Academic literature on the topic 'Multiferric Nanocomposites'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiferric Nanocomposites.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multiferric Nanocomposites"

1

Mahesh, Dabbugalla, and Swapan K. Mandal. "Multiferroicity in ZnO nanodumbbell/BiFeO3 nanoparticle heterostructures." International Journal of Modern Physics B 30, no. 12 (May 6, 2016): 1650074. http://dx.doi.org/10.1142/s0217979216500740.

Full text
Abstract:
We report here on the multiferroic properties of ZnO–BiFeO3 (BiFeO3 referred hereinafter as BFO) nanocomposite structures obtained by using a facile solution-based synthesis route. ZnO is found to grow in the form of well-crystallized and self-assembled dumbbell-like structures. BFO nanoparticles (NPs) are deposited onto ZnO nanodumbbells (NDs) to obtain ZnO–BFO heterostructures. The nanocomposites show prominent ferroelectric polarization hysteresis loop along with enhanced magnetization in comparison to pure BFO NPs. The ordered alignment of spins along with the suppression of Fe–O–Fe antiferromagnetic super-exchange interactions at the ZnO/BFO interface plausibly gives rise to observed multiferroic properties.
APA, Harvard, Vancouver, ISO, and other styles
2

Suastiyanti, Dwita, Bambang Soegijono, and M. Hikam. "Magnetoelectric Coupling Phenomena Based on the Changes of Magnetic Properties in Multiferroic Nanocomposite BaTiO3-BaFe12O19." Advanced Materials Research 896 (February 2014): 385–90. http://dx.doi.org/10.4028/www.scientific.net/amr.896.385.

Full text
Abstract:
Magnetoelectric (ME) coupling effects in multiferroic materials have attracted much attention in recent times because of the intriguing science underpinning this phenomena and being currently intense interest in the implementation of this coupling in an electronic devices. A new multiferroic system comprising of BaTiO3 (BTO) and BaFe12O19 (BHF) has been synthesized as a bulk nanocomposite system in variation of weight fraction of BTO : BHF =1:1, 1:2 and 1:3 and the second sinter temperature was 925°C for 5, 10 and 15 hours. The presence of both phases were confirmed by X-Ray Diffraction (XRD) studies and MPS Magnet Physik EP3 Permagraph L was used to characterize magnetic properties.The morphology and particle size of nanocomposite was characterized by using Transmission Electron Microscope (TEM). No residual phases were identified in the XRD analysis for all parameters confirming the formation of a BTO-BHF composite system. The TEM images show that all samples have particle in nanosize.For weight fraction of BHF until 2 parts there is an increase of intrinsic coersive and magnetization saturation value. If the weight fraction of BHF exceeds from 2 parts, the coersivity and saturation values decrease. Meanwhile in compound of polyvinyl acetate (PVA) and BHF as a compare material, the magnetic properties increase with increasing the content of BHF until 3 parts. From the above results, it presumes that the nanocomposites with weight fraction of BTO : BHF = 1:3 for all time of sintering have ME coupling interaction showing a multiferroic nature. To give evidence of this phenomena, it needs a measurement of ME coupling coefficients for all parameters.
APA, Harvard, Vancouver, ISO, and other styles
3

Sharma, Priyanka, Anjali Jain, and Ratnamala Chatterjee. "Enhanced magnetic performance in exchange-coupled CoFe2O4–LaFeO3 nanocomposites." Nanotechnology 33, no. 10 (December 17, 2021): 105708. http://dx.doi.org/10.1088/1361-6528/ac3e31.

Full text
Abstract:
Abstract Nanocomposite oxide system of (x)CoFe2O4–(100-x)LaFeO3 with different weight percent of core-shell structured CoFe2O4 (x = 0, 20, 40, 50, 80, 100) and LaFeO3 were fabricated, via a two-step sol-gel wet-chemical synthesis technique. The phase formation of the composites was confirmed by x-ray diffraction and the structural parameters of both the phases were attained from the Rietveld refinement results of XRD patterns. The elemental composition and microstructure of the resulting nanocomposites were examined by using energy-dispersive x-ray spectroscopy and high-resolution transmission electron microscopy technique, respectively. The detailed magnetometry studies at 300 K and 5 K reveal that the inter-and intra-phase magnetic interactions affect the saturation magnetization (M S), remanence magnetization (M R) and coercivity (H C) values of this bi-magnetic system. The remarkable feature of ‘pinched magnetic hysteresis loop’ was evidenced in the [(50) CoFe2O4 - (50)LaFeO3] composite, leading to a lesser magnetic loss factor and better magnetic performance of this sample. The report depicts an improved interfacial exchange coupling at 5 K, for the nanocomposites of core-shell morphology and offers an understanding or explanation of improved magnetic performance for the (50)CoFe2O4 - (50)LaFeO3 nanocomposite and opens up an important way to design new multiferroic applications in low magnetic fields.
APA, Harvard, Vancouver, ISO, and other styles
4

Kambale, Rahul C., Dae-Yong Jeong, and Jungho Ryu. "Current Status of Magnetoelectric Composite Thin/Thick Films." Advances in Condensed Matter Physics 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/824643.

Full text
Abstract:
Here we review the current status of magnetoelectric (ME) multiferroics and ME composite thin/thick films. The magnitude of ME coupling in the composite systems is dependent upon the elastic coupling occurring at the interface of piezoelectric and magnetostrictive phases. The multiferroic ME films in comparison with bulk ME composites have some unique advantages and show higher magnitude of ME response. In ME composite films, thickness of the films is one of the important factors to have enough signal. However, most of all reported ME nanocomposite structured films in literature are limited in overall thickness which might be related to interface strain resulting from difference in thermal expansion mismatch between individual phases and the substrate. We introduced noble ME composite film fabrication technique, aerosol deposition (AD) to overcome these problems. The success in AD fabrication and characterization of ME composite films with various microstructure such as 3-2, 2-2 connectivity are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Nageena, Arsa, Alina Manzoor, Amir Muhammad Afzal, Muhammad Imran Arshad, Aamir Shahzad, and Muhammad Kashif. "Investigation of Dielectric, Magnetic and Electrical Behavior of BFO/GNPs Nano-Composites Synthesized via Sol-Gel Method." Journal of Materials and Physical Sciences 3, no. 2 (December 31, 2022): 59–70. http://dx.doi.org/10.52131/jmps.2022.0302.0027.

Full text
Abstract:
Nano composites of Ba0.5Bi0.5Nd0.05Fe0.95O3 multiferroic with graphene nano platelets (GNPs)x (x = 0, 0.125 %, 0.375 %, and 0.5 %) were synthesized using sol-gel auto ignition process. XRD analysis revealed a single rhombohedrally distorted phase of Ba0.5Bi0.5Nd0.05Fe0.95O3. The present study unfold the impact of GNPs on the structural, electrical, dielectric, and magnetic properties of Ba0.5Bi0.5Nd0.05Fe0.95O3 multiferroics. The substitution of Rare earth elements in pure BFO reduced the value of leakage current which is the basic drawback related with pure BFO. The prepared nanocomposites are then sintered at 800 °C for 7 hrs. The X-ray diffraction patterns showed the rhombohedral distorted perovskite crystal structure of the prepared samples including lattice constant, crystallite size, and X-ray density. The average crystallite sizes of the prepared nanocomposites are noticed in the range 28.14 -to 29.74 nm with increasing the GNPs concentration and lattice constant is found in the range 11.59 -to 11.61 Å. Temperature-dependent resistivity is first observed to increase with an increase in temperature then resistivity decreased with increasing the temperature which indicates a semi-conductor-like behavior as measured by two probe I-V characteristics. LCR technique showed that both the dielectric constant and the dissipation factor are decreased with an increase in frequency. VSM results indicated that saturation magnetization is noted to increase while remanent magnetization decreases with increasing concentration of GNPs.
APA, Harvard, Vancouver, ISO, and other styles
6

Dutta, Papia, S. K. Mandal, and A. Nath. "Room Temperature Magnetoelectric Coupling, Electrical, and Optical Properties of BaFe2O4 – ZnO Nanocomposites." Integrated Ferroelectrics 201, no. 1 (September 2, 2019): 192–200. http://dx.doi.org/10.1080/10584587.2019.1668703.

Full text
Abstract:
Polycrystalline multiferroic nanocomposites with general formula xBaFe2O4 – (1 – x) ZnO (x = 0.2, 0.3, and 0.5) are prepared by chemical pyrophoric reaction method and solid-state route. The samples are characterized by X-ray diffraction which indicates the formation of both the phases in the composites. The morphological analysis and elemental compositions have been identified by using field emission scanning electron microscope and energy-dispersive X-ray analysis techniques. These micrographs reveal the particle sizes are in the nanometer dimension. The band gap of the nanocomposites is estimated employing UV-Vis spectroscopy. The DC electrical resistivity exhibits a metal-semiconductor transition for all the nanocompositions. Temperature-dependent AC conductivity of the nanocomposites is found to obey the Jonscher’s power law. The room temperature multiferroic behavior of the nanocomposites is confirmed from the detailed magnetoelectric response studies. The coupling coefficient is obtained maximum for x = 0.5 compositions for both in transverse and longitudinal mode due to the more ferrite content i.e., more magnetostrictive behaviour in the nanocompositions.
APA, Harvard, Vancouver, ISO, and other styles
7

Rana, Dhiraj Kumar, Suresh Kumar Singh, Shovan Kumar Kundu, Subir Roy, S. Angappane, and Soumen Basu. "Electrical and room temperature multiferroic properties of polyvinylidene fluoride nanocomposites doped with nickel ferrite nanoparticles." New Journal of Chemistry 43, no. 7 (2019): 3128–38. http://dx.doi.org/10.1039/c8nj04755c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jalouli, Alireza, and Shenqiang Ren. "Magnetoelectric interaction in molecular multiferroic nanocomposites." RSC Advances 12, no. 37 (2022): 24050–54. http://dx.doi.org/10.1039/d2ra04060c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Remya, K. P., R. Rajalakshmi, and N. Ponpandian. "Development of BiFeO3/MnFe2O4 ferrite nanocomposites with enhanced magnetic and electrical properties." Nanoscale Advances 2, no. 7 (2020): 2968–76. http://dx.doi.org/10.1039/d0na00255k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saravanamoorthy, Somasundaram, Muniyandi Muneeswaran, NambiVenkatesan Giridharan, and Sivan Velmathi. "Solvent-free ring opening polymerization of ε-caprolactone and electrical properties of polycaprolactone blended BiFeO3 nanocomposites." RSC Advances 5, no. 54 (2015): 43897–905. http://dx.doi.org/10.1039/c5ra03983e.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Multiferric Nanocomposites"

1

Prokhorenko, Sergei. "Multiscale modeling of multiferroic nanocomposites." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0045/document.

Full text
Abstract:
Au cours des dernières décennies, la recherche de nouveaux matériaux multiferroïques nanostructurés avec des propriétés optimisées a conduit à l'élaboration d'une grande variété de modèles théoriques et des approches de simulation. Allant des modèles ab initio capables de décrire les propriétés à la température nulle des composés artificiels monocristallins à des approximations phénoménologiques pour la description des composites à la mésoscopique, ces recherches ont soulevé la question fondamentale de la relation entre la géométrie de la structure des systèmes hétérogènes et les propriétés des leurs transitions de phase. Cependant, malgré des progrès significatifs en la matière,cette question n'a pas encore été élucidée et les relations entre les modèles à différentes échelles ne sont pas entièrement distingués. La présente étude est consacrée à lier l’ensemble des modèles décrivant les matériaux nanocomposites multiferroïques à différentes échelles. Tout d'abord, nous présentons un développement méthodologique de l'approche Hamiltonien effectif couramment utilisé pour étudier les transitions de phase structurales. Les modifications introduites permettent d'étendre cette méthode pour prédire les propriétés à la température finie des systèmes hétérogènes. Le modèle construit est ensuite utilisé pour étudier les propriétés des nanostructures et solutions solides (BiFeO3)(BaTiO3). Recourant à des simulations Monte-Carlo, nous montrons que notre modèle fournit des résultats qui sont en ligne avec les observations expérimentales récentes et qu’il permet de prédire théoriquement les propriétés d'une large gamme de systèmes avec différentes géométries composites. La deuxième partie de l'étude consiste en l'application de la théorie de Ginzburg-Landau des transitions de phase à l’étude des propriétés des multicouches ferroélectriques et ferromagnétiques avec des interfaces épitaxiales. Plus précisément, nous décrivons théoriquement l’effet magnétoélectrique exhibé par les hétérostructures autonomes Pb(Zr0.5 Ti0.5) O3-FeGaB et BaTiO3-FeGaB. Enfin, nous montrons que la géométrie multicouche d'un nanocomposite ferroélectrique et ferromagnétique ouvre la voie à une amélioration radicale du signal de charge de sortie
During past decades, the search for new nanostructured multiferroic materials with optimized properties has lead to the development of a vast variety of theoretical models and simulation approaches. Spreading from first principles based models able to describe zero-temperature properties of artificial single crystal compounds to phenomenological approximations for composites with mesoscale morphology, these investigations have raised the fundamental question of how the geometry of the structure affects the properties of phase transitions exhibited by heterogeneous systems. However, despite significant progress, the answer to this question still lacks clarity and the bridge connecting models at different scales is not fully constructed. The current study is devoted to linking together models of multiferroic nanocomposite materials applicable at different scales. First, we present a methodological development of effective Hamiltonian approach commonly used to study structural phase transitions. The introduced modifications allow to extend this widely used method to predict finite-temperature properties of compositionally heterogeneous systems. The constructed model is then used to study properties of (BiFeO3)(BaTiO3) nanostructures and solid-solutions. Resorting to Monte-Carlo simulations, we show that our model provides results that are in-line with recent experimental observations and allows to theoretically predict properties of a wide range of systems with different composite geometries. The second part of the study consists inapplication of Landau theory of phase transitions to investigate the properties of ferroelectric-ferromagnetic multilayerswith epitaxial interfaces. Specifically, we theoretically describe the strain-mediated direct ME effect exhibited byfree-standing Pb(Zr0.5 Ti0.5 )O3 -FeGaB and BaTiO3 -FeGaB heterostructures. Finally, we show that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal
APA, Harvard, Vancouver, ISO, and other styles
2

Aimon, Nicolas M. "Templated self-assembly of multiferroic nanocomposites." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89948.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 133-150).
To respond to the growing demand for smart and connected devices, such as smartphones, tablet PCs arid other mobile hardware, while meeting the needs for increased power efficiency, miniaturization and reduced manufacturing costs, new material solutions need to be considered. These should address the shortcomings of incumbent semiconductor-based technologies which provide a limited number of functionalities, suffer from high power consumption and heat dissipation, and whose conventional planar processing is increasingly complex and resource-intensive. Potential replacement materials include complex oxides, which exhibit interesting physical phenomena such as superconductivity, colossal magnetoresistance and multiferroicity. New functionalities are especially found at interfaces between two oxides, including emergent electronic states like two-dimensional electron gases, enhanced ionic transport and magnetoelectric coupling, among many other. In this this thesis, we focus on self-assembled oxide nanocomposites, which elegantly organize into vertical nanostructures via spontaneous phase-separation, naturally forming numerous such heterointerfaces. These provide a rich playground for studying interfacial effects, which could be used in future devices, and the self-assembly promises cheap arid high throughput manufacturing providing it can be integrated into useful architectures. BiFeO₃-CoFe₂O₄ self-assembled nanocomposites, in particular, have been studied for the magnetoelectric coupling that takes place between the ferrimagnetic spinel phase, which forms discrete vertical pillars, arid the ferroelectric perovskite phase, which forms a matrix that surrounds the spinel pillars. Here, after an in-depth study of the mechanisms responsible for the formation of this self-assembled nanostructure, we develop a templating method enabling the precise control over the morphology of the film, resulting in useful structures for potential devices like magnetoelectric memories and logic devices. To study the structural, magnetic and electrical properties of our samples, a set of experimental and theoretical methods is developed, adapted to the unique requirements of these thin film nanostructures with iicron-scale ordering. Using finite element analysis and micromagnetic modeling, the effect of the strain-mediated magnetoelectic coupling on the magnetic switching of the CoFe₂O₄ nanopillars is predicted. Scanning Probe Microscopy is also used to characterize the local ferroelectric and magnetic behavior, and observe, for the first time in these templated composites, electrically-induced magnetic switching of the pillar magnetization. The tools and methods developed in this thesis could pave the way towards a wider use of templated self-assembly to leverage the promising properties of oxide heterointerfaces and enable their use in future devices with low manufacturing costs.
by Nicolas M. Airmon.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Yaodong. "Barium Titanate-Based Magnetoelectric Nanocomposites." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/38666.

Full text
Abstract:
Barium Titanate (BaTiO3 or BTO) has attracted an ever increasing research interest because of its wide range of potential applications. Nano-sized or nanostructured BTO has found applications in new, useful smart devices, such as sensors and piezoelectric devices. Not only limited to one material, multi-layers or multi-phases can lead to multifunctional applications; for example, nanocomposites can be fabricated with ferrite or metal phase with BTO. In this study, I synthesized various BTO-ferrites, ranging from nanoparticles, nanowires to thin films. BTO-ferrite coaxial nanotubes, BTO-ferrite self-assemble thin films, and BTO single phase films were prepared by pulsed laser deposition (PLD) and sol-gel process. BTO-ferrite nanocomposites were grown by solid state reaction. Furthermore, BTO-metal nanostructures were also synthesized by solid state reaction under hydrogen gas which gave us a great inspiration to fabricate metal-ceramic composites. To understand the relationship between metal and BTO ceramic phase, I also deposited BTO film on Au buffered substrates. A metal layer can affect the grain size and orientation in BTO film which can further help us to control the distribution of dielectric properties of BTO films. After obtaining different nanomaterials, I am interested in the applications of these materials. Recently, many interesting electric devices are developed based on nanotechnology, e.g.: memristor. Memristor is a resistor with memory, which is very important in the computer memory. I believe these newly-synthesized BTO based nanostructures are useful for development of memristor, sensors and other devices to fit increasing needs.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Basov, Sergey. "Nouvelles approches pour le design de composites multiferroïques nanostructurés de type (1-3)." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0007/document.

Full text
Abstract:
Les matériaux multiferroïques sont des matériaux multifonctionnels qui possèdent simultanément des propriétés magnétiques et ferroélectriques. Les perspectives d’applications sont ainsi très nombreuses dans les domaines de l’électronique (mémoires, dispositifs spintroniques et hyperfréquences). Le nombre restreint de matériaux multiferroïques monophasés a conduit au développement de nanostructures multiferroïques artificielles constituées d'oxydes ferroélectriques et ferrimagnétiques. Ce travail de thèse est axé sur l'effet magnétoélectrique (ME), obtenu pour de telles hétérostructures via la contrainte, qui permet de manipuler la polarisation spontanée ou l’aimantation par l’application d’un champ magnétique (effet ME direct) et d’un champ électrique (effet ME converse) respectivement. Les effets ME peuvent être observés à température ambiante grâce aux effets d’interfaces et de contraintes dans les nanocomposites multiferroïques. La combinaison de matériaux piézoélectriques PbZr0.52Ti0.48O3 (PZT), Ba0.7Sr0.3TiO3 (BSTO), BaTiO3 (BTO) et de matériaux magnétostrictifs CoFe2O4 (CFO) a été largement exploitée pour l’élaboration de nanocomposites multiferroïques. Les travaux issus de la littérature montrent l’existence d’un fort couplage magnétoélectrique à température ambiante dans des films minces épitaxiés (systèmes de connectivité 2-2), mais un verrou est l’effet de « bride » (clamping effect) induit par le substrat. La conception d'architectures innovantes est un défi dans le domaine des nanocomposites multiferroïques. Ce travail est axé sur les composites de type (1-3) au sein desquelles des nanostructures ferrimagnétiques CoFe2O4 unidimensionnelles (1) sont incorporées dans des couches tridimensionnelles PZT, BTO et BSTO (3). De nouvelles approches ont été envisagées pour concevoir trois types de matériaux: i) des réseaux de nanofils CFO unidirectionnels entourés de nanotubes PZT imprégnés dans des membranes d'alumine; ii) des nanopilliers CFO incorporés dans des couches minces de BTO, BSTO et PZT; ii) des réseaux de nanofils CFO interconnectés 3-D intégrés dans une matrice PZT. Nos principaux objectifs visent i) la maîtrise de l’étape d’oxydation des nanofils et des nanopilliers métalliques CoFe2 afin de contrôler la morphologie et la densité des nanostructures CFO, ii) le contrôle des caractéristiques diélectriques des nanocomposites, iii) l’augmentation du couplage magnétoélectrique en optimisant la densité d’interfaces entre les deux phases ferroïques.La première architecture développée est un dépôt par imprégnation sol-gel de nanotubes PZT dans des membranes d'alumine poreuses autosupportées, suivie d'une électrodéposition des nanofils CoFe2 dans les nanotubes PZT et de leur oxydation par traitement thermique. La deuxième architecture repose sur un dépôt par pulvérisation cathodique magnétron en radiofréquence de couches BSTO et BTO et sur un dépôt par sol-gel de couches PZT, sur des réseaux de nanopilliers CoFe2 et CoFe2O4 alignés verticalement sur des substrats Si. L'oxydation de CoFe2 est réalisée in situ lors du dépôt par pulvérisation cathodique de BSTO et BTO. Les réseaux de nanopilliers CoFe2 sont obtenus par électrodéposition dans des structures nanoporeuses en alumine anodisée qui sont ensuite dissoutes. La dernière architecture proposée est obtenue en combinant l'électrodéposition des nanofils CoFe2 dans des membranes polymères poreuses, et le procédé sol-gel. Les nanostructures PZT-CFO sont préparées par imprégnation sol-gel de couches épaisses PZT dans des réseaux de nanofils CoFe2 et leur oxydation simultanée au cours de la cristallisation des couches PZT.Une attention particulière a été accordée aux effets d’interfaces par le biais des études microstructurales et morphologiques des nanocomposites (XRD, HRSEM, TEM et EDX). Les caractérisations magnétiques, diélectriques, ferroélectriques et magnétoélectriques ont permis d’évaluer les performances des différents nanocomposites élaborés
Multiferroic materials including magnetoelectric materials that combine magnetic and ferroelectric orders have attracted great attention due to a possible strain-mediated coupling leading to potential applications in memories, sensors, detectors, spintronic and microwave devices. The number of single-phase multiferroic materials operating at room temperature being limited, we are exploring artificially designed multiferroic nanostructures consisting of ferroelectric and ferrimagnetic oxides. Current work is focused on strain-mediated magnetoelectric effect, which allows to generate a spontaneous polarization or magnetization by an applied magnetic field (direct ME effect) and electric field (converse ME effect) respectively. ME effects can be observed at room temperature through interface and strain interaction in two-phase multiferroic nanocomposites. The combination of piezoelectric materials PbZr0.52Ti0.48O3 (PZT), Ba0.7Sr0.3TiO3 (BSTO), BaTiO3 (BTO) and magnetostrictive CoFe2O4 (CFO) materials have been intensively studied in multiferroic nanocomposites. The community has been able to demonstrate large magnetoelectric coupling at room temperature in epitaxial thin films, so called 2-2 connectivity system, but a key limitation in epitaxially grown thin films is a substrate imposed clamping effect limiting thin film’s strain. Designing innovative architectures is a challenge in the field of multiferroic nanocomposites. Our work is focused on vertically aligned multiferroic nanostructures, so called (1-3) connectivity nanocomposites, where one-dimensional ferrimagnetic CoFe2O4 nanostructures (1) are embedded into three-dimensional PZT, BTO and BSTO layers (3). New routes were considered to design three kinds of materials: i) vertically aligned CFO nanowire arrays surrounded by PZT nanotubes embedded into alumina membranes; ii) vertically aligned CFO nanopillar arrays embedded in thin BTO, BSTO and PZT layers supported on Si substrates; ii) 3-D interconnected CFO nanowire networks embedded in a thick PZT matrix. The objectives of the present work are to control the oxidation of metallic CoFe2 nanowires and nanopillars to control the morphology and density of CFO nanostructures, to control the resistivity and dielectric losses of the nanocomposites at the interface region, and to increase the magnetoelectric coupling of the multiferroic nanocomposites by increasing the interfacial surface area between the two ferroic phases.The first geometry we are developing is a deposition by sol-gel dip impregnation of PZT nanotube arrays into self-supported porous alumina membranes, followed by an electrodeposition and thermal oxidation of CoFe2 nanowire arrays within PZT nanotubes. The second architecture we are focusing on is a deposition by RF magnetron sputtering of BSTO and BTO layers and by sol-gel dip coating of PZT layers onto vertically aligned CoFe2 and CoFe2O4 nanopillar arrays supported on Si substrates. The CoFe2 oxidation is conducted in-situ during the BSTO and BTO sputter deposition. Free-standing CoFe2 nanopillar arrays are obtained by electrodeposition into anodized alumina nanoporous structures and chemical dissolution of alumina templates. The last geometry is prepared using a combination of electrodeposition into self-supported porous polymer membranes and sol-gel processes. The PZT-CFO nanostructures are prepared using impregnation of thick PZT layers into self-supported CoFe2 3D nanowire networks on Si substrates by sol-gel method and their simultaneous oxidation during PZT layers crystallization. Specific attention was focused on interfaces through microstructural and morphological evaluations of nanocomposites using XRD, HRSEM, TEM and EDS characterizations. The performances of the nanocomposites were evaluated using magnetic, dielectric, ferroelectric and ME measurements, an alternating gradient magnetometer, impedance analyser, PFM and the ME susceptometer operated inside PPMS were utilized, respectively
APA, Harvard, Vancouver, ISO, and other styles
5

Kumar, A. "Synthesis and Characterization of Multiferroic Composite (Barium Titanate-Nickel Ferrite)by Solid State Route." Thesis, 2010. http://ethesis.nitrkl.ac.in/1714/3/thesis1.pdf.

Full text
Abstract:
Conventional ceramic processing method was followed to study 50-50 Barium Titanate and Nickel Ferrite composite. Mixed oxide of BaCO3 and TiO2 for BaTiO3 and NiO and Fe2O3 for NiFe2O4 were calcined at 1000o C for four hour and 900o C for four hour respectively. Phases of particular compounds have been confirmed by XRD. The pellets of composites were sintered at varying temperature (1100, 1150, 1200 oC for 4 hr). The samples were made ready for required characterization. The observations from XRD were proved to be important for the composite as this is the requirement for making good composite.
APA, Harvard, Vancouver, ISO, and other styles
6

Amrillah, Tahta, and 安泰達. "Multiferroic Properties of BiFeO3-CoFe2O4 Epitaxial Nanocomposite Thin Film." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/22604706933633806236.

Full text
Abstract:
碩士
國立交通大學
電子物理系所
102
BFO-CFO vertically align nanocomposite (VAN) was successfully made by utilizing the different wetting conditions from BFO and CFO film when growing on STO substrate at the same time in the PLD system. From the XRD result, there was strain effect from STO substrate to BFO and CFO film. Especially for BFO-CFO/STO VAN, CFO pillar relaxed the strain of BFO film, and shifted magnetic phase transitions on BFO/STO thin film to around 30 K and 160 K as compared to that of BFO powders where the transitions occured around 55 K and 200 K, respectively. From M-T and C-T measurements on BFO/CFO/STO bilayer and BFO-CFO/STO VAN, antiferromagnetic-ferromagnetic coupling (BFO-CFO) is stronger than antiferromagnetic-ferroelectric coupling (BFO). making the magnetization and capacitance anomalies unobservable in those systems. Furthermore, the C-T beharviors of BFO/STO and BFO/CFO/STO are in general similar, but different in subtle details, which presumably originates from the quenching of spin reorientation in BFO due to ferromagnetic coupling from CFO. The situation is even more complicated in the CFO pillar embedded in BFO matrix sample. Finally, from R-T measurement, the high-density BFO-CFO/STO VAN film showed an apparent insulator-metal transition around 30 K, which is similar to that observed in BFO film under strong external magnetic fields which done by another reseach before. The result suggests that when the pillar density is large enough it may generate strong enough local magnetic field to modify the ferroelectric domain structures in BFO matrix. Further investigations are certainly in order to delineate the interisting emergent phenomena observed in the present study.
APA, Harvard, Vancouver, ISO, and other styles
7

Amrillah, Tahta, and 安泰達. "Interplay of magnetic, electric and elastic couplings in multiferroic nanocomposite thin film." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/k6984b.

Full text
Abstract:
博士
國立交通大學
電子物理系所
107
Magnetic and multiferroic nanocomposites with two distinct phases have been a topic of intense research for their profound potential in technological applications. In addition to growing high-quality phase-separated heteroepitaxial nanocomposites, the strain engineering, which is conducive to the tunability of the magnetic and electric properties, is widely employed to explore emergent functionalities in these materials. In the present study, we investigated the magnetostructural and magnetoelectric coupling between multiferroic (anti-ferromagnetic and ferroelectric) BiFeO3 (BFO) and ferrimagnetic (magnetostrictive) CoFe2O4 (CFO) nanocomposites. The nanocomposites were prepared in a self-assembled fashion by pulsed laser deposition on rigid SrTiO3 (STO) and LaAlO3 (LAO) substrates to result in a microstructure with vertically aligned heteroepitaxy of the constituent phases. The BFO matrix exhibits rhombohedral (R) structure on STO substrate and tetragonal (T) structure on LAO substrate, while the CFO appears as nanopillars embedded in the BFO matrix in both cases. Moreover, in the T_ BFO-CFO/LAO system, the magnetic properties as well as magnetoelectric can be tuned by magneto-structural coupling. In contrast, one of the major obstacles encountered by this kind of approach is the clamping effect arising from the rigid substrate. To this respect, growing such heterostructures via the van der Waal (vdW) epitaxial growth on mica substrate is a natural alternative for circumventing this problem. The temperature and magnetic field dependent magnetization studies of these nanocomposites evidently highlight the enhanced magnetoelectric coupling of BFO-CFO grown on mica. Therefore, this study demonstrates a platform for fabricating highly flexible functional ME sensors, which are robust against extreme conditions (thermal, mechanical and chemical) with optimized performance.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Multiferric Nanocomposites"

1

Agrawal, Arpana, and Tanveer Ahmad Dar. "Spectroscopic Techniques for Multiferroic Materials." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 629–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90948-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Agrawal, Arpana, and Tanveer Ahmad Dar. "Spectroscopic Techniques for Multiferroic Materials." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 1–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-34007-0_20-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Yang, and George J. Weng. "Magnetoelectric Coupling and Overall Properties of a Class of Multiferroic Composites." In Advances in Nanocomposites, 189–233. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31662-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hannachi, Essia, and Yassine Slimani. "Advanced Progress in Magnetoelectric Multiferroic Composites." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 351–85. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90948-2_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hannachi, Essia, and Yassine Slimani. "Advanced Progress in Magnetoelectric Multiferroic Composites." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 1–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-34007-0_52-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Ayekpam Kiranjit, T. H. David Singh, and Ibetombi Soibam. "Synthesis and Characterization of LFO–BFO Multiferroic Nanocomposites." In Nanostructured Smart Materials, 193–202. First edition.: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003130468-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Navadeepthy, D., G. Srividhya, and N. Ponpandian. "Synthesis of Magnetoelectric Multiferroics and Its Composites." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 203–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90948-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Navadeepthy, D., G. Srividhya, and N. Ponpandian. "Synthesis of Magnetoelectric Multiferroics and Its Composites." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 1–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-34007-0_10-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Agrawal, Arpana. "Vacuum-Based Deposition Techniques to Synthesize Magnetoelectric Multiferroic Materials." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 319–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90948-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Agrawal, Arpana. "Vacuum-Based Deposition Techniques to Synthesize Magnetoelectric Multiferroic Materials." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 1–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-34007-0_13-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Multiferric Nanocomposites"

1

Piccone, B. E., J. E. Blendell, and R. E. Garcia. "Response surface measurement for BiFeO3-CoFe2O4 multiferroic nanocomposite." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Prabhakaran, T., and J. Hemalatha. "Highly flexible poly (vinyldine fluoride)/bismuth iron oxide multiferroic polymer nanocomposites." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mandal, P. R., T. K. Nath, P. K. Bajpai, K. S. Ojha, and K. N. Singh. "Investigation of Magnetic and Electrical Properties of Multiferroic CZFO-PZT Nanocomposites." In XVI NATIONAL SEMINAR ON FERROELECTRICS AND DIELECTRICS (NSFD-XVI). AIP, 2011. http://dx.doi.org/10.1063/1.3644425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chakraborty, Sarit, S. K. Mandal, and B. Saha. "Magnetoelectric coupling and magnetically tunable transport properties of 0.2Zn0.2Co0.8Fe2O4-0.8PbZr0.58Ti0.42O3 multiferroic nanocomposites." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Amrillah, Tahta, and Jen-Yih Juang. "Magnetic saturation enhancement in the vertically aligned multiferroic nanocomposite thin film." In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0034130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Amrillah, Tahta, and Jen-Yih Juang. "Fashioning the architectures of the self-assembled multiferroic nanocomposite thin film." In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0034134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Komalavalli, P., and I. B. Shameem Banu. "Investigation of multiferroic properties in nickel ferrite -barium titanate nanocomposites at room temperature." In 2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC). IEEE, 2018. http://dx.doi.org/10.1109/rtecc.2018.8625646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Singh, Swati, S. K. Mandal, and P. Dey. "Magnetoelectric coupling and dielectric study of xNiFe2O4 – (1-x)ErMnO3 lead free multiferroic nanocomposites." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Song, Chunrui, Nikita Liedienov, Aleksey Pashchenko, Igor Fesych, Georgiy Levchenko, and Wei Xu. "Structure, Morphology, and Magnetic Properties of New Multiferroic Nanocomposite Obtained by High-Pressure Torsion." In 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2022. http://dx.doi.org/10.1109/elnano54667.2022.9927051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dutta, Papia, S. K. Mandal, P. Dey, and A. Nath. "Frequency and temperature dependence of dielectric and ac electrical properties of NiFe2O4–ZnO multiferroic nanocomposite." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5028664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography