Journal articles on the topic 'Multicatalysis'

To see the other types of publications on this topic, follow the link: Multicatalysis.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Multicatalysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Martínez, Sebastián, Lukas Veth, Bruno Lainer, and Paweł Dydio. "Challenges and Opportunities in Multicatalysis." ACS Catalysis 11, no. 7 (March 15, 2021): 3891–915. http://dx.doi.org/10.1021/acscatal.0c05725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Jin-Tao, and Ying Cheng. "Construction of enantiopure imine bridged benzo[c]azepinones by a silver(i) and chiral N-heterocyclic carbene multicatalytic reaction sequence of N′-(2-alkynylbenzylidene)hydrazides and cyclopropanecarbaldehydes." Organic Chemistry Frontiers 7, no. 21 (2020): 3459–67. http://dx.doi.org/10.1039/d0qo00877j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jürjens, Gerrit, Andreas Kirschning, and David A. Candito. "Lessons from the Synthetic Chemist Nature." Natural Product Reports 32, no. 5 (2015): 723–37. http://dx.doi.org/10.1039/c4np00160e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Nature's strategy of performing ideal multistep (bio)synthesis are based on multicatalysis, domino reactions, iteration and compartmentation. These are discussed and compared with chemical synthesis in this conceptual review.
4

Tang, Xinxin, Lan Gan, Xin Zhang, and Zheng Huang. "n-Alkanes to n-alcohols: Formal primary C─H bond hydroxymethylation via quadruple relay catalysis." Science Advances 6, no. 47 (November 2020): eabc6688. http://dx.doi.org/10.1126/sciadv.abc6688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Nature is able to synergistically combine multiple enzymes to conduct well-ordered biosynthetic transformations. Mimicking nature’s multicatalysis in vitro may give rise to new chemical transformations via interplay of numerous molecular catalysts in one pot. The direct and selective conversion of abundant n-alkanes to valuable n-alcohols is a reaction with enormous potential applicability but has remained an unreached goal. Here, we show that a quadruple relay catalysis system involving three discrete transition metal catalysts enables selective synthesis of n-alcohols via n-alkane primary C─H bond hydroxymethylation. This one-pot multicatalysis system is composed of Ir-catalyzed alkane dehydrogenation, Rh-catalyzed olefin isomerization and hydroformylation, and Ru-catalyzed aldehyde hydrogenation. This system is further applied to synthesis of α,ω-diols from simple α-olefins through terminal-selective hydroxymethylation of silyl alkanes.
5

Sancheti, Shashank P., Urvashi, Mosami P. Shah, and Nitin T. Patil. "Ternary Catalysis: A Stepping Stone toward Multicatalysis." ACS Catalysis 10, no. 5 (January 8, 2020): 3462–89. http://dx.doi.org/10.1021/acscatal.9b04000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ambrosini, Lisa M., and Tristan H. Lambert. "Multicatalysis: Advancing Synthetic Efficiency and Inspiring Discovery." ChemCatChem 2, no. 11 (September 17, 2010): 1373–80. http://dx.doi.org/10.1002/cctc.200900323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jindal, Garima, and Raghavan B. Sunoj. "Mechanistic Insights on Cooperative Asymmetric Multicatalysis Using Chiral Counterions." Journal of Organic Chemistry 79, no. 16 (July 29, 2014): 7600–7606. http://dx.doi.org/10.1021/jo501322v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Mahn-Joo, Min Young Choi, Min Young Han, Yoon Kyung Choi, Jae Kwan Lee, and Jaiwook Park. "Asymmetric Transformations of Acyloxyphenyl Ketones by Enzyme−Metal Multicatalysis." Journal of Organic Chemistry 67, no. 26 (December 2002): 9481–83. http://dx.doi.org/10.1021/jo026122m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ambrosini, Lisa M., and Tristan H. Lambert. "ChemInform Abstract: Multicatalysis: Advancing Synthetic Efficiency and Inspiring Discovery." ChemInform 42, no. 9 (February 3, 2011): no. http://dx.doi.org/10.1002/chin.201109248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shugrue, Christopher R., Bianca R. Sculimbrene, Elizabeth R. Jarvo, Brandon Q. Mercado, and Scott J. Miller. "Outer-Sphere Control for Divergent Multicatalysis with Common Catalytic Moieties." Journal of Organic Chemistry 84, no. 3 (January 4, 2019): 1664–72. http://dx.doi.org/10.1021/acs.joc.8b03068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Richmond, Edward, Ismat Ullah Khan, and Joseph Moran. "Enantioselective and Regiodivergent Functionalization ofN-Allylcarbamates by Mechanistically Divergent Multicatalysis." Chemistry - A European Journal 22, no. 35 (July 27, 2016): 12274–77. http://dx.doi.org/10.1002/chem.201602792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hofmann, Christine, Sören M. M. Schuler, Raffael C. Wende, and Peter R. Schreiner. "En route to multicatalysis: kinetic resolution of trans-cycloalkane-1,2-diols via oxidative esterification." Chem. Commun. 50, no. 10 (2014): 1221–23. http://dx.doi.org/10.1039/c3cc48584f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We demonstrate the application of a multicatalyst to the oxidation of a broad variety of aldehydes and subsequent enantioselective esterification of the incipient acids with (±)-trans-cycloalkane-1,2-diols.
13

Xiao, Pin, Haiyan Yuan, Jianquan Liu, Yiying Zheng, Xihe Bi, and Jingping Zhang. "Radical Mechanism of Isocyanide-Alkyne Cycloaddition by Multicatalysis of Ag2CO3, Solvent, and Substrate." ACS Catalysis 5, no. 10 (September 22, 2015): 6177–84. http://dx.doi.org/10.1021/acscatal.5b01703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Georgi, Anett, Miriam Velasco Polo, Klara Crincoli, Katrin Mackenzie, and Frank-Dieter Kopinke. "Accelerated Catalytic Fenton Reaction with Traces of Iron: An Fe–Pd-Multicatalysis Approach." Environmental Science & Technology 50, no. 11 (May 26, 2016): 5882–91. http://dx.doi.org/10.1021/acs.est.6b01049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Youn, So Won, Hyoung Sub Song, and Jong Hyub Park. "Asymmetric Domino Multicatalysis for the Synthesis of 3-Substituted Phthalides: Cinchonine/NHC Cooperative System." Organic Letters 16, no. 3 (January 24, 2014): 1028–31. http://dx.doi.org/10.1021/ol5000617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lorion, Mélanie M., Nikolaos Kaplaneris, Jongwoo Son, Rositha Kuniyil, and Lutz Ackermann. "Late‐Stage Peptide Diversification through Cobalt‐Catalyzed C−H Activation: Sequential Multicatalysis for Stapled Peptides." Angewandte Chemie 131, no. 6 (January 9, 2019): 1698–702. http://dx.doi.org/10.1002/ange.201811668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ramachary, Dhevalapally B., Rumpa Mondal, and Chintalapudi Venkaiah. "Rapid Synthesis of Functionalized Indenes, Triazoles, and Glucocorticoid Receptor Modulators by Sequential Multicatalysis Cascade Reactions." European Journal of Organic Chemistry 2010, no. 17 (May 3, 2010): 3205–10. http://dx.doi.org/10.1002/ejoc.201000220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lorion, Mélanie M., Nikolaos Kaplaneris, Jongwoo Son, Rositha Kuniyil, and Lutz Ackermann. "Late‐Stage Peptide Diversification through Cobalt‐Catalyzed C−H Activation: Sequential Multicatalysis for Stapled Peptides." Angewandte Chemie International Edition 58, no. 6 (January 9, 2019): 1684–88. http://dx.doi.org/10.1002/anie.201811668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Breder, Alexander, and Christian Depken. "Light‐Driven Single‐Electron Transfer Processes as an Enabling Principle in Sulfur and Selenium Multicatalysis." Angewandte Chemie International Edition 58, no. 48 (November 25, 2019): 17130–47. http://dx.doi.org/10.1002/anie.201812486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jin, Zhichao, Jianfeng Xu, Song Yang, Bao-An Song, and Yonggui Robin Chi. "Enantioselective Sulfonation of Enones with Sulfonyl Imines by Cooperative N-Heterocyclic-Carbene/Thiourea/Tertiary-Amine Multicatalysis." Angewandte Chemie 125, no. 47 (October 2, 2013): 12580–84. http://dx.doi.org/10.1002/ange.201305023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hofmann, Christine, Soeren M. M. Schuler, Raffael C. Wende, and Peter R. Schreiner. "ChemInform Abstract: En route to Multicatalysis: Kinetic Resolution of trans-Cycloalkane-1,2-diols via Oxidative Esterification." ChemInform 45, no. 22 (May 15, 2014): no. http://dx.doi.org/10.1002/chin.201422067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Youn, So Won, Hyoung Sub Song, and Jong Hyub Park. "ChemInform Abstract: Asymmetric Domino Multicatalysis for the Synthesis of 3-Substituted Phthalides: Cinchonine/NHC Cooperative System." ChemInform 45, no. 29 (July 3, 2014): no. http://dx.doi.org/10.1002/chin.201429125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jin, Zhichao, Jianfeng Xu, Song Yang, Bao-An Song, and Yonggui Robin Chi. "Enantioselective Sulfonation of Enones with Sulfonyl Imines by Cooperative N-Heterocyclic-Carbene/Thiourea/Tertiary-Amine Multicatalysis." Angewandte Chemie International Edition 52, no. 47 (October 2, 2013): 12354–58. http://dx.doi.org/10.1002/anie.201305023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ramachary, Dhevalapally B., Rumpa Mondal, and Chintalapudi Venkaiah. "ChemInform Abstract: Rapid Synthesis of Functionalized Indenes, Triazoles, and Glucocorticoid Receptor Modulators by Sequential Multicatalysis Cascade Reactions." ChemInform 41, no. 44 (October 7, 2010): no. http://dx.doi.org/10.1002/chin.201044036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Jiahui, Yiying Zheng, Ying Liu, Haiyan Yuan, and Jingping Zhang. "Mechanistic insight on (E )-methyl 3-(2-aminophenyl)acrylate cyclization reaction by multicatalysis of solvent and substrate." Journal of Computational Chemistry 37, no. 26 (August 4, 2016): 2386–94. http://dx.doi.org/10.1002/jcc.24463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jin, Zhichao, Jianfeng Xu, Song Yang, Bao-An Song, and Yonggui Robin Chi. "ChemInform Abstract: Enantioselective Sulfonation of Enones with Sulfonyl Imines by Cooperative N-Heterocyclic-Carbene/Thiourea/Tertiary-Amine Multicatalysis." ChemInform 45, no. 14 (March 21, 2014): no. http://dx.doi.org/10.1002/chin.201414093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Paul, Jérôme, Tania Xavier, Marc Presset, Erwan Le Gall, Eric Léonel, Christophe Pichon, and Sylvie Condon. "Cobalt-Zinc-Diimine Multicatalysis: Enhanced syn Diastereoselectivity in the Reductive Multicomponent Coupling of Aryl Bromides, Acrylates and Aldehydes." ChemistrySelect 3, no. 47 (December 18, 2018): 13480–86. http://dx.doi.org/10.1002/slct.201803710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sanchez Díaz-Marta, Antonio, Susana Yáñez, Carmen R. Tubío, V. Laura Barrio, Yolanda Piñeiro, Rosa Pedrido, José Rivas, Manuel Amorín, Francisco Guitián, and Alberto Coelho. "Multicatalysis Combining 3D-Printed Devices and Magnetic Nanoparticles in One-Pot Reactions: Steps Forward in Compartmentation and Recyclability of Catalysts." ACS Applied Materials & Interfaces 11, no. 28 (June 21, 2019): 25283–94. http://dx.doi.org/10.1021/acsami.9b08119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Júnior, Aldo Araújo da Trindade, Yan Ferraz Ximenes Ladeira, Alexandre da Silva França, Rodrigo Octavio Mendonça Alves de Souza, Adolfo Henrique Moraes, Robert Wojcieszak, Ivaldo Itabaiana Jr., and Amanda Silva de Miranda. "Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization." Catalysts 11, no. 8 (July 31, 2021): 936. http://dx.doi.org/10.3390/catal11080936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
During recent decades, the use of enzymes or chemoenzymatic cascades for organic chemistry has gained much importance in fundamental and industrial research. Moreover, several enzymatic and chemoenzymatic reactions have also served in green and sustainable manufacturing processes especially in fine chemicals, pharmaceutical, and flavor/fragrance industries. Unfortunately, only a few processes have been applied at industrial scale because of the low stabilities of enzymes along with the problematic processes of their recovery and reuse. Immobilization and co-immobilization offer an ideal solution to these problems. This review gives an overview of all the pathways for enzyme immobilization and their use in integrated enzymatic and chemoenzymatic processes in cascade or in a one-pot concomitant execution. We place emphasis on the factors that must be considered to understand the process of immobilization. A better understanding of this fundamental process is an essential tool not only in the choice of the best route of immobilization but also in the understanding of their catalytic activity.
30

Sakthivel, Shanmugam, and Rengarajan Balamurugan. "Annulation of a Highly Functionalized Diazo Building Block with Indoles under Sc(OTf)3/Rh2(OAc)4 Multicatalysis through Michael Addition/Cyclization Sequence." Journal of Organic Chemistry 83, no. 19 (September 4, 2018): 12171–83. http://dx.doi.org/10.1021/acs.joc.8b02127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ramachary, Dhevalapally B., Kinthada Ramakumar, Adluri Bharanishashank, and Vidadala V. Narayana. "Sequential One-Pot Combination of Multireactions through Multicatalysis: A General Approach to Rapid Assembly of Functionalized Push−Pull Olefins, Phenols, and 2-Methyl-2H-chromenes." Journal of Combinatorial Chemistry 12, no. 6 (November 8, 2010): 855–76. http://dx.doi.org/10.1021/cc100104k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mata, José A., F. Ekkehardt Hahn, and Eduardo Peris. "Heterometallic complexes, tandem catalysis and catalytic cooperativity." Chem. Sci. 5, no. 5 (2014): 1723–32. http://dx.doi.org/10.1039/c3sc53126k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gaur, Akshay, Chirag Porwal, Imed Boukhris, Vishal Singh Chauhan, and Rahul Vaish. "Review on Multicatalytic Behavior of Ba0.85Ca0.15Ti0.9Zr0.1O3 Ceramic." Materials 16, no. 16 (August 21, 2023): 5710. http://dx.doi.org/10.3390/ma16165710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ferroelectric materials are known to possess multicatalytic abilities that are nowadays utilized for removing organic pollutants from water via piezocatalysis, photocatalysis, piezo-photocatalysis, and pyrocatalysis processes. The Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZTO) ceramic is one such ferroelectric composition that has been extensively studied for electrical and electronic applications. Furthermore, the BCZTO ceramic has also shown remarkable multicatalytic performance in water-cleaning applications. The present review explores the potentiality of BCZTO for water-cleaning and bacterial-killing applications. It also highlights the fundamentals of ferroelectric ceramics, the importance of electric poling, and the principles underlying piezocatalysis, photocatalysis, and pyrocatalysis processes in addition to the multicatalytic capability of ferroelectric BCZTO ceramic.
34

Arribas, J., M. Luz Rodríguez, R. Alvarez-Do Forno, and J. G. Castaño. "Autoantibodies against the multicatalytic proteinase in patients with systemic lupus erythematosus." Journal of Experimental Medicine 173, no. 2 (February 1, 1991): 423–27. http://dx.doi.org/10.1084/jem.173.2.423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Sera from patients with systemic lupus erythematosus contain specific autoantibodies directed against different polypeptide components of the multicatalytic proteinase (also known as proteasome or prosome). These human autoantibodies, in contrast to polyclonal antibodies obtained in rabbits against the purified enzyme, recognize highly conserved epitopes of the multicatalytic proteinase polypeptides from yeast to human.
35

Rivett, A. J. "The Multicatalytic Proteinase." Journal of Biological Chemistry 264, no. 21 (July 1989): 12215–19. http://dx.doi.org/10.1016/s0021-9258(18)63843-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Nelson, Judith E., Claudia Altschuller-Felberg, Anna Loukissa, and Christopher Cardozo. "Proteasome from cytokine-treated human cells shows stimulated BrAAP activity and depressed PGPH activity." Biochemistry and Cell Biology 78, no. 2 (April 1, 2000): 115–18. http://dx.doi.org/10.1139/o00-006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The branched chain amino acid-preferring (BrAAP) activity of multicatalytic proteinase complex isolated from human umbilical vein endothelial cells and treated with interferon-gamma was increased more than 2-fold, which was associated with a marked increase in LMP7 expression and decreased peptidylglutamyl peptide-hydrolyzing activity. Increases in BrAAP activity in supernatants from cells treated with interferon-gamma, tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, or lipopolysaccharide paralleled the increases in LMP7 expression. These findings are consistent with the conclusion that the increased BrAAP activity of LMP-containing multicatalytic proteinase complex results from incorporation of LMP7 or other LMP subunits.
37

Rivett, A. J. "Proteasomes: multicatalytic proteinase complexes." Biochemical Journal 291, no. 1 (April 1, 1993): 1–10. http://dx.doi.org/10.1042/bj2910001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ho, Xuan-Huong, Won-Ji Jung, Pranab K. Shyam, and Hye-Young Jang. "Copper–dienamine catalysis: γ-oxyamination of α,β-unsaturated aldehydes." Catal. Sci. Technol. 4, no. 7 (2014): 1914–19. http://dx.doi.org/10.1039/c4cy00271g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Poe, Sarah L., Muris Kobašlija, and D. Tyler McQuade. "Microcapsule Enabled Multicatalyst System." Journal of the American Chemical Society 128, no. 49 (December 2006): 15586–87. http://dx.doi.org/10.1021/ja066476l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhang, Xiao-Qian, Xue-Jiao Lv, Jun-Ping Pei, Rui Tan, and Yan-Kai Liu. "An asymmetric multicatalytic reaction sequence of 2-hydroxycinnamaldehydes and enolic 1,3-dicarbonyl compounds to construct bridged bicyclic acetals." Organic Chemistry Frontiers 7, no. 2 (2020): 292–97. http://dx.doi.org/10.1039/c9qo01272a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
2-Hydroxycinnamaldehydes and cyclic 1,3-dicarbonyl nucleophiles were used in an asymmetric organocatalyzed reaction sequence to construct bridged bicyclic acetals via a multicatalytic process involving iminium catalysis and anion-binding catalysis.
41

Wagner, B. J., Joyce W. Margolis, and Inderpal Singh. "Bovine Lens Multicatalytic Proteinase Complex." Enzyme and Protein 47, no. 4-6 (1993): 202–9. http://dx.doi.org/10.1159/000468679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Folco, Eduardo J., Liliana Busconi, Celina B. Martone, and Jorge J. Sanchez. "Multicatalytic proteinase in fish muscle." Archives of Biochemistry and Biophysics 267, no. 2 (December 1988): 599–605. http://dx.doi.org/10.1016/0003-9861(88)90067-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

S�nchez, Jorge J., Eduardo J. Folco, Liliana Busconi, Celina B. Martone, Claudia Studdert, and Claudia A. Casalongu�. "Multicatalytic proteinase in fish muscle." Molecular Biology Reports 21, no. 1 (1995): 63–69. http://dx.doi.org/10.1007/bf00990973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

SAVORY, PETER J., and A. JENNIFER RIVETT. "Catalytic subunits of the multicatalytic proteinase." Biochemical Society Transactions 19, no. 3 (August 1, 1991): 292S. http://dx.doi.org/10.1042/bst019292s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

ELLISON, DEREK S., JOHN HINTON, and ROBERT J. BEYNON. "Construction of an artificial ‘multicatalytic protease’." Biochemical Society Transactions 21, no. 1 (February 1, 1993): 33S. http://dx.doi.org/10.1042/bst021033s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

NOTHWANG, Hans-Gred, Oliver COUX, Faycal BEY, and Klaus SCHERRER. "Prosomes and their multicatalytic proteinase activity." European Journal of Biochemistry 207, no. 2 (July 1992): 621–30. http://dx.doi.org/10.1111/j.1432-1033.1992.tb17089.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Eleuteri, Anna Maria, Ronald A. Kohanski, Christopher Cardozo, and Marian Orlowski. "Bovine Spleen Multicatalytic Proteinase Complex (Proteasome)." Journal of Biological Chemistry 272, no. 18 (May 2, 1997): 11824–31. http://dx.doi.org/10.1074/jbc.272.18.11824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zein, Haggag S., Jaime A. Teixeira da Silva, and Kazutaka Miyatake. "Molecular analysis of multicatalytic monoclonal antibodies." Molecular Immunology 47, no. 9 (May 2010): 1747–56. http://dx.doi.org/10.1016/j.molimm.2010.02.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rechsteiner, M., L. Hoffman, and W. Dubiel. "The multicatalytic and 26 S proteases." Journal of Biological Chemistry 268, no. 9 (March 1993): 6065–68. http://dx.doi.org/10.1016/s0021-9258(18)53218-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

SWEENEY, SEAN T., and A. JENNIFER RIVETT. "Immunological properties of the multicatalytic proteinase." Biochemical Society Transactions 17, no. 6 (December 1, 1989): 1126–27. http://dx.doi.org/10.1042/bst0171126.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography