Journal articles on the topic 'Multidimensional chromatography'

To see the other types of publications on this topic, follow the link: Multidimensional chromatography.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Multidimensional chromatography.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Schmidt, Torsten C., Oliver J. Schmitz, and Thorsten Teutenberg. "Multidimensional chromatography." Analytical and Bioanalytical Chemistry 407, no. 1 (October 24, 2014): 117–18. http://dx.doi.org/10.1007/s00216-014-8265-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Edwards, Matthew, Haleigh Boswell, and Tadeusz Górecki. "Comprehensive Multidimensional Chromatography." Current Chromatography 2, no. 2 (July 30, 2015): 80–109. http://dx.doi.org/10.2174/2213240602666150722232236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marriott, Philip J., Sung-Tong Chin, Bussayarat Maikhunthod, Hans-Georg Schmarr, and Stefan Bieri. "Multidimensional gas chromatography." TrAC Trends in Analytical Chemistry 34 (April 2012): 1–21. http://dx.doi.org/10.1016/j.trac.2011.10.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bartle, Keith D., Ilona Davies, Mark W. Raynor, Anthony A. Clifford, and Jacob P. Kithinji. "Unified multidimensional microcolumn chromatography." Journal of Microcolumn Separations 1, no. 2 (March 1989): 63–70. http://dx.doi.org/10.1002/mcs.1220010205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Satława, Tadeusz, Joanna Grabska-Chrząstowska, and Przemysław Korohoda. "Application of multidimensional data analysis to chromatography." Image Processing & Communications 18, no. 2-3 (December 1, 2013): 101–8. http://dx.doi.org/10.2478/v10248-012-0084-1.

Full text
Abstract:
Abstract This work presents analysis of chromatographic signal used to identify substances in samples. First part consists of chromatography overview and description of three classification methods (neural network with backpropagation, probabilistic neural network with Parzen window and support vector machines). Designed algorithm consists of several stages: signal filtering, peak detection and its approximation with sum of two Gaussian functions. The parameters of that two curves are the features vectors describing the peak of the substance. The last step is classification, for which two types of supervised machine learning were compared, based on the whole signal and on features vectors. Both types were tested for different classificators and their parameters. Verification was based on 55 chromatography signals. The best results for both methods of learning were achieved for probabilistic neural networks. The correct classification rate was 82% for the whole signal and 93% for feature vectors.
APA, Harvard, Vancouver, ISO, and other styles
6

Cabalda, Vivian M., and John F. Kennedy. "Multidimensional chromatography: Techniques and applications." Carbohydrate Polymers 16, no. 1 (January 1991): 111–12. http://dx.doi.org/10.1016/0144-8617(91)90077-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Herrero, Miguel, Elena Ibáñez, Alejandro Cifuentes, and Jose Bernal. "Multidimensional chromatography in food analysis." Journal of Chromatography A 1216, no. 43 (October 2009): 7110–29. http://dx.doi.org/10.1016/j.chroma.2009.08.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Levy, J. M., J. P. Guzowski, and W. E. Huhak. "On-line multidimensional supercritical fluid chromatography/capillary gas chromatography." Journal of High Resolution Chromatography 10, no. 6 (June 1987): 337–41. http://dx.doi.org/10.1002/jhrc.1240100604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shah, Priyanka A., Pranav S. Shrivastav, and Vinay Sharma. "Multidimensional chromatography platforms: status and prospects." Bioanalysis 13, no. 14 (July 2021): 1083–86. http://dx.doi.org/10.4155/bio-2021-0118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nolvachai, Yada, Chadin Kulsing, and Philip J. Marriott. "Multidimensional gas chromatography in food analysis." TrAC Trends in Analytical Chemistry 96 (November 2017): 124–37. http://dx.doi.org/10.1016/j.trac.2017.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Cacciola, Francesco, Paola Dugo, and Luigi Mondello. "Multidimensional liquid chromatography in food analysis." TrAC Trends in Analytical Chemistry 96 (November 2017): 116–23. http://dx.doi.org/10.1016/j.trac.2017.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ali, Imran, Mohd Suhail, and Hassan Y. Aboul-Enein. "Advances in chiral multidimensional liquid chromatography." TrAC Trends in Analytical Chemistry 120 (November 2019): 115634. http://dx.doi.org/10.1016/j.trac.2019.115634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Elbashir, Abdalla Ahmed, and Hassan Y. Aboul-Enein. "Multidimensional Gas Chromatography for Chiral Analysis." Critical Reviews in Analytical Chemistry 48, no. 5 (March 21, 2018): 416–27. http://dx.doi.org/10.1080/10408347.2018.1444465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Reich, Sabine, Oliver Trapp, and Volker Schurig. "Enantioselective stopped-flow multidimensional gas chromatography." Journal of Chromatography A 892, no. 1-2 (September 2000): 487–98. http://dx.doi.org/10.1016/s0021-9673(99)01301-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Krock, Kevin A., and Charles L. Wilkins. "Recent advances in multidimensional gas chromatography." TrAC Trends in Analytical Chemistry 13, no. 1 (January 1994): 13–17. http://dx.doi.org/10.1016/0165-9936(94)85054-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Toups, E. Peter, Michael J. Gray, Gary R. Dennis, Narsimha Reddy, Michael A. Wilson, and R. Andrew Shalliker. "Multidimensional liquid chromatography for sample characterisation." Journal of Separation Science 29, no. 4 (March 2006): 481–91. http://dx.doi.org/10.1002/jssc.200500348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Cortes, H. J., C. D. Pfeiffer, and B. E. Richter. "On-line multidimensional chromatography using packed capillary liquid chromatography and capillary gas chromatography." Journal of High Resolution Chromatography 8, no. 8 (August 1985): 469–74. http://dx.doi.org/10.1002/jhrc.1240080823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wong, Yong Foo, Constanze Hartmann, and Philip J Marriott. "Multidimensional gas chromatography methods for bioanalytical research." Bioanalysis 6, no. 18 (September 2014): 2461–79. http://dx.doi.org/10.4155/bio.14.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chin, Sung-Tong, and Philip J. Marriott. "Multidimensional gas chromatography beyond simple volatiles separation." Chemical Communications 50, no. 64 (May 16, 2014): 8819. http://dx.doi.org/10.1039/c4cc02018a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Berkowitz, Steven A. "Linear Multidimensional Liquid Chromatography in Protein Separation." Journal of Liquid Chromatography 10, no. 12 (September 1987): 2771–87. http://dx.doi.org/10.1080/01483918708066825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ragunathan, N., Kevin A. Krock, and Charles L. Wilkins. "Multidimensional gas chromatography with parallel cryogenic traps." Analytical Chemistry 65, no. 8 (April 15, 1993): 1012–16. http://dx.doi.org/10.1021/ac00056a011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Herrero, Miguel. "Nicholas Snow (Ed.): Basic multidimensional gas chromatography." Analytical and Bioanalytical Chemistry 412, no. 25 (July 20, 2020): 6637–38. http://dx.doi.org/10.1007/s00216-020-02793-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dugo, Paola, Francesco Cacciola, Tiina Kumm, Giovanni Dugo, and Luigi Mondello. "Comprehensive multidimensional liquid chromatography: Theory and applications." Journal of Chromatography A 1184, no. 1-2 (March 2008): 353–68. http://dx.doi.org/10.1016/j.chroma.2007.06.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fairchild, Jacob N., Krisztián Horváth, and Georges Guiochon. "Approaches to comprehensive multidimensional liquid chromatography systems." Journal of Chromatography A 1216, no. 9 (February 2009): 1363–71. http://dx.doi.org/10.1016/j.chroma.2008.12.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shellie, Robert A., Éadaoin Tyrrell, Christopher A. Pohl, and Paul R. Haddad. "Column selection for comprehensive multidimensional ion chromatography." Journal of Separation Science 31, no. 19 (September 19, 2008): 3287–96. http://dx.doi.org/10.1002/jssc.200800286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Himberg, Kimmo, Erkki Sippola, and Marja-Liisa Riekkola. "Multidimensional gas chromatography: State of the art." Journal of Microcolumn Separations 1, no. 6 (November 1989): 271–77. http://dx.doi.org/10.1002/mcs.1220010605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Durai Ananda Kumar T, Sai Charan, Venkateswarlu A, and Supriya Reddy K. "Evolution of liquid chromatography: Technologies and applications." International Journal of Research in Pharmaceutical Sciences 11, no. 3 (July 8, 2020): 3204–11. http://dx.doi.org/10.26452/ijrps.v11i3.2449.

Full text
Abstract:
Liquid chromatographic offers efficient analyte separation employing high pressure pumps. The reversed phase high performance liquid chromatography (RP-HPLC) is widely utilized in the purity testing and quantitative determination of pharmaceuticals and neutraceuticals. The limitations of traditional liquid chromatography such as particle size, resolution and selectivity demanded for the developments and Waters Corporation developed ultraperformance liquid chromatography (UPLC). Ultrafast liquid chromatography (UFLC) is another milestone, which offers faster and efficient separation. Multidimensional UHPLC provides separation of complex molecules. The particle size decrease enhances the resolution of LC separation. Ethylene bridged hybrid (BEH), Charged surface hybrid (CSH) and Peptide separation technology (PST) offer better performance in. The amalgamation of chromatographic and spectroscopic detectors namely fluorescence detector (FD) and mass spectrometry (MS) provides efficient separation. Liquid chromatography (LC) offers the analysis of pharmaceuticals, biological, food materials, and natural products. This review covers technologies and recent pharmaceutical and biomedical applications of liquid chromatography technologies
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, Peng, Jun Cai, Dong Hao Li, and Xiang Fan Piao. "Research on Multidimensional Liquid Chromatography Sample Pretreatment System." Applied Mechanics and Materials 701-702 (December 2014): 832–35. http://dx.doi.org/10.4028/www.scientific.net/amm.701-702.832.

Full text
Abstract:
Using multidimensional liquid chromatography technology, a liquid chromatography sample pretreatment system which was controlled by a microcontroller was designed. Real sample pretreatment experiments have been done. The experimental results showed that the complex samples can be separated effectively with this system according to 3 polarities. The operation of this system is simple, fast and high automatic, which meet the requirements of pretreatment of liquid chromatography complex samples.
APA, Harvard, Vancouver, ISO, and other styles
29

Amin, Ruhul, Faruk Alam, Biplab Kumar Dey, Jithendar Reddy Mandhadi, Talha Bin Emran, Mayeen Uddin Khandaker, and Sher Zaman Safi. "Multidimensional Chromatography and Its Applications in Food Products, Biological Samples and Toxin Products: A Comprehensive Review." Separations 9, no. 11 (October 24, 2022): 326. http://dx.doi.org/10.3390/separations9110326.

Full text
Abstract:
Food, drugs, dyes, extracts, and minerals are all made up of complex elements, and utilizing unidimensional chromatography to separate them is inefficient and insensitive. This has sparked the invention of several linked chromatography methods, each of them with distinct separation principles and affinity for the analyte of interest. Multidimensional chromatography consists of the combination of multiple chromatography techniques, with great benefits at the level of efficiency, peak capacity, precision, and accuracy of the analysis, while reducing the time required for the analysis. Various coupled chromatography techniques have recently emerged, including liquid chromatography–gas chromatography (LC–GC), gas chromatography–gas chromatography (GC–GC), liquid chromatography–liquid chromatography (LC–LC), GCMS–MS, LCMS–MS, supercritical fluid techniques with chromatography techniques, and electro-driven multidimensional separation techniques. In this paper, the different coupled chromatography techniques will be discussed, along with their wide spectrum of applications for food, flavor, and environmental analysis, as well as their usefulness for the pharmaceutical, color, and dyes industries.
APA, Harvard, Vancouver, ISO, and other styles
30

Cortes, Hernan J., Gary L. Jewett, Curt D. Pfeiffer, Steve Martin, and Charles Smith. "Multidimensional chromatography using on-line microcolumn liquid chromatography and pyrolysis gas chromatography for polymer characterization." Analytical Chemistry 61, no. 9 (May 1989): 961–65. http://dx.doi.org/10.1021/ac00184a009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Colling, E. L., B. H. Burda, and P. A. Kelley. "Multidimensional Pyrolysis-Gas Chromatography: Applications in Petroleum Geochemistry." Journal of Chromatographic Science 24, no. 1 (January 1, 1986): 7–12. http://dx.doi.org/10.1093/chromsci/24.1.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Levy, J. M., R. A. Cavalier, T. N. Bosch, A. F. Rynaski, and W. E. Huhak. "Multidimensional Supercritical Fluid Chromatography and Supercritical Fluid Extraction." Journal of Chromatographic Science 27, no. 7 (July 1, 1989): 341–46. http://dx.doi.org/10.1093/chromsci/27.7.341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Buchanan, J. S., and M. E. Nicholas. "Analysis of Olefinic Gasolines with Multidimensional Gas Chromatography." Journal of Chromatographic Science 32, no. 5 (May 1, 1994): 199–203. http://dx.doi.org/10.1093/chromsci/32.5.199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nan, He, and Jared L. Anderson. "Ionic liquid stationary phases for multidimensional gas chromatography." TrAC Trends in Analytical Chemistry 105 (August 2018): 367–79. http://dx.doi.org/10.1016/j.trac.2018.03.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Seeley, John V., and Stacy K. Seeley. "Multidimensional Gas Chromatography: Fundamental Advances and New Applications." Analytical Chemistry 85, no. 2 (December 12, 2012): 557–78. http://dx.doi.org/10.1021/ac303195u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zeck, Anne, Michael G. Weller, and Reinhard Niessner. "Multidimensional Biochemical Detection of Microcystins in Liquid Chromatography." Analytical Chemistry 73, no. 22 (November 2001): 5509–17. http://dx.doi.org/10.1021/ac015511y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Burns, David H., James B. Callis, and Gary D. Christian. "Multidimensional detection and analysis in thin-layer chromatography." TrAC Trends in Analytical Chemistry 5, no. 2 (February 1986): 50–52. http://dx.doi.org/10.1016/0165-9936(86)85010-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Seeley, John V. "Recent advances in flow-controlled multidimensional gas chromatography." Journal of Chromatography A 1255 (September 2012): 24–37. http://dx.doi.org/10.1016/j.chroma.2012.01.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Malerod, Helle, Elsa Lundanes, and Tyge Greibrokk. "Recent advances in on-line multidimensional liquid chromatography." Anal. Methods 2, no. 2 (2010): 110–22. http://dx.doi.org/10.1039/b9ay00194h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kong, Yingjun, Xiunan Li, Gaoying Bai, Guanghui Ma, and Zhiguo Su. "An automatic system for multidimensional integrated protein chromatography." Journal of Chromatography A 1217, no. 44 (October 2010): 6898–904. http://dx.doi.org/10.1016/j.chroma.2010.08.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Pasch, Harald, Martina Adler, Frank Rittig, and Stefan Becker. "New Developments in Multidimensional Chromatography of Complex Polymers." Macromolecular Rapid Communications 26, no. 6 (March 18, 2005): 438–44. http://dx.doi.org/10.1002/marc.200400610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Christensen, R. G. "On-line multidimensional chromatography using supercritical carbon dioxide." Journal of High Resolution Chromatography 8, no. 12 (December 1985): 824–28. http://dx.doi.org/10.1002/jhrc.1240081203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Martínez, Rosa M., Carmen Barba, Guillermo Santa-María, and Marta Herraiz. "Stereodifferentiation of oak lactone by using multidimensional chromatographic techniques." Analytical Methods 8, no. 7 (2016): 1505–12. http://dx.doi.org/10.1039/c5ay02404h.

Full text
Abstract:
This work reports for the first time the use of on-line coupling of reversed phase liquid chromatography with gas chromatography for the stereodifferentiation of oak lactone, which is considered to be one of the main constituents of the aroma of different products.
APA, Harvard, Vancouver, ISO, and other styles
44

YARITA, Takashi, Akira NOMURA, and Yoshiyuki HORIMOTO. "Type Analysis of Citrus Essential Oils by Multidimensional Supercritical Fluid Chromatography/Gas Chromatography." Analytical Sciences 10, no. 1 (1994): 25–29. http://dx.doi.org/10.2116/analsci.10.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Levy, J. M., and J. P. Guzowski. "Characterization of gasolines using on-line multidimensional supercritical fluid chromatography/ capillary gas chromatography." Fresenius' Zeitschrift für analytische Chemie 330, no. 3 (January 1988): 207–10. http://dx.doi.org/10.1007/bf00515606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tooth, David John, Varun Gopala Krishna, and Robert Layfield. "An Economical High-Throughput Protocol for Multidimensional Fractionation of Proteins." International Journal of Proteomics 2012 (September 12, 2012): 1–10. http://dx.doi.org/10.1155/2012/735132.

Full text
Abstract:
A sequential protocol of multidimensional fractionation was optimised to enable the comparative profiling of fractions of proteomes from cultured human cells. Differential detergent fractionation was employed as a first step to obtain fractions enriched for cytosolic, membrane/organelle, nuclear, and cytoskeletal proteins. Following buffer exchange using gel-permeation chromatography, cytosolic proteins were further fractionated by 2-dimensional chromatography employing anion-exchange followed by reversed-phase steps. Chromatographic fractions were shown to be readily compatible with 1- and 2-dimensional gel electrophoresis or with direct analysis by mass spectrometry using linear-MALDI-TOF-MS. Precision of extraction was confirmed by reproducible SDS-PAGE profiles, MALDI-TOF-MS spectra, and quantitation of trypsinolytic peptides using LC-MS/MS (MRM) analyses. Solid phases were immobilised in disposable cartridges and mobile-phase flow was achieved using a combination of centrifugation and vacuum pumping. These approaches yielded parallel sample handling which was limited only by the capacities of the employed devices and which enabled both high-throughput and experimentally precise procedures, as demonstrated by the processing of experimental replicates. Protocols were employed at 10 mg scale of extracted cell protein, but these approaches would be directly applicable to both smaller and larger quantities merely by adjusting the employed solid- and mobile-phase volumes. Additional potential applications of the fractionation protocol are briefly described.
APA, Harvard, Vancouver, ISO, and other styles
47

Scheidt, Tom, Tadas Kartanas, Quentin Peter, Matthias M. Schneider, Kadi L. Saar, Thomas Müller, Pavan Kumar Challa, Aviad Levin, Sean Devenish, and Tuomas P. J. Knowles. "Multidimensional protein characterisation using microfluidic post-column analysis." Lab on a Chip 20, no. 15 (2020): 2663–73. http://dx.doi.org/10.1039/d0lc00219d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pažitná, Alexandra, Nikoleta Jánošková, and Ivan Špánik. "Multidimensional gas chromatography and its applications in food and environmental analysis." Acta Chimica Slovaca 6, no. 1 (April 1, 2013): 133–40. http://dx.doi.org/10.2478/acs-2013-0021.

Full text
Abstract:
Abstract This review deals with overview of methods of multidimensional gas chromatography (MDGC), the classical meaning- conventional heart-cut MDGC, and the comprehensive two-dimensional gas chromatography (GC×GC). MDGC is widely used because it increases required separation efficiency, which cannot be achieved by one-dimensional gas chromatography. Selected applications in food quality and safety, monitoring of environment, food authentication are summarized. This review summarizes the advances and applications of MDGC that have been published over last 10 years.
APA, Harvard, Vancouver, ISO, and other styles
49

Ndiripo, Anthony, M. M. Pornwilard, Thipphaya Pathaweeisariyakul, and Harald Pasch. "Multidimensional chromatographic analysis of carboxylic acid-functionalized polyethylene." Polymer Chemistry 10, no. 43 (2019): 5859–69. http://dx.doi.org/10.1039/c9py01191a.

Full text
Abstract:
Carboxy-functionalized polyethylene is comprehensively analysed using a multidimensional fractionation approach based on high-temperature HPLC, two-dimensional liquid chromatography and selective infrared detection.
APA, Harvard, Vancouver, ISO, and other styles
50

Ghassempour, A., M. Ghahramanzamaneh, H. Hashempour, and K. Kargosha. "Multidimensional liquid chromatography for separation of cyclotides inViola ignobilis." Acta Chromatographica 23, no. 4 (December 2011): 641–51. http://dx.doi.org/10.1556/achrom.23.2011.4.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography