j.physb.2006.01.407.
Full textMakarova, Liudmila A., Danil A. Isaev, Alexander S. Omelyanchik, Iuliia A. Alekhina, Matvey B. Isaenko, Valeria V. Rodionova, Yuriy L. Raikher, and Nikolai S. Perov. "Multiferroic Coupling of Ferromagnetic and Ferroelectric Particles through Elastic Polymers." Polymers 14, no. 1 (December 31, 2021): 153. http://dx.doi.org/10.3390/polym14010153.
Full textZapf, V. S., F. Wolff-Fabris, M. Kenzelmann, F. Nasreen, F. Balakirev, Y. Chen, and A. Paduan-Filho. "Multiferroic behavior in organo-metallics." Journal of Physics: Conference Series 273 (January 1, 2011): 012132. http://dx.doi.org/10.1088/1742-6596/273/1/012132.
Full textFier, I., L. Walmsley, and J. A. Souza. "Relaxor behavior in multiferroic BiMn2O5 ceramics." Journal of Applied Physics 110, no. 8 (October 15, 2011): 084101. http://dx.doi.org/10.1063/1.3650455.
Full textSagar, S., P. A. Joy, and M. R. Anantharaman. "Multiferroic Behavior of Gd Based Manganite." Ferroelectrics 392, no. 1 (November 24, 2009): 13–19. http://dx.doi.org/10.1080/00150190903412408.
Full textAcharya, S., J. Mondal, S. Ghosh, S. K. Roy, and P. K. Chakrabarti. "Multiferroic behavior of lanthanum orthoferrite (LaFeO3)." Materials Letters 64, no. 3 (February 2010): 415–18. http://dx.doi.org/10.1016/j.matlet.2009.11.037.
Full textJin, Ke, and Jacob Aboudi. "Macroscopic behavior prediction of multiferroic composites." International Journal of Engineering Science 94 (September 2015): 226–41. http://dx.doi.org/10.1016/j.ijengsci.2015.06.002.
Full textPan, Feng, Xue Jing Liu, Yu Chao Yang, Cheng Song, and Fei Zeng. "Multiferroic and Piezoelectric Behavior of Transition-Metal Doped ZnO Films." Materials Science Forum 620-622 (April 2009): 735–40. http://dx.doi.org/10.4028/www.scientific.net/msf.620-622.735.
Full textWang, X. X., X. Y. Cheng, Y. Lin, C. Ma, K. Q. Ruan, and X. G. Li. "Multiferroic properties of hexagonal Ba3Ti2MnO9." RSC Advances 5, no. 123 (2015): 101544–51. http://dx.doi.org/10.1039/c5ra18392h.
Full textTian, Z. M., Y. S. Zhang, S. L. Yuan, M. S. Wu, C. H. Wang, Z. Z. Ma, S. X. Huo, and H. N. Duan. "Enhanced multiferroic properties and tunable magnetic behavior in multiferroic BiFeO3–Bi0.5Na0.5TiO3 solid solutions." Materials Science and Engineering: B 177, no. 1 (January 2012): 74–78. http://dx.doi.org/10.1016/j.mseb.2011.07.012.
Full textFumega, Adolfo O., and J. L. Lado. "Microscopic origin of multiferroic order in monolayer NiI2." 2D Materials 9, no. 2 (February 9, 2022): 025010. http://dx.doi.org/10.1088/2053-1583/ac4e9d.
Full textRibeiro, R. A. P., E. Longo, J. Andrés, and S. R. de Lazaro. "A DFT investigation of the role of oxygen vacancies on the structural, electronic and magnetic properties of ATiO3 (A = Mn, Fe, Ni) multiferroic materials." Physical Chemistry Chemical Physics 20, no. 45 (2018): 28382–92. http://dx.doi.org/10.1039/c8cp04443k.
Full textWang, Hua, and Xiaofeng Qian. "Ferroicity-driven nonlinear photocurrent switching in time-reversal invariant ferroic materials." Science Advances 5, no. 8 (August 2019): eaav9743. http://dx.doi.org/10.1126/sciadv.aav9743.
Full textCao, Haixing, Xianming Ren, Meibing Ma, Xin Yin, Yemei Han, Kai Hu, Zheng Sun, Fang Wang, and Kailiang Zhang. "Multiferroic behavior of CoFe1.6Al0.4O4 spinel thin films." Materials Letters 314 (May 2022): 131900. http://dx.doi.org/10.1016/j.matlet.2022.131900.
Full textMaignan, Antoine, Wei Peng, Alexander Christoph Komarek, Chang-Yang Kuo, Chun-Fu Chang, Xiao Wang, Zhiwei Hu, et al. "Spin-Induced Multiferroic Behavior in Centrosymmetric Mn3WO6." Chemistry of Materials 32, no. 13 (June 11, 2020): 5664–69. http://dx.doi.org/10.1021/acs.chemmater.0c01303.
Full textNagaosa, Naoto. "Theory of multiferroic behavior in cycloidal helimagnets." Journal of Physics: Condensed Matter 20, no. 43 (October 9, 2008): 434207. http://dx.doi.org/10.1088/0953-8984/20/43/434207.
Full textBahoosh, S. G., and J. M. Wesselinowa. "Critical behavior of multiferroic hexagonal R MnO3." physica status solidi (b) 249, no. 11 (July 27, 2012): 2227–30. http://dx.doi.org/10.1002/pssb.201248297.
Full textLi, Zheng, Kun Tao, Jing Ma, Zhipeng Gao, Vladimir Koval, Changjun Jiang, Giuseppe Viola, et al. "Bi3.25La0.75Ti2.5Nb0.25(Fe0.5Co0.5)0.25O12, a single phase room temperature multiferroic." Journal of Materials Chemistry C 6, no. 11 (2018): 2733–40. http://dx.doi.org/10.1039/c8tc00161h.
Full textHassanpour, Ehsan, Yannik Zemp, Yusuke Tokunaga, Yasujiro Taguchi, Yoshinori Tokura, Thomas Lottermoser, Manfred Fiebig, and Mads C. Weber. "Magnetoelectric transfer of a domain pattern." Science 377, no. 6610 (September 2, 2022): 1109–12. http://dx.doi.org/10.1126/science.abm3058.
Full textCHEN, W., C. X. HUANG, T. S. YAN, W. ZHU, Z. P. LI, X. F. CHEN, and O. K. TAN. "SYNTHESIS OF CoFe2O4/Pb(Zr0.53Ti0.47)O3 MULTIFERROIC COMPOSITE THICK FILMS BY LOW-SINTERING-TEMPERATURE SCREEN PRINTING METHOD." Journal of Advanced Dielectrics 01, no. 01 (January 2011): 119–25. http://dx.doi.org/10.1142/s2010135x1100015x.
Full textSpurgeon, Steven. "Epitaxial strain tunes spintronic behavior of multiferroic BiFeO3." MRS Bulletin 38, no. 7 (July 2013): 529. http://dx.doi.org/10.1557/mrs.2013.164.
Full textMito, S., H. Takagi, A. V. Baryshev, and M. Inoue. "Multiferroic behavior of disordered bismuth-substituted zinc ferrite." Journal of Applied Physics 111, no. 7 (April 2012): 07D911. http://dx.doi.org/10.1063/1.3674283.
Full textChen, W., S. Shannigrahi, X. F. Chen, Z. H. Wang, W. Zhu, and O. K. Tan. "Multiferroic behavior and magnetoelectric effect in thick films." Solid State Communications 150, no. 5-6 (February 2010): 271–74. http://dx.doi.org/10.1016/j.ssc.2009.11.009.
Full textBhardwaj, Sumit, Joginder Paul, K. K. Raina, N. S. Thakur, and Ravi Kumar. "Dielectric modulus and magnetocapacitance behavior of Bi3.7Sm0.3Ti2.7Fe0.3O12 multiferroic." Physica B: Condensed Matter 448 (September 2014): 194–98. http://dx.doi.org/10.1016/j.physb.2014.04.062.
Full textSun, Hui, Xiangyu Mao, Hao Wang, and Xiaobing Chen. "Multiferroic Behavior and Orientation Dependence of Bi5Fe0.5Co0.5Ti3O15Thin Film." Ferroelectrics 452, no. 1 (January 2013): 63–68. http://dx.doi.org/10.1080/00150193.2013.841503.
Full textMaiti, R. P., S. Dutta, S. Basu, M. K. Mitra, and Dipankar Chakravorty. "Multiferroic behavior in glass–crystal nanocomposites containing Te2NiMnO6." Journal of Alloys and Compounds 509, no. 20 (May 2011): 6056–60. http://dx.doi.org/10.1016/j.jallcom.2011.03.007.
Full textRosales-González, O., F. Sánchez-De Jesús, C. A. Cortés-Escobedo, and A. M. Bolarín-Miró. "Crystal structure and multiferroic behavior of perovskite YFeO3." Ceramics International 44, no. 13 (September 2018): 15298–303. http://dx.doi.org/10.1016/j.ceramint.2018.05.175.
Full textWu, Y. J., L. H. Tang, H. L. Li, and X. M. Chen. "Dielectric and aging behavior of multiferroic YbMnO3 ceramics." Journal of Alloys and Compounds 496, no. 1-2 (April 2010): 269–72. http://dx.doi.org/10.1016/j.jallcom.2010.01.102.
Full textJena, A. K., S. Satapathy, and J. Mohanty. "Magnetic properties and oxygen migration induced resistive switching effect in Y substituted multiferroic bismuth ferrite." Physical Chemistry Chemical Physics 21, no. 28 (2019): 15854–60. http://dx.doi.org/10.1039/c9cp02528f.
Full textHassanpour Amiri, Morteza, Hamed Sharifi Dehsari, and Kamal Asadi. "Magnetoelectric coupling coefficient in multiferroic capacitors: Fact vs Artifacts." Journal of Applied Physics 132, no. 16 (October 28, 2022): 164102. http://dx.doi.org/10.1063/5.0107365.
Full textSlutsker, Julia, Zhuopeng Tan, Alexander L. Roytburd, and Igor Levin. "Thermodynamic aspects of epitaxial self-assembly and magnetoelectric response in multiferroic nanostructures." Journal of Materials Research 22, no. 8 (August 2007): 2087–95. http://dx.doi.org/10.1557/jmr.2007.0286.
Full textAggarwal, Snehlata, S. Chakrabarti, R. Pinto, and V. R. Palkar. "Room temperature magnetoelectric multiferroic behavior of 50 mol% Fe substituted PbTiO3 (PbTi0.5Fe0.5O3−δ) nanoparticles." RSC Advances 6, no. 93 (2016): 90132–37. http://dx.doi.org/10.1039/c6ra14681c.
Full textCheng, Xiangyi, Xiaoxiong Wang, Hongshun Yang, Keqing Ruan, and Xiaoguang Li. "Multiferroic properties of the layered perovskite-related oxide La6(Ti0.67Fe0.33)6O20." Journal of Materials Chemistry C 3, no. 17 (2015): 4482–89. http://dx.doi.org/10.1039/c5tc00188a.
Full textYang, Y. C., C. F. Zhong, X. H. Wang, B. He, S. Q. Wei, F. Zeng, and F. Pan. "Room temperature multiferroic behavior of Cr-doped ZnO films." Journal of Applied Physics 104, no. 6 (September 15, 2008): 064102. http://dx.doi.org/10.1063/1.2978221.
Full textPradhan, S. K., and B. K. Roul. "Electrical behavior of high resistivity Ce-doped BiFeO3 multiferroic." Physica B: Condensed Matter 407, no. 13 (July 2012): 2527–32. http://dx.doi.org/10.1016/j.physb.2012.03.061.
Full textSingh, Davinder, B. Mallesham, Akshay Deshinge, Kunal Joshi, R. Ranjith, and Viswanath Balakrishnan. "Nanomechanical behavior of Pb(Fe0.5−xScxNb0.5)O3 multiferroic ceramics." Materials Research Express 5, no. 11 (September 12, 2018): 116303. http://dx.doi.org/10.1088/2053-1591/aade3b.
Full textLee, Seongsu, Misun Kang, Changhee Lee, A. Hoshikawa, M. Yonemura, T. Kamiyama, and J. G. Park. "Multiferroic behavior and two-dimensional magnetism of hexagonal manganites." Physica B: Condensed Matter 385-386 (November 2006): 405–7. http://dx.doi.org/10.1016/j.physb.2006.05.084.
Full textAimon, Nicolas M., Dong Hun Kim, XueYin Sun, and C. A. Ross. "Multiferroic Behavior of Templated BiFeO3–CoFe2O4 Self-Assembled Nanocomposites." ACS Applied Materials & Interfaces 7, no. 4 (January 23, 2015): 2263–68. http://dx.doi.org/10.1021/am506089c.
Full textVarshney, Dinesh, and Ashwini Kumar. "Structural, Raman and dielectric behavior in Bi1−xSrxFeO3 multiferroic." Journal of Molecular Structure 1038 (April 2013): 242–49. http://dx.doi.org/10.1016/j.molstruc.2013.01.065.
Full textDing, Hang-Chen, Ya-Wei Li, Wanjiao Zhu, Yong-Chao Gao, Shi-Jing Gong, and Chun-Gang Duan. "Improved multiferroic behavior in [111]-oriented BiFeO3/BiAlO3 superlattice." Journal of Applied Physics 113, no. 12 (March 28, 2013): 123703. http://dx.doi.org/10.1063/1.4795847.
Full textQuan, Ngo Due, Nguyen Due Minh, and Hoang Viet Hung. "Effect of Structural Deficiencies on Bi-Ferroic Behaviors of Lead-Free Bi0.5 Na0.40K0.10TiO3 Films." Journal of Nanoscience and Nanotechnology 21, no. 11 (November 1, 2021): 5653–58. http://dx.doi.org/10.1166/jnn.2021.19477.
Full textDutta, Papia, S. K. Mandal, and A. Nath. "Room Temperature Magnetoelectric Coupling, Electrical, and Optical Properties of BaFe2O4 – ZnO Nanocomposites." Integrated Ferroelectrics 201, no. 1 (September 2, 2019): 192–200. http://dx.doi.org/10.1080/10584587.2019.1668703.
Full textShi, Yang, and Yongkun Wang. "Size-Dependent and Multi-Field Coupling Behavior of Layered Multiferroic Nanocomposites." Materials 12, no. 2 (January 14, 2019): 260. http://dx.doi.org/10.3390/ma12020260.
Full textDas, Souvick, Ayan Mitra, Sukhendu Sadhukhan, Amitabh Das, Souvik Chatterjee, and Pabitra K. Chakrabarti. "Spin reorientation behavior and enhanced multiferroic properties of co-doped YFeO3 towards a monophasic multiferroic ceramic Co0.05Y0.95Fe0.95Ti0.05O3." Advanced Powder Technology 33, no. 6 (June 2022): 103622. http://dx.doi.org/10.1016/j.apt.2022.103622.
Full textMahesh, R., and P. Venugopal Reddy. "Role of Nd and Gd Dopants on Multiferroic Behavior of BiFeO-=SUB=-3-=/SUB=- --- A First-Principle Study." Физика твердого тела 63, no. 10 (2021): 1552. http://dx.doi.org/10.21883/ftt.2021.10.51404.pss165.
Full textUrcelay-Olabarria, Irene, Juan Manuel Perez-Mato, José Luis García Muñoz, and Eric Ressouche. "Sheding light on the multiferroicity in Mn1-xCoxWO4using superspace formalism." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C519. http://dx.doi.org/10.1107/s2053273314094807.
Full textRavi, S., and C. Senthilkumar. "Anomalous magnetic behavior of Bi2NiCrO6 nanoparticles with multiferroic behavior synthesized using gel combustion." Ceramics International 46, no. 3 (February 2020): 3976–78. http://dx.doi.org/10.1016/j.ceramint.2019.09.251.
Full textLi, Zheng, and Baozeng Zhou. "Theoretical investigation of nonvolatile electrical control behavior by ferroelectric polarization switching in two-dimensional MnCl3/CuInP2S6 van der Waals heterostructures." Journal of Materials Chemistry C 8, no. 13 (2020): 4534–41. http://dx.doi.org/10.1039/d0tc00143k.
Full textKozielski, Lucjan, Dariusz Bochenek, Frank Clemens, and Tutu Sebastian. "Magnetoelectric Composites: Engineering for Tunable Filters and Energy Harvesting Applications." Applied Sciences 13, no. 15 (July 31, 2023): 8854. http://dx.doi.org/10.3390/app13158854.
Full text