Academic literature on the topic 'Multicatalysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multicatalysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multicatalysis"
Martínez, Sebastián, Lukas Veth, Bruno Lainer, and Paweł Dydio. "Challenges and Opportunities in Multicatalysis." ACS Catalysis 11, no. 7 (March 15, 2021): 3891–915. http://dx.doi.org/10.1021/acscatal.0c05725.
Full textMa, Jin-Tao, and Ying Cheng. "Construction of enantiopure imine bridged benzo[c]azepinones by a silver(i) and chiral N-heterocyclic carbene multicatalytic reaction sequence of N′-(2-alkynylbenzylidene)hydrazides and cyclopropanecarbaldehydes." Organic Chemistry Frontiers 7, no. 21 (2020): 3459–67. http://dx.doi.org/10.1039/d0qo00877j.
Full textJürjens, Gerrit, Andreas Kirschning, and David A. Candito. "Lessons from the Synthetic Chemist Nature." Natural Product Reports 32, no. 5 (2015): 723–37. http://dx.doi.org/10.1039/c4np00160e.
Full textTang, Xinxin, Lan Gan, Xin Zhang, and Zheng Huang. "n-Alkanes to n-alcohols: Formal primary C─H bond hydroxymethylation via quadruple relay catalysis." Science Advances 6, no. 47 (November 2020): eabc6688. http://dx.doi.org/10.1126/sciadv.abc6688.
Full textSancheti, Shashank P., Urvashi, Mosami P. Shah, and Nitin T. Patil. "Ternary Catalysis: A Stepping Stone toward Multicatalysis." ACS Catalysis 10, no. 5 (January 8, 2020): 3462–89. http://dx.doi.org/10.1021/acscatal.9b04000.
Full textAmbrosini, Lisa M., and Tristan H. Lambert. "Multicatalysis: Advancing Synthetic Efficiency and Inspiring Discovery." ChemCatChem 2, no. 11 (September 17, 2010): 1373–80. http://dx.doi.org/10.1002/cctc.200900323.
Full textJindal, Garima, and Raghavan B. Sunoj. "Mechanistic Insights on Cooperative Asymmetric Multicatalysis Using Chiral Counterions." Journal of Organic Chemistry 79, no. 16 (July 29, 2014): 7600–7606. http://dx.doi.org/10.1021/jo501322v.
Full textKim, Mahn-Joo, Min Young Choi, Min Young Han, Yoon Kyung Choi, Jae Kwan Lee, and Jaiwook Park. "Asymmetric Transformations of Acyloxyphenyl Ketones by Enzyme−Metal Multicatalysis." Journal of Organic Chemistry 67, no. 26 (December 2002): 9481–83. http://dx.doi.org/10.1021/jo026122m.
Full textAmbrosini, Lisa M., and Tristan H. Lambert. "ChemInform Abstract: Multicatalysis: Advancing Synthetic Efficiency and Inspiring Discovery." ChemInform 42, no. 9 (February 3, 2011): no. http://dx.doi.org/10.1002/chin.201109248.
Full textShugrue, Christopher R., Bianca R. Sculimbrene, Elizabeth R. Jarvo, Brandon Q. Mercado, and Scott J. Miller. "Outer-Sphere Control for Divergent Multicatalysis with Common Catalytic Moieties." Journal of Organic Chemistry 84, no. 3 (January 4, 2019): 1664–72. http://dx.doi.org/10.1021/acs.joc.8b03068.
Full textDissertations / Theses on the topic "Multicatalysis"
Hou, Jingke. "Compartmentalized enantioselective multicatalysis using polydimethylsiloxane membrane." Electronic Thesis or Diss., Ecole centrale de Marseille, 2022. http://www.theses.fr/2022ECDM0013.
Full textThe goal of this thesis was focused on the production of optically enriched enantiomers with complete consumption of racemic starting materials through newly designed double reactions system compartmentalized by a polydimethylsiloxane (PDMS) membrane with selective permeability. Firstly, the permeability of the PDMS membrane was studied showing a transfer selectivity of species depending on their polarity. Subsequently, the esterification and transesterification opposite reactions isolated by a PDMS membrane were performed to produce separated enantioenriched alcohols starting from racemic alcohols. However, we failed to set up such system due to the incompatibility of PDMS with the conditions of transesterification. Secondly, the compartmentalized parallel kinetic resolution combining two catalytic systems with opposite enantioselectivity isolated by a PDMS membrane was performed to produce both enantioenriched enantiomers, mirror image each other, isolated in each compartment starting from a racemic substrate. This concept was successfully established using the Jacobsen’s hydrolytic kinetic resolution of terminal epoxide. Each enantioenriched diol can be obtained up to 100% conversion from racemic epoxides. Thirdly, the compartmentalized dynamic kinetic resolution process combining a kinetic resolution and a racemization reaction isolated by PDMS membrane was performed to produce one single enantioenriched product starting from a racemic substrate. This enantioconvergent process allows to obtain an enantioenriched allylic ester up to 100% conversion from racemic allylic secondary alcohol circumventing the drawbacks of the incompatibility of the two catalytic system
Schuler, Sören Manuel Michael [Verfasser]. "(Un)expected extensions of the multicatalysis concept / Sören Manuel Michael Schuler." Gießen : Universitätsbibliothek, 2016. http://d-nb.info/1120270383/34.
Full textWende, Raffael Christoph [Verfasser]. "New frontiers in peptide catalysis : multicatalysis, challenging reactions, and the importance of dispersion interactions / Raffael Christoph Wende." Gießen : Universitätsbibliothek, 2016. http://d-nb.info/1114659002/34.
Full textLainer, Bruno. "A multicatalytic approach to enantio-, and diastereoselective arylation of alcohols." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAF080.
Full textAlcohol moieties are present in a great diversity of valuable fine chemicals from nature and synthesis, therefore methods enabling their structural diversification are sought after. However, modifying the structure of alcohols at certain unreactive positions, even with the aid of catalysis, remains a challenge or requires tedious often wasteful multistep procedures. Recently, increased attention has been paid to multicatalysis, which combines multiple catalysts within one system, enabling the discovery of previously inaccessible reactivities or increasing the overall efficiency of multistep transformations. Described within are methods which enable the diastereo-, and enantioselective α-, and β-arylation of alcohols. By combining Ru- and Pd-based catalysts the unprecedented, enantioselective (and diastereodivergent in the case of alcohols already bearing stereocenters) β-arylation of primary alcohols can be carried out. Also, under sequential relay catalysis enantioenriched secondary benzylic alcohols can be obtained from a variety of available starting materials, such as primary alcohols, or alcohols bearing a double bond. Overall, these protocols demonstrate the potential of multicatalysis as a synthetic tool for diversifying alcohols. In a broader context, this thesis sets the stage for devising novel, multicatalytic strategies and methods for efficient synthesis
Peris, Salom Edgar. "Continuous flow systems for multicatalytic processes based on supported ionic liquids." Doctoral thesis, Universitat Jaume I, 2019. http://hdl.handle.net/10803/665481.
Full textLa presente Tesis Doctoral se engloba dentro del área de la Química Sostenible y más concretamente en el campo de la química en flujo continuo. El principal objetivo es el diseño y desarrollo de nuevos sistemas multicatalíticos en continuo basados en el uso de líquidos iónicos soportados, cuyas propiedades catalíticas son muy interesantes. Este objetivo se ha aplicado a reacciones de formacion de enlaces C-C como la cianosililación, la reacción de Strecker y el acoplamiento de Negishi; cuyos productos resultan intermedios sintéticos clave en muchos procesos de síntesis orgánica, sobre todo en Química Fina y Farmacéutica. Procesos telescópicos y síntesis divergentes han sido desarrolados con éxito en continuo. Además, también se ha introducido la nueva tecnología de impresion 3D para la potencial obtención de reactores catalíticos de flujo continuo.
Neumann, Matthias [Verfasser], and Kirsten [Akademischer Betreuer] Zeitler. "Organophotoredox catalysis - Multicatalytic metal-free bond formations with visble light / Matthias Neumann. Betreuer: Kirsten Zeitler." Regensburg : Universitätsbibliothek Regensburg, 2013. http://d-nb.info/1044159855/34.
Full textSavory, Peter John. "Characterisation of the component(s) responsible for the trypsin-like activity of the multicatalytic proteinase." Thesis, University of Leicester, 1992. http://hdl.handle.net/2381/35144.
Full textDuedu, Kwabena Obeng. "Development of novel systems for bioconversion of cellulosic biomass to useful products." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/15903.
Full textShek, Wing-kit, and 石永結. "Characterization and expression of the multicatalytic proteasesubunit(26S proteasome) during the reproductive cycle of the Shrimp(Metapenaeus ensis)." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31194680.
Full textShek, Wing-kit. "Characterization and expression of the multicatalytic protease subunit(26S proteasome) during the reproductive cycle of the Shrimp (Metapenaeus ensis)." Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31194680.
Full textBooks on the topic "Multicatalysis"
Kelly, Brendan Douglas. Part I : Development of New Methods for Multicatalysis: Bismuth Triflate-Catalyzed Hydrofunctionalizations . . . [New York, N.Y.?]: [publisher not identified], 2011.
Find full textTundel, Rachel E. I. Multicatalysis: Development of a BiOTf3-catalyzed Nucleophilic Addition/Hydrofunctionalization Reaction in the Synthesis of Complex Heterocycles; . . . [New York, N.Y.?]: [publisher not identified], 2012.
Find full textPellissier, Hélène. Enantioselective multicatalysed tandem reactions. Cambridge: Royal Soc Of Chemistry, 2014.
Find full textZhou, Jian, ed. Multicatalyst System in Asymmetric Catalysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.
Full textVadola, Lisa M. Ambrosini. Part I : Development of New Methods for Application in Multicatalytic Reactions Part II: Investigation of Stable Carbenium Catalysts as Hydride Transfer Agents. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textAllen, Julia Margaret. Part 1. Diaziridinium Ions: First Reported Synthesis and Reactivity Studies. Part 2. Tropylium Ion Mediated alpha-Cyanation of Amines. Part 3. Multicatalytic Synthesis of Complex Tetrahydrofurans. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textEnantioselective Multicatalysed Tandem Reactions. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621355.
Full textZhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley, 2014.
Find full textZhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Incorporated, John, 2014.
Find full textZhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Incorporated, John, 2014.
Find full textBook chapters on the topic "Multicatalysis"
Trindade, Alexandre F., João N. Rosa, Fábio M. F. Santos, and Pedro M. P. Gois. "Metal-Organo Multicatalysis: An Emerging Concept." In Advances in Organometallic Chemistry and Catalysis, 325–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118742952.ch26.
Full textCao, Zhong-Yan, Feng Zhu, and Jian Zhou. "Multicatalyst System." In Multicatalyst System in Asymmetric Catalysis, 37–157. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch2.
Full textSchomburg, Dietmar, and Dörte Stephan. "Multicatalytic endopeptidase complex." In Enzyme Handbook 16, 517–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58903-4_97.
Full textGooch, Jan W. "Multicatalytic Proteinase Complex (MPC)." In Encyclopedic Dictionary of Polymers, 908. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14269.
Full textZeng, Xing-Ping, and Jian Zhou. "Asymmetric Assisted Catalysis by Multicatalyst System." In Multicatalyst System in Asymmetric Catalysis, 411–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch6.
Full textZhou, Feng, Yun-Lin Liu, and Jian Zhou. "Multicatalyst System Realized Asymmetric Tandem Reactions." In Multicatalyst System in Asymmetric Catalysis, 501–631. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch8.
Full textZhou, Jian, and Jin-Sheng Yu. "Toward Ideal Asymmetric Catalysis." In Multicatalyst System in Asymmetric Catalysis, 1–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch1.
Full textLiu, Yun-Lin, and Jian Zhou. "Multicatalyst System Mediated Asymmetric Reactions in Total Synthesis." In Multicatalyst System in Asymmetric Catalysis, 671–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch10.
Full textYu, Jin-Sheng, and Jian Zhou. "Asymmetric Multifunctional Catalysis." In Multicatalyst System in Asymmetric Catalysis, 159–289. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch3.
Full textChen, Long, Yun-Lin Liu, and Jian Zhou. "Asymmetric Cooperative Catalysis." In Multicatalyst System in Asymmetric Catalysis, 291–371. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch4.
Full text