Academic literature on the topic 'Multicatalysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multicatalysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multicatalysis":

1

Martínez, Sebastián, Lukas Veth, Bruno Lainer, and Paweł Dydio. "Challenges and Opportunities in Multicatalysis." ACS Catalysis 11, no. 7 (March 15, 2021): 3891–915. http://dx.doi.org/10.1021/acscatal.0c05725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Jin-Tao, and Ying Cheng. "Construction of enantiopure imine bridged benzo[c]azepinones by a silver(i) and chiral N-heterocyclic carbene multicatalytic reaction sequence of N′-(2-alkynylbenzylidene)hydrazides and cyclopropanecarbaldehydes." Organic Chemistry Frontiers 7, no. 21 (2020): 3459–67. http://dx.doi.org/10.1039/d0qo00877j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jürjens, Gerrit, Andreas Kirschning, and David A. Candito. "Lessons from the Synthetic Chemist Nature." Natural Product Reports 32, no. 5 (2015): 723–37. http://dx.doi.org/10.1039/c4np00160e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Nature's strategy of performing ideal multistep (bio)synthesis are based on multicatalysis, domino reactions, iteration and compartmentation. These are discussed and compared with chemical synthesis in this conceptual review.
4

Tang, Xinxin, Lan Gan, Xin Zhang, and Zheng Huang. "n-Alkanes to n-alcohols: Formal primary C─H bond hydroxymethylation via quadruple relay catalysis." Science Advances 6, no. 47 (November 2020): eabc6688. http://dx.doi.org/10.1126/sciadv.abc6688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Nature is able to synergistically combine multiple enzymes to conduct well-ordered biosynthetic transformations. Mimicking nature’s multicatalysis in vitro may give rise to new chemical transformations via interplay of numerous molecular catalysts in one pot. The direct and selective conversion of abundant n-alkanes to valuable n-alcohols is a reaction with enormous potential applicability but has remained an unreached goal. Here, we show that a quadruple relay catalysis system involving three discrete transition metal catalysts enables selective synthesis of n-alcohols via n-alkane primary C─H bond hydroxymethylation. This one-pot multicatalysis system is composed of Ir-catalyzed alkane dehydrogenation, Rh-catalyzed olefin isomerization and hydroformylation, and Ru-catalyzed aldehyde hydrogenation. This system is further applied to synthesis of α,ω-diols from simple α-olefins through terminal-selective hydroxymethylation of silyl alkanes.
5

Sancheti, Shashank P., Urvashi, Mosami P. Shah, and Nitin T. Patil. "Ternary Catalysis: A Stepping Stone toward Multicatalysis." ACS Catalysis 10, no. 5 (January 8, 2020): 3462–89. http://dx.doi.org/10.1021/acscatal.9b04000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ambrosini, Lisa M., and Tristan H. Lambert. "Multicatalysis: Advancing Synthetic Efficiency and Inspiring Discovery." ChemCatChem 2, no. 11 (September 17, 2010): 1373–80. http://dx.doi.org/10.1002/cctc.200900323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jindal, Garima, and Raghavan B. Sunoj. "Mechanistic Insights on Cooperative Asymmetric Multicatalysis Using Chiral Counterions." Journal of Organic Chemistry 79, no. 16 (July 29, 2014): 7600–7606. http://dx.doi.org/10.1021/jo501322v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Mahn-Joo, Min Young Choi, Min Young Han, Yoon Kyung Choi, Jae Kwan Lee, and Jaiwook Park. "Asymmetric Transformations of Acyloxyphenyl Ketones by Enzyme−Metal Multicatalysis." Journal of Organic Chemistry 67, no. 26 (December 2002): 9481–83. http://dx.doi.org/10.1021/jo026122m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ambrosini, Lisa M., and Tristan H. Lambert. "ChemInform Abstract: Multicatalysis: Advancing Synthetic Efficiency and Inspiring Discovery." ChemInform 42, no. 9 (February 3, 2011): no. http://dx.doi.org/10.1002/chin.201109248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shugrue, Christopher R., Bianca R. Sculimbrene, Elizabeth R. Jarvo, Brandon Q. Mercado, and Scott J. Miller. "Outer-Sphere Control for Divergent Multicatalysis with Common Catalytic Moieties." Journal of Organic Chemistry 84, no. 3 (January 4, 2019): 1664–72. http://dx.doi.org/10.1021/acs.joc.8b03068.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Multicatalysis":

1

Hou, Jingke. "Compartmentalized enantioselective multicatalysis using polydimethylsiloxane membrane." Electronic Thesis or Diss., Ecole centrale de Marseille, 2022. http://www.theses.fr/2022ECDM0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les travaux de cette thèse ont porté sur la production d’énantiomères optiquement enrichis avec une consommation complète du substrat racémiques grâce à un nouveau système compartimenté de double réaction comportant une membrane polydimethylsiloxane (PDMS) à perméabilité sélective.D'abord, la perméabilitéde la membrane PDMS a été étudiée montrant une sélectivité de transfert des espèces en fonction de leur polarité. Par la suite, les réactions opposées d'estérification et de transestérification isolées par une membrane PDMS ont été réalisées pour produire des alcools énantioenrichis séparés à partir d'alcool racémique. Cependant, nous n’avons pas réussi à mettre en œuvre ce système en raison de l'incompatibilité du PDMS avec les conditions de transestérification. Deuxièmement, le dédoublement cinétique parallèle compartimentée combinant deux systèmes catalytiques d’énantiosélectivité opposées isolés par une membrane PDMS a été réalisée pour produire les deux produits énantio-enrichis image l’un de l’autre isolé dans chacun des compartiments à partir d'un substrat racémique. Ce concept a été établi avec succès avec le dédoublement cinétique hydrolytique de Jacobsen de l'époxyde terminal. Chacun des diols énantioenrichis peut être ainsi obtenu jusqu'à 100% de conversion à partir d'époxyde racémique. Troisièmement, le processus de résolution cinétique dynamique compartimenté combinant une résolution cinétique et une réaction de racémisation isolée par membrane PDMS a été réalisé pour produire un seul produit énantioenrichi à partir d'un substrat racémique. Ce processus énantioconvergent permet d’obtenir un seul ester allylique énantioenrichi jusqu'à 100% de conversion à partir d'alcool secondaire allylique racémique contournant les inconvénients de l'incompatibilité
The goal of this thesis was focused on the production of optically enriched enantiomers with complete consumption of racemic starting materials through newly designed double reactions system compartmentalized by a polydimethylsiloxane (PDMS) membrane with selective permeability. Firstly, the permeability of the PDMS membrane was studied showing a transfer selectivity of species depending on their polarity. Subsequently, the esterification and transesterification opposite reactions isolated by a PDMS membrane were performed to produce separated enantioenriched alcohols starting from racemic alcohols. However, we failed to set up such system due to the incompatibility of PDMS with the conditions of transesterification. Secondly, the compartmentalized parallel kinetic resolution combining two catalytic systems with opposite enantioselectivity isolated by a PDMS membrane was performed to produce both enantioenriched enantiomers, mirror image each other, isolated in each compartment starting from a racemic substrate. This concept was successfully established using the Jacobsen’s hydrolytic kinetic resolution of terminal epoxide. Each enantioenriched diol can be obtained up to 100% conversion from racemic epoxides. Thirdly, the compartmentalized dynamic kinetic resolution process combining a kinetic resolution and a racemization reaction isolated by PDMS membrane was performed to produce one single enantioenriched product starting from a racemic substrate. This enantioconvergent process allows to obtain an enantioenriched allylic ester up to 100% conversion from racemic allylic secondary alcohol circumventing the drawbacks of the incompatibility of the two catalytic system
2

Schuler, Sören Manuel Michael [Verfasser]. "(Un)expected extensions of the multicatalysis concept / Sören Manuel Michael Schuler." Gießen : Universitätsbibliothek, 2016. http://d-nb.info/1120270383/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wende, Raffael Christoph [Verfasser]. "New frontiers in peptide catalysis : multicatalysis, challenging reactions, and the importance of dispersion interactions / Raffael Christoph Wende." Gießen : Universitätsbibliothek, 2016. http://d-nb.info/1114659002/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lainer, Bruno. "A multicatalytic approach to enantio-, and diastereoselective arylation of alcohols." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAF080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les groupements alcooliques sont présents dans une grande diversité de produits chimiques fins précieux issus de la nature et de la synthèse, c'est pourquoi les méthodes permettant leur diversification structurelle sont recherchées. Cependant, la modification de la structure des alcools à certaines positions non réactives, même avec l'aide de la catalyse, reste un défi ou nécessite des procédures multi-étapes fastidieuses et souvent coûteuses. Récemment, une attention accrue a été accordée à la multicatalyse, qui combine plusieurs catalyseurs au sein d'un même système, ce qui permet de découvrir des réactivités auparavant inaccessibles ou d'accroître l'efficacité globale des transformations en plusieurs étapes. Les méthodes décrites ici permettent l'α- et la β-arylation diastéréo- et énantiosélective d'alcools. En combinant des catalyseurs à base de Ru et de Pd, il est possible de réaliser une β-arylation énantiosélective (et diastéréodivergente dans le cas d'alcools portant déjà des stéréocentres) sans précédent d'alcools primaires. En outre, dans le cadre d'une catalyse relais séquentielle, il est possible d'obtenir des alcools benzyliques secondaires enrichis enantioénergie à partir de divers produits de départ disponibles, tels que des alcools primaires ou des alcools portant une double liaison. Dans l'ensemble, ces protocoles démontrent le potentiel de la multicatalyse en tant qu'outil synthétique pour diversifier les alcools. Dans un contexte plus large, cette thèse ouvre la voie à la conception de nouvelles stratégies et méthodes multicatalytiques pour une synthèse efficace
Alcohol moieties are present in a great diversity of valuable fine chemicals from nature and synthesis, therefore methods enabling their structural diversification are sought after. However, modifying the structure of alcohols at certain unreactive positions, even with the aid of catalysis, remains a challenge or requires tedious often wasteful multistep procedures. Recently, increased attention has been paid to multicatalysis, which combines multiple catalysts within one system, enabling the discovery of previously inaccessible reactivities or increasing the overall efficiency of multistep transformations. Described within are methods which enable the diastereo-, and enantioselective α-, and β-arylation of alcohols. By combining Ru- and Pd-based catalysts the unprecedented, enantioselective (and diastereodivergent in the case of alcohols already bearing stereocenters) β-arylation of primary alcohols can be carried out. Also, under sequential relay catalysis enantioenriched secondary benzylic alcohols can be obtained from a variety of available starting materials, such as primary alcohols, or alcohols bearing a double bond. Overall, these protocols demonstrate the potential of multicatalysis as a synthetic tool for diversifying alcohols. In a broader context, this thesis sets the stage for devising novel, multicatalytic strategies and methods for efficient synthesis
5

Peris, Salom Edgar. "Continuous flow systems for multicatalytic processes based on supported ionic liquids." Doctoral thesis, Universitat Jaume I, 2019. http://hdl.handle.net/10803/665481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This Doctoral Thesis is framed in the area of Sustainable Chemistry and more specifically in the field of continuous flow chemistry. The main objective has been the design and development of new continuous multicatalytic systems based on the use of supported ionic liquids, materials with very interesting catalytic properties. This objective has been applied to C-C bond forming reactions such as cyanosilylation, Strecker reaction or Negishi cross-couplings; whose products mean key synthetic intermediates in several processes in organic synthesis, specially in Fine and Pharmaceutical Chemistry. Telescopic processes and divergent syntheses have been succesfully achieved under continuous flow conditions. In addition, the novel additive manufacturing 3D printing technology has been introduced for the potential obtaining of continuous flow catalytic reactors.
La presente Tesis Doctoral se engloba dentro del área de la Química Sostenible y más concretamente en el campo de la química en flujo continuo. El principal objetivo es el diseño y desarrollo de nuevos sistemas multicatalíticos en continuo basados en el uso de líquidos iónicos soportados, cuyas propiedades catalíticas son muy interesantes. Este objetivo se ha aplicado a reacciones de formacion de enlaces C-C como la cianosililación, la reacción de Strecker y el acoplamiento de Negishi; cuyos productos resultan intermedios sintéticos clave en muchos procesos de síntesis orgánica, sobre todo en Química Fina y Farmacéutica. Procesos telescópicos y síntesis divergentes han sido desarrolados con éxito en continuo. Además, también se ha introducido la nueva tecnología de impresion 3D para la potencial obtención de reactores catalíticos de flujo continuo.
6

Neumann, Matthias [Verfasser], and Kirsten [Akademischer Betreuer] Zeitler. "Organophotoredox catalysis - Multicatalytic metal-free bond formations with visble light / Matthias Neumann. Betreuer: Kirsten Zeitler." Regensburg : Universitätsbibliothek Regensburg, 2013. http://d-nb.info/1044159855/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Savory, Peter John. "Characterisation of the component(s) responsible for the trypsin-like activity of the multicatalytic proteinase." Thesis, University of Leicester, 1992. http://hdl.handle.net/2381/35144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The multicatalytic proteinase (MCP) is a 700 kDa multisubunit complex which is found in eukaryotic cells. MCP is involved in ubiquitin-dependent non-lysosomal protein degradation and has been implicated in the processing of antigens by the major histocompatability complex class 1 pathway. The MCP purified from rat liver is composed of at least 16 distinct subunits of molecular masses between 22 and 34 kDa. MCP is known to possess at least three distinct peptidase activities, described as the 'trypsin-like', 'chymotrypsin-like' and 'peptidylglutamylpeptide hydrolase' activities. However, it is not known which subunits are responsible for the different peptidase activities. The main aims of my study were (1) to establish which subunit(s) possesses the active site responsible for 'trypsin-like' activity, (2) to identify the catalytic amino acid residues responsible for this activity and (3) to determine whether all MCP particles possess these components. 'Protection' experiments with the peptide aldehyde leupeptin, which is a specific reversible inhibitor of the 'trypsin-like' activity, have identified one or two subunits which possess thiol groups essential for 'trypsin-like' activity. These thiol groups are probably not involved in catalysis but may be located very close to the active site responsible for 'trypsin-like' activity. An active site specific peptidyl chloromethane which specifically inactivates the 'trypsinlike' activity, labels two distinct subunits of 23-24 kDa. One of these polypeptides is also labelled by an active site specific peptidyl diazomethane for the 'chymotrypsin-like' activity, in addition to three other distinct polypeptides of 28-23 kDa. Together these results suggest that one active site is responsible for 'trypsin-like' activity while four distinct active sites are responsible for 'chymotrypsin-like' activity. Affinity chromotography was carried out using an immobilised specific inhibitor of the 'trypsin-like' activity. The results of these studies suggest that all MCP particles purified from rat liver possess the catalytic component responsible for the 'trypsin-like' activity.
8

Duedu, Kwabena Obeng. "Development of novel systems for bioconversion of cellulosic biomass to useful products." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/15903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
There is increasing concern regarding alternative, sustainable energy sources, such as biofuels, to replace declining oil reserves. The abundance of lignocellulosic biomass makes it the only imaginable resource that can potentially substitute a substantial portion of the fossil fuels we use today, but current methods for producing biofuels from non-food crops are cost intensive and not economically viable. Synthetic biology provides several potential approaches for developing biologically mediated processes for the conversion of lignocellulosic biomass into biofuels. Such systems are based on engineered microbes that produce enzymes for catalysing the conversion of cellulose into fermentable sugars and subsequently into high value products. Effective degradation of cellulose requires multiple classes of enzyme working together. In naturally occurring cellulose degrading microbes, bioconversion is catalysed by a battery of enzymes with different catalytic properties. However, naturally occurring cellulases with multiple catalytic domains seem to be rather rare in known cellulose-degrading organisms. Using synthetic biology approaches, seven cellulases with multiple catalytic domains were engineered and tested to determine the usefulness of such chimeric enzymes to replace cloning of multiple enzymes for biomass conversion. Catalytic domains were taken from Cellulomonas fimi endoglucanases CenA, CenB and CenD, exoglucanase Cex, and β-glucosidase, Cfbglu as well as Cytophaga hutchinsonii cellodextrinase CHU2268. All fusions retained both catalytic activities of the parental enzymes. To investigate the benefits of fusion, Citrobacter freundii NCIMB11490 was transformed with either fused or non-fused enzymes and cultured with cellulose blotting papers as main carbon source. Cells expressing fusions of Cex with CenA or CenD reproducibly showed higher growth than cells expressing non-fused versions, as well as more rapid physical destruction of paper. The opposite was observed for the other combinations. Comparing two different Cex and CenA fusions, CxnA2, which contains two carbohydrate binding modules (CBMs), degraded filter paper faster and led to better growth than CxnA1, which contains only one CBM. It was observed that CxnA1 was exported to the supernatant of E. coli and C. freundii cultures, as also seen for Cex and CenA, although there is no clear biological mechanism for this. Monitoring of growth using colony counts is laborious, but the use of optical density is not possible for cellulose-based cultures as it is affected by the insoluble cellulose particles. The SYBR Green I/propidium iodide live/dead staining protocol was therefore evaluated for growth measurements and was found to allow rapid measurements of large numbers of samples. In conclusion, these studies have demonstrated a simple and useful method for making chimeric proteins from libraries of multiple parts. The results demonstrate that use of fusion proteins can improve biomass conversion in vivo, and could potentially reduce the necessity for cloning of multiple enzymes and improve product yields. A simple and effective method for monitoring growth of bacteria in turbid cultures using a fluorimeter has also been developed.
9

Shek, Wing-kit, and 石永結. "Characterization and expression of the multicatalytic proteasesubunit(26S proteasome) during the reproductive cycle of the Shrimp(Metapenaeus ensis)." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31194680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shek, Wing-kit. "Characterization and expression of the multicatalytic protease subunit(26S proteasome) during the reproductive cycle of the Shrimp (Metapenaeus ensis)." Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31194680.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Multicatalysis":

1

Kelly, Brendan Douglas. Part I : Development of New Methods for Multicatalysis: Bismuth Triflate-Catalyzed Hydrofunctionalizations . . . [New York, N.Y.?]: [publisher not identified], 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tundel, Rachel E. I. Multicatalysis: Development of a BiOTf3-catalyzed Nucleophilic Addition/Hydrofunctionalization Reaction in the Synthesis of Complex Heterocycles; . . . [New York, N.Y.?]: [publisher not identified], 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pellissier, Hélène. Enantioselective multicatalysed tandem reactions. Cambridge: Royal Soc Of Chemistry, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Jian, ed. Multicatalyst System in Asymmetric Catalysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vadola, Lisa M. Ambrosini. Part I : Development of New Methods for Application in Multicatalytic Reactions Part II: Investigation of Stable Carbenium Catalysts as Hydride Transfer Agents. [New York, N.Y.?]: [publisher not identified], 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Allen, Julia Margaret. Part 1. Diaziridinium Ions: First Reported Synthesis and Reactivity Studies. Part 2. Tropylium Ion Mediated alpha-Cyanation of Amines. Part 3. Multicatalytic Synthesis of Complex Tetrahydrofurans. [New York, N.Y.?]: [publisher not identified], 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Enantioselective Multicatalysed Tandem Reactions. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Multicatalysis":

1

Trindade, Alexandre F., João N. Rosa, Fábio M. F. Santos, and Pedro M. P. Gois. "Metal-Organo Multicatalysis: An Emerging Concept." In Advances in Organometallic Chemistry and Catalysis, 325–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118742952.ch26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cao, Zhong-Yan, Feng Zhu, and Jian Zhou. "Multicatalyst System." In Multicatalyst System in Asymmetric Catalysis, 37–157. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schomburg, Dietmar, and Dörte Stephan. "Multicatalytic endopeptidase complex." In Enzyme Handbook 16, 517–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58903-4_97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gooch, Jan W. "Multicatalytic Proteinase Complex (MPC)." In Encyclopedic Dictionary of Polymers, 908. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zeng, Xing-Ping, and Jian Zhou. "Asymmetric Assisted Catalysis by Multicatalyst System." In Multicatalyst System in Asymmetric Catalysis, 411–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Feng, Yun-Lin Liu, and Jian Zhou. "Multicatalyst System Realized Asymmetric Tandem Reactions." In Multicatalyst System in Asymmetric Catalysis, 501–631. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Jian, and Jin-Sheng Yu. "Toward Ideal Asymmetric Catalysis." In Multicatalyst System in Asymmetric Catalysis, 1–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Yun-Lin, and Jian Zhou. "Multicatalyst System Mediated Asymmetric Reactions in Total Synthesis." In Multicatalyst System in Asymmetric Catalysis, 671–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yu, Jin-Sheng, and Jian Zhou. "Asymmetric Multifunctional Catalysis." In Multicatalyst System in Asymmetric Catalysis, 159–289. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Long, Yun-Lin Liu, and Jian Zhou. "Asymmetric Cooperative Catalysis." In Multicatalyst System in Asymmetric Catalysis, 291–371. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography