To see the other types of publications on this topic, follow the link: Multidimensional scaling.

Journal articles on the topic 'Multidimensional scaling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Multidimensional scaling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gower, J. C., F. Cox, and M. A. A. Cox. "Multidimensional Scaling." Journal of the Royal Statistical Society. Series A (Statistics in Society) 159, no. 1 (1996): 184. http://dx.doi.org/10.2307/2983485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jeffers, J. N. R., and Mark L. Davison. "Multidimensional Scaling." Statistician 34, no. 2 (1985): 257. http://dx.doi.org/10.2307/2988171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jolliffe, Ian. "Multidimensional Scaling." Technometrics 38, no. 4 (November 1996): 403–4. http://dx.doi.org/10.1080/00401706.1996.10484556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mugavin, Marie E. "Multidimensional Scaling." Nursing Research 57, no. 1 (January 2008): 64–68. http://dx.doi.org/10.1097/01.nnr.0000280659.88760.7c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hout, Michael C., Megan H. Papesh, and Stephen D. Goldinger. "Multidimensional scaling." Wiley Interdisciplinary Reviews: Cognitive Science 4, no. 1 (October 8, 2012): 93–103. http://dx.doi.org/10.1002/wcs.1203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, In-Soon. "Multidimensional Scaling." Journal of Korean Medical Library Association 19, no. 1 (June 1992): 1–6. http://dx.doi.org/10.69528/jkmla.1992.19.1.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aflalo, Y., and R. Kimmel. "Spectral multidimensional scaling." Proceedings of the National Academy of Sciences 110, no. 45 (October 9, 2013): 18052–57. http://dx.doi.org/10.1073/pnas.1308708110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Venna, Jarkko, and Samuel Kaski. "Local multidimensional scaling." Neural Networks 19, no. 6-7 (July 2006): 889–99. http://dx.doi.org/10.1016/j.neunet.2006.05.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Spence, Ian, and Stephan Lewandowsky. "Robust multidimensional scaling." Psychometrika 54, no. 3 (September 1989): 501–13. http://dx.doi.org/10.1007/bf02294632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

de Leeuw, Jan, and Patrick J. F. Groenen. "Inverse Multidimensional Scaling." Journal of Classification 14, no. 1 (January 1, 1997): 3–21. http://dx.doi.org/10.1007/s003579900001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rajawat, Ketan, and Sandeep Kumar. "Stochastic Multidimensional Scaling." IEEE Transactions on Signal and Information Processing over Networks 3, no. 2 (June 2017): 360–75. http://dx.doi.org/10.1109/tsipn.2017.2668145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hébert, Pierre-Alexandre, Marie-Hélène Masson, and Thierry Denœux. "Fuzzy multidimensional scaling." Computational Statistics & Data Analysis 51, no. 1 (November 2006): 335–59. http://dx.doi.org/10.1016/j.csda.2006.02.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bronstein, M. M., A. M. Bronstein, R. Kimmel, and I. Yavneh. "Multigrid multidimensional scaling." Numerical Linear Algebra with Applications 13, no. 2-3 (2006): 149–71. http://dx.doi.org/10.1002/nla.475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Walundungo, Gloria, Marline Paendong, and Tohap Manurung. "Penggunaan Analisis Multidimensional Scaling Untuk Mengetahui Kemiripan Rumah Makan Di Manado Town Square Berdasarkan Kerakteristik Pelanggan." d'CARTESIAN 3, no. 1 (March 30, 2014): 30. http://dx.doi.org/10.35799/dc.3.1.2014.3806.

Full text
Abstract:
Abstract Multidimensional Scaling (MDS) is a technique that can be used in multiple variables to determine the position of other objects based on similarity assessment. The purpose of this study is to obtain a description of the restaurant and the customers know the similarities between the restaurants as object of research. The result of Multidimensional Scaling map shows that WarungPojok and Solaria restaurant have a same rate in taste of food category due to the distance is near each other. As for the restaurant Bakmi Naga, Ayam Penyet and Kawan Baru have relative position between each other which means the three restaurants unsimillarity. Keywords : Multidimensional Scaling, Mapping, Map Perception, Restaurant . Abstrak Multidimensional Scalling (MDS)merupakan salah satu teknik peubah ganda yang dapat digunakan untuk menentukan posisi suatu objek lainnya berdasarkan penilaian kemiripannya. Tujuan dari penelitian ini adalah untuk memperoleh deskripsi pelanggan terhadap rumah makan serta mengetahui kemiripan antara rumah makan yang dijadikan objek penelitian. Hasil dari peta analisis Multidimensional Scaling dapat dilihat bahwa rumah makan Warung Pojok dan Solaria memiliki tingkat kemiripan di cita rasa makanankarena jarak yang saling berdekatan. Sedangkan untuk rumah makan Bakmi Naga, Ayam Penyet dan Kawan Baru menempati posisi relatif saling berjauhan antar satu dengan yang lain yang berarti ketiga rumah makan ini tidak mempunyai kemiripan atau ketakmiripan. Kata kunci : Multidimensional Scaling, Pemetaan, Peta Persepsi, Rumah Makan
APA, Harvard, Vancouver, ISO, and other styles
15

Andrecut, M. "Molecular dynamics multidimensional scaling." Physics Letters A 373, no. 23-24 (May 2009): 2001–6. http://dx.doi.org/10.1016/j.physleta.2009.04.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bakker, Ryan, and Keith T. Poole. "Bayesian Metric Multidimensional Scaling." Political Analysis 21, no. 1 (2013): 125–40. http://dx.doi.org/10.1093/pan/mps039.

Full text
Abstract:
In this article, we show how to apply Bayesian methods to noisy ratio scale distances for both the classical similarities problem as well as the unfolding problem. Bayesian methods produce essentially the same point estimates as the classical methods, but are superior in that they provide more accurate measures of uncertainty in the data. Identification is nontrivial for this class of problems because a configuration of points that reproduces the distances is identified only up to a choice of origin, angles of rotation, and sign flips on the dimensions. We prove that fixing the origin and rotation is sufficient to identify a configuration in the sense that the corresponding maxima/minima are inflection points with full-rank Hessians. However, an unavoidable result is multiple posterior distributions that are mirror images of one another. This poses a problem for Markov chain Monte Carlo (MCMC) methods. The approach we take is to find the optimal solution using standard optimizers. The configuration of points from the optimizers is then used to isolate a single Bayesian posterior that can then be easily analyzed with standard MCMC methods.
APA, Harvard, Vancouver, ISO, and other styles
17

Dzhafarov, Ehtibar N., and Hans Colonius. "Multidimensional Fechnerian Scaling: Basics." Journal of Mathematical Psychology 45, no. 5 (October 2001): 670–719. http://dx.doi.org/10.1006/jmps.2000.1341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Zhidong, and Luis Garcia. "Examining Dimensionality and Validity of the Academic Integrity Survey Instrument." Journal of Education and Development 7, no. 1 (February 8, 2023): 46. http://dx.doi.org/10.20849/jed.v7i1.1326.

Full text
Abstract:
Dimensional reduction is one of the methods to ensure the quality of a questionnaire. This study examined two methods to reduce the dimension of the questionnaire: multidimensional scaling (MDS) and exploratory factor analysis (EFA). The questionnaire, Awareness of Academic Dishonesty consists of 30 questions. Participants included 110 college students. Multidimensional scaling analysis reduced the multidimensions to essentially two dimensions. The exploratory factor analysis reduced the multidimensions to three dimensions. MDS allowed the researchers to evaluate the questionnaire items by looking at the similarities of these data points. EFA provided an alternative thought about the construct of the questionnaire.
APA, Harvard, Vancouver, ISO, and other styles
19

Zhou, Ri-Gui, Canyun Tan, and Ping Fan. "Quantum multidimensional color image scaling using nearest-neighbor interpolation based on the extension of FRQI." Modern Physics Letters B 31, no. 17 (June 14, 2017): 1750184. http://dx.doi.org/10.1142/s0217984917501846.

Full text
Abstract:
Reviewing past researches on quantum image scaling, only 2D images are studied. And, in a quantum system, the processing speed increases exponentially since parallel computation can be realized with superposition state when compared with classical computer. Consequently, this paper proposes quantum multidimensional color image scaling based on nearest-neighbor interpolation for the first time. Firstly, flexible representation of quantum images (FRQI) is extended to multidimensional color model. Meantime, the nearest-neighbor interpolation is extended to multidimensional color image and cycle translation operation is designed to perform scaling up operation. Then, the circuits are designed for quantum multidimensional color image scaling, including scaling up and scaling down, based on the extension of FRQI. In addition, complexity analysis shows that the circuits in the paper have lower complexity. Examples and simulation experiments are given to elaborate the procedure of quantum multidimensional scaling.
APA, Harvard, Vancouver, ISO, and other styles
20

Kim, Bong Je. "Analysis of Characteristics of Unification Education Research Using Multidimensional Scaling." Journal of Moral & Ethics Education 60 (August 31, 2018): 291–320. http://dx.doi.org/10.18338/kojmee.2018..60.291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dourado, António, Paulo Barbeiro, Edgar Ferreira, Luís Amaral, António Coelho, and Dora Nogueira. "VISBREAKER ANALYSIS BY MULTIDIMENSIONAL SCALING." IFAC Proceedings Volumes 40, no. 9 (2007): 356–61. http://dx.doi.org/10.3182/20070723-3-pl-2917.00058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lee, Su-Gi, Yong-Seok Choi, and Bo-Hui Lee. "Visualizations of Asymmetric Multidimensional Scaling." Korean Journal of Applied Statistics 27, no. 4 (August 31, 2014): 619–27. http://dx.doi.org/10.5351/kjas.2014.27.4.619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ueda, Tohru. "Sensitivity Analysis in Multidimensional Scaling." Behaviormetrika 16, no. 25 (January 1989): 35–47. http://dx.doi.org/10.2333/bhmk.16.25_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Moinpour, Reza, Paul E. Green, Frank J. Carmone, and Scott M. Smith. "Multidimensional Scaling: Concepts and Applications." Journal of Marketing Research 28, no. 4 (November 1991): 504. http://dx.doi.org/10.2307/3172796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cox, Trevor F., and Michael A. A. Cox. "Multidimensional scaling on a sphere." Communications in Statistics - Theory and Methods 20, no. 9 (January 1991): 2943–53. http://dx.doi.org/10.1080/03610929108830679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Huang, Yameng, and Zhouchen Lin. "Binary Multidimensional Scaling for Hashing." IEEE Transactions on Image Processing 27, no. 1 (January 2018): 406–18. http://dx.doi.org/10.1109/tip.2017.2759250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Buja, Andreas, Deborah F. Swayne, Michael L. Littman, Nathaniel Dean, Heike Hofmann, and Lisha Chen. "Data Visualization With Multidimensional Scaling." Journal of Computational and Graphical Statistics 17, no. 2 (June 2008): 444–72. http://dx.doi.org/10.1198/106186008x318440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Perales, E., F. J. Burgos, M. Vilaseca, V. Viqueira, and F. M. Martínez-Verdú. "Graininess characterization by multidimensional scaling." Journal of Modern Optics 66, no. 9 (March 19, 2019): 929–38. http://dx.doi.org/10.1080/09500340.2019.1589006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Saeed, Nasir, Haewoon Nam, Mian Imtiaz Ul Haq, and Dost Bhatti Muhammad Saqib. "A Survey on Multidimensional Scaling." ACM Computing Surveys 51, no. 3 (July 16, 2018): 1–25. http://dx.doi.org/10.1145/3178155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cox, Trevor F., Michael A. A. Cox, and Joao A. Branco. "Multidimensional scaling for n-tuples." British Journal of Mathematical and Statistical Psychology 44, no. 1 (May 1991): 195–206. http://dx.doi.org/10.1111/j.2044-8317.1991.tb00955.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rohde, Douglas L. T. "Methods for Binary Multidimensional Scaling." Neural Computation 14, no. 5 (May 1, 2002): 1195–232. http://dx.doi.org/10.1162/089976602753633457.

Full text
Abstract:
Multidimensional scaling (MDS) is the process of transforming a set of points in a high-dimensional space to a lower-dimensional one while preserving the relative distances between pairs of points. Although effective methods have been developed for solving a variety of MDS problems, they mainly depend on the vectors in the lower-dimensional space having real-valued components. For some applications, the training of neural networks in particular, it is preferable or necessary to obtain vectors in a discrete, binary space. Unfortunately, MDS into a low-dimensional discrete space appears to be a significantly harder problem than MDS into a continuous space. This article introduces and analyzes several methods for performing approximately optimized binary MDS.
APA, Harvard, Vancouver, ISO, and other styles
32

Forero, Pedro A., and Georgios B. Giannakis. "Sparsity-Exploiting Robust Multidimensional Scaling." IEEE Transactions on Signal Processing 60, no. 8 (August 2012): 4118–34. http://dx.doi.org/10.1109/tsp.2012.2197617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sato-Ilic, Mika, and Peter Ilic. "On a Multidimensional Cluster Scaling." Procedia Computer Science 36 (2014): 278–84. http://dx.doi.org/10.1016/j.procs.2014.09.094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sato-Ilic, Mika. "Probabilistic Metric Based Multidimensional Scaling." Procedia Computer Science 168 (2020): 65–72. http://dx.doi.org/10.1016/j.procs.2020.02.258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Le, Huiling, and Christopher G. Small. "Multidimensional scaling of simplex shapes." Pattern Recognition 32, no. 9 (September 1999): 1601–13. http://dx.doi.org/10.1016/s0031-3203(99)00023-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jackson, J. Edward. "Key Texts in Multidimensional Scaling." Technometrics 27, no. 1 (February 1985): 88. http://dx.doi.org/10.1080/00401706.1985.10488020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Marcussen, Carl. "Multidimensional scaling in tourism literature." Tourism Management Perspectives 12 (October 2014): 31–40. http://dx.doi.org/10.1016/j.tmp.2014.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gower, John C., and Roger F. Ngouenet. "Nonlinearity effects in multidimensional scaling." Journal of Multivariate Analysis 94, no. 2 (June 2005): 344–65. http://dx.doi.org/10.1016/j.jmva.2004.05.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bae, Seung-Hee, Judy Qiu, and Geoffrey Fox. "Adaptive Interpolation of Multidimensional Scaling." Procedia Computer Science 9 (2012): 393–402. http://dx.doi.org/10.1016/j.procs.2012.04.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cozzens, Margaret B., and Rochelle Leibowitz. "Multidimensional scaling and threshold graphs." Journal of Mathematical Psychology 31, no. 2 (June 1987): 179–91. http://dx.doi.org/10.1016/0022-2496(87)90014-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Buja, Andreas, and Deborah F. Swayne. "Visualization Methodology for Multidimensional Scaling." Journal of Classification 19, no. 1 (January 1, 2002): 7–43. http://dx.doi.org/10.1007/s00357-001-0031-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cox, Mitchell A. A., and Trevor F. Cox. "Interpreting stress in multidimensional scaling." Journal of Statistical Computation and Simulation 37, no. 3-4 (December 1990): 211–23. http://dx.doi.org/10.1080/00949659008811305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Goodrum, Abby A. "Multidimensional scaling of video surrogates." Journal of the American Society for Information Science and Technology 52, no. 2 (2001): 174–82. http://dx.doi.org/10.1002/1097-4571(2000)9999:9999<::aid-asi1580>3.0.co;2-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fenton, Mark, and Philip Pearce. "Multidimensional scaling and tourism research." Annals of Tourism Research 15, no. 2 (January 1988): 236–54. http://dx.doi.org/10.1016/0160-7383(88)90085-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Dzhafarov, Ehtibar N. "Multidimensional Fechnerian Scaling: Perceptual Separability." Journal of Mathematical Psychology 46, no. 5 (October 2002): 564–82. http://dx.doi.org/10.1006/jmps.2002.1414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

KURLYANDSKII, Viktor V., and Aleksandr N. BILANENKO. "Using the multidimensional scaling method when assessing the financial feasibility of including foreign exchange market assets in securities portfolios." Finance and Credit 29, no. 7 (July 31, 2023): 1595–614. http://dx.doi.org/10.24891/fc.29.7.1595.

Full text
Abstract:
Subject. This article discusses the application of the multidimensional scaling method to improve the methods of formation and effective management of a portfolio of securities. Objectives. The article aims to prove the rationality of using the multidimensional scaling method to assess the financial feasibility of including foreign exchange market assets in securities portfolios. Methods. For the study, we used the methods of correlation analysis and multidimensional scaling. Results. The article finds that the use of the multidimensional scaling method helps identify similar features of the assets of the securities market and the foreign exchange market, and confirms the rationality of using this method when assessing the financial feasibility of including foreign exchange market assets in securities portfolios. Conclusions. The article concludes that it is necessary to make changes to the traditional decision-making model in portfolio investment, recognizing the use of multidimensional scaling to assess the economic feasibility of including foreign exchange market assets denominated in the same currency as portfolio assets in securities portfolios as rational.
APA, Harvard, Vancouver, ISO, and other styles
47

Kobayashi, Yuh, Hideki Takayasu, Shlomo Havlin, and Misako Takayasu. "Robust Characterization of Multidimensional Scaling Relations between Size Measures for Business Firms." Entropy 23, no. 2 (January 29, 2021): 168. http://dx.doi.org/10.3390/e23020168.

Full text
Abstract:
Although the sizes of business firms have been a subject of intensive research, the definition of a “size” of a firm remains unclear. In this study, we empirically characterize in detail the scaling relations between size measures of business firms, analyzing them based on allometric scaling. Using a large dataset of Japanese firms that tracked approximately one million firms annually for two decades (1994–2015), we examined up to the trivariate relations between corporate size measures: annual sales, capital stock, total assets, and numbers of employees and trading partners. The data were examined using a multivariate generalization of a previously proposed method for analyzing bivariate scalings. We found that relations between measures other than the capital stock are marked by allometric scaling relations. Power–law exponents for scalings and distributions of multiple firm size measures were mostly robust throughout the years but had fluctuations that appeared to correlate with national economic conditions. We established theoretical relations between the exponents. We expect these results to allow direct estimation of the effects of using alternative size measures of business firms in regression analyses, to facilitate the modeling of firms, and to enhance the current theoretical understanding of complex systems.
APA, Harvard, Vancouver, ISO, and other styles
48

Huang, Jih-Jeng, Gwo-Hshiung Tzeng, and Chorng-Shyong Ong. "Multidimensional data in multidimensional scaling using the analytic network process." Pattern Recognition Letters 26, no. 6 (May 2005): 755–67. http://dx.doi.org/10.1016/j.patrec.2004.09.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Huh, Myung-Hoe, and Yong-Goo Lee. "Multidimensional Scaling of Asymmetric Distance Matrices." Korean Journal of Applied Statistics 25, no. 4 (August 31, 2012): 613–20. http://dx.doi.org/10.5351/kjas.2012.25.4.613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

McFarlane, Mary, and Forrest W. Young. "Graphical Sensitivity Analysis for Multidimensional Scaling." Journal of Computational and Graphical Statistics 3, no. 1 (March 1994): 23. http://dx.doi.org/10.2307/1390793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography