Academic literature on the topic 'Multicatalyse'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multicatalyse.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multicatalyse"

1

Poe, Sarah L., Muris Kobašlija, and D. Tyler McQuade. "Microcapsule Enabled Multicatalyst System." Journal of the American Chemical Society 128, no. 49 (December 2006): 15586–87. http://dx.doi.org/10.1021/ja066476l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hofmann, Christine, Sören M. M. Schuler, Raffael C. Wende, and Peter R. Schreiner. "En route to multicatalysis: kinetic resolution of trans-cycloalkane-1,2-diols via oxidative esterification." Chem. Commun. 50, no. 10 (2014): 1221–23. http://dx.doi.org/10.1039/c3cc48584f.

Full text
Abstract:
We demonstrate the application of a multicatalyst to the oxidation of a broad variety of aldehydes and subsequent enantioselective esterification of the incipient acids with (±)-trans-cycloalkane-1,2-diols.
APA, Harvard, Vancouver, ISO, and other styles
3

Mata, José A., F. Ekkehardt Hahn, and Eduardo Peris. "Heterometallic complexes, tandem catalysis and catalytic cooperativity." Chem. Sci. 5, no. 5 (2014): 1723–32. http://dx.doi.org/10.1039/c3sc53126k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Jin-Tao, and Ying Cheng. "Construction of enantiopure imine bridged benzo[c]azepinones by a silver(i) and chiral N-heterocyclic carbene multicatalytic reaction sequence of N′-(2-alkynylbenzylidene)hydrazides and cyclopropanecarbaldehydes." Organic Chemistry Frontiers 7, no. 21 (2020): 3459–67. http://dx.doi.org/10.1039/d0qo00877j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jürjens, Gerrit, Andreas Kirschning, and David A. Candito. "Lessons from the Synthetic Chemist Nature." Natural Product Reports 32, no. 5 (2015): 723–37. http://dx.doi.org/10.1039/c4np00160e.

Full text
Abstract:
Nature's strategy of performing ideal multistep (bio)synthesis are based on multicatalysis, domino reactions, iteration and compartmentation. These are discussed and compared with chemical synthesis in this conceptual review.
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Xinxin, Lan Gan, Xin Zhang, and Zheng Huang. "n-Alkanes to n-alcohols: Formal primary C─H bond hydroxymethylation via quadruple relay catalysis." Science Advances 6, no. 47 (November 2020): eabc6688. http://dx.doi.org/10.1126/sciadv.abc6688.

Full text
Abstract:
Nature is able to synergistically combine multiple enzymes to conduct well-ordered biosynthetic transformations. Mimicking nature’s multicatalysis in vitro may give rise to new chemical transformations via interplay of numerous molecular catalysts in one pot. The direct and selective conversion of abundant n-alkanes to valuable n-alcohols is a reaction with enormous potential applicability but has remained an unreached goal. Here, we show that a quadruple relay catalysis system involving three discrete transition metal catalysts enables selective synthesis of n-alcohols via n-alkane primary C─H bond hydroxymethylation. This one-pot multicatalysis system is composed of Ir-catalyzed alkane dehydrogenation, Rh-catalyzed olefin isomerization and hydroformylation, and Ru-catalyzed aldehyde hydrogenation. This system is further applied to synthesis of α,ω-diols from simple α-olefins through terminal-selective hydroxymethylation of silyl alkanes.
APA, Harvard, Vancouver, ISO, and other styles
7

Pellissier, Hélène. "Recent developments in enantioselective multicatalysed tandem reactions." Tetrahedron 69, no. 35 (September 2013): 7171–210. http://dx.doi.org/10.1016/j.tet.2013.06.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Martínez, Sebastián, Lukas Veth, Bruno Lainer, and Paweł Dydio. "Challenges and Opportunities in Multicatalysis." ACS Catalysis 11, no. 7 (March 15, 2021): 3891–915. http://dx.doi.org/10.1021/acscatal.0c05725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsoung, Jennifer, Jane Panteleev, Matthias Tesch, and Mark Lautens. "Multicomponent-Multicatalyst Reactions (MC)2R: Efficient Dibenzazepine Synthesis." Organic Letters 16, no. 1 (December 13, 2013): 110–13. http://dx.doi.org/10.1021/ol4030925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marafi, A., F. Maruyama, A. Stanislaus, and E. Kam. "Multicatalyst System Testing Methodology for Upgrading Residual Oils." Industrial & Engineering Chemistry Research 47, no. 3 (February 2008): 724–41. http://dx.doi.org/10.1021/ie071103u.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Multicatalyse"

1

Hou, Jingke. "Compartmentalized enantioselective multicatalysis using polydimethylsiloxane membrane." Electronic Thesis or Diss., Ecole centrale de Marseille, 2022. http://www.theses.fr/2022ECDM0013.

Full text
Abstract:
Les travaux de cette thèse ont porté sur la production d’énantiomères optiquement enrichis avec une consommation complète du substrat racémiques grâce à un nouveau système compartimenté de double réaction comportant une membrane polydimethylsiloxane (PDMS) à perméabilité sélective.D'abord, la perméabilitéde la membrane PDMS a été étudiée montrant une sélectivité de transfert des espèces en fonction de leur polarité. Par la suite, les réactions opposées d'estérification et de transestérification isolées par une membrane PDMS ont été réalisées pour produire des alcools énantioenrichis séparés à partir d'alcool racémique. Cependant, nous n’avons pas réussi à mettre en œuvre ce système en raison de l'incompatibilité du PDMS avec les conditions de transestérification. Deuxièmement, le dédoublement cinétique parallèle compartimentée combinant deux systèmes catalytiques d’énantiosélectivité opposées isolés par une membrane PDMS a été réalisée pour produire les deux produits énantio-enrichis image l’un de l’autre isolé dans chacun des compartiments à partir d'un substrat racémique. Ce concept a été établi avec succès avec le dédoublement cinétique hydrolytique de Jacobsen de l'époxyde terminal. Chacun des diols énantioenrichis peut être ainsi obtenu jusqu'à 100% de conversion à partir d'époxyde racémique. Troisièmement, le processus de résolution cinétique dynamique compartimenté combinant une résolution cinétique et une réaction de racémisation isolée par membrane PDMS a été réalisé pour produire un seul produit énantioenrichi à partir d'un substrat racémique. Ce processus énantioconvergent permet d’obtenir un seul ester allylique énantioenrichi jusqu'à 100% de conversion à partir d'alcool secondaire allylique racémique contournant les inconvénients de l'incompatibilité
The goal of this thesis was focused on the production of optically enriched enantiomers with complete consumption of racemic starting materials through newly designed double reactions system compartmentalized by a polydimethylsiloxane (PDMS) membrane with selective permeability. Firstly, the permeability of the PDMS membrane was studied showing a transfer selectivity of species depending on their polarity. Subsequently, the esterification and transesterification opposite reactions isolated by a PDMS membrane were performed to produce separated enantioenriched alcohols starting from racemic alcohols. However, we failed to set up such system due to the incompatibility of PDMS with the conditions of transesterification. Secondly, the compartmentalized parallel kinetic resolution combining two catalytic systems with opposite enantioselectivity isolated by a PDMS membrane was performed to produce both enantioenriched enantiomers, mirror image each other, isolated in each compartment starting from a racemic substrate. This concept was successfully established using the Jacobsen’s hydrolytic kinetic resolution of terminal epoxide. Each enantioenriched diol can be obtained up to 100% conversion from racemic epoxides. Thirdly, the compartmentalized dynamic kinetic resolution process combining a kinetic resolution and a racemization reaction isolated by PDMS membrane was performed to produce one single enantioenriched product starting from a racemic substrate. This enantioconvergent process allows to obtain an enantioenriched allylic ester up to 100% conversion from racemic allylic secondary alcohol circumventing the drawbacks of the incompatibility of the two catalytic system
APA, Harvard, Vancouver, ISO, and other styles
2

Giorgi, Pascal. "Nouvelles réactions à économie d'atomes et d'étapes basées sur la catalyse par des nanoparticules d'or et la multicatalyse. Applications dans la synthèse de chimie fine et des odorants." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4127.

Full text
Abstract:
L'élaboration de méthodes de synthèse, basées sur l’utilisation d’espèces métalliques a été un sujet de tous les instances en chimie organique. Malgré l’efficacité des métaux utilisés en catalyse homogènes, leurs procédures de recyclage restent limitées. Ce pourquoi, une contrainte supplémentaire a été placée dans la conception de catalyseurs, pouvant offrir à la fois l'efficacité de la catalyse homogène et le recyclage de l’hétérogène. Dans ce contexte, les nanoparticules métalliques sont apparues comme objet phare, en raison de leurs propriétés physico-chimiques inégalées. On a découvert que les nanoparticules de métaux nobles présentaient des propriétés catalytiques similaires dans certains cas, aux complexes monoatomiques. De plus, les Au NPs ont montré une activité catalytique remarquable dans l'oxydation d’alcools activés sous O2. Nous avons donc envisagé des procédures multicatalytiques, basées sur les NPs d’Au. Notre choix d'utiliser des catalyseurs solides était pertinent, puisque les nano-catalyseurs, pour lesquels la fraction de sites actifs se trouve en surface, limitent les risques de cross-quenching. Ici, nous présentons trois nouveaux procédés bicatalytiques permettant l’accès, à des chromenes/quinoléines (53-93%) via une oxydation / Michael Addition/ aldolisation, combinant nanocatalyse et catalyse basique, l’accès à des ortho-THC (50-81%) via oxydation / arylation / cyclisation, combinant nanocatalyse et catalyse supportée, ainsi qu’une une oxydation / hydrolyse en cascade, pour accéder à l’HMLA (86%, sel 93%), un grand panel de produits d'activité biologique reconnue, utilisé en parfumerie ou visant une pré-industrialisation via la chimie en flux continu
Elaboration of synthetic methods based on metal-catalyzed reactions has been a hot topic in organic chemistry. Despite good efficiency, catalysis proceeding homogeneously, are limited in the operation of recovering/recycling of the catalysts. An important stress was placed to design catalysis, offering both the efficiency of homogeneous catalysts and the recyclability of heterogeneous catalysts. In this context, metal nanoparticles merged as a key tool, due to their unique physical and chemical properties. Notably, Au NPs have shown remarkable catalytic activity in the oxidation of activated alcohols under O2 atmosphere. Since now, the access to more complex molecules is the next step forward for this field, we envisioned multicatalytic roads, based on the oxidation of activated alcohols via supported Au NPs. Our choice of using solid catalysts was relevant, since nanostructured catalysts for which the fraction of active sites are located on the surface, limit the risk of cross-quenching. The latter carbonyl formed, could be further converted in situ, via tandem protocol. Herein, we developed novel, atom- and step-economical bicatalytic one-pot processes, to access substituted chromenes/quinolines (53-93%) by tandem oxidation/hetero-Michael addition/aldolisation combining nanocatalysis and base catalysis, ortho-THCs (50-81%) via tandem oxidation/arylation/cyclisation combining nanocatalysis and supported catalysts and a tandem cascade oxidation/hydrolysis to access HMLA (86%, sel 93%). A large panel of products of biological activity relevance, pertaining to the fragrance chemistry or aiming in some cases, pre-industrial scalability via continuous flow applications
APA, Harvard, Vancouver, ISO, and other styles
3

Lainer, Bruno. "A multicatalytic approach to enantio-, and diastereoselective arylation of alcohols." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAF080.

Full text
Abstract:
Les groupements alcooliques sont présents dans une grande diversité de produits chimiques fins précieux issus de la nature et de la synthèse, c'est pourquoi les méthodes permettant leur diversification structurelle sont recherchées. Cependant, la modification de la structure des alcools à certaines positions non réactives, même avec l'aide de la catalyse, reste un défi ou nécessite des procédures multi-étapes fastidieuses et souvent coûteuses. Récemment, une attention accrue a été accordée à la multicatalyse, qui combine plusieurs catalyseurs au sein d'un même système, ce qui permet de découvrir des réactivités auparavant inaccessibles ou d'accroître l'efficacité globale des transformations en plusieurs étapes. Les méthodes décrites ici permettent l'α- et la β-arylation diastéréo- et énantiosélective d'alcools. En combinant des catalyseurs à base de Ru et de Pd, il est possible de réaliser une β-arylation énantiosélective (et diastéréodivergente dans le cas d'alcools portant déjà des stéréocentres) sans précédent d'alcools primaires. En outre, dans le cadre d'une catalyse relais séquentielle, il est possible d'obtenir des alcools benzyliques secondaires enrichis enantioénergie à partir de divers produits de départ disponibles, tels que des alcools primaires ou des alcools portant une double liaison. Dans l'ensemble, ces protocoles démontrent le potentiel de la multicatalyse en tant qu'outil synthétique pour diversifier les alcools. Dans un contexte plus large, cette thèse ouvre la voie à la conception de nouvelles stratégies et méthodes multicatalytiques pour une synthèse efficace
Alcohol moieties are present in a great diversity of valuable fine chemicals from nature and synthesis, therefore methods enabling their structural diversification are sought after. However, modifying the structure of alcohols at certain unreactive positions, even with the aid of catalysis, remains a challenge or requires tedious often wasteful multistep procedures. Recently, increased attention has been paid to multicatalysis, which combines multiple catalysts within one system, enabling the discovery of previously inaccessible reactivities or increasing the overall efficiency of multistep transformations. Described within are methods which enable the diastereo-, and enantioselective α-, and β-arylation of alcohols. By combining Ru- and Pd-based catalysts the unprecedented, enantioselective (and diastereodivergent in the case of alcohols already bearing stereocenters) β-arylation of primary alcohols can be carried out. Also, under sequential relay catalysis enantioenriched secondary benzylic alcohols can be obtained from a variety of available starting materials, such as primary alcohols, or alcohols bearing a double bond. Overall, these protocols demonstrate the potential of multicatalysis as a synthetic tool for diversifying alcohols. In a broader context, this thesis sets the stage for devising novel, multicatalytic strategies and methods for efficient synthesis
APA, Harvard, Vancouver, ISO, and other styles
4

Schuler, Sören Manuel Michael [Verfasser]. "(Un)expected extensions of the multicatalysis concept / Sören Manuel Michael Schuler." Gießen : Universitätsbibliothek, 2016. http://d-nb.info/1120270383/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wende, Raffael Christoph [Verfasser]. "New frontiers in peptide catalysis : multicatalysis, challenging reactions, and the importance of dispersion interactions / Raffael Christoph Wende." Gießen : Universitätsbibliothek, 2016. http://d-nb.info/1114659002/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kelly, Brendan Douglas. "Part I: Development of New Methods for Multicatalysis: Bismuth(III) Triflate-Catalyzed Hydrofunctionalizations . ." Thesis, 2011. https://doi.org/10.7916/D8SX6M7B.

Full text
Abstract:
This thesis describes the development of novel synthetic methods in two areas of chemical research: Multicatalysis and the aromatic activation of alcohols. The first chapter, encompassing multicatalysis, reveals the design and realization of an innovative hydro-functionalization method. This method is examined in the context of designing multicatalytic processes to access privileged chemical architectures, which unite a nucleophilic addition event with the hydrofunctionalization reaction. The resulting multicatalytic methods capably effect the formation of complex heterocyclic compounds. The second chapter discloses an innovative paradigm for nucleophilic substitution involving aromatic cation activation of alcohols. The development of efficient chlorination and bromination methods promoted by cyclopropenium cations are discussed. The substrate scope and mechanism of the reaction are also examined. The successful demonstration of these methods established proof of concept and initiated further investigations of the aromatic cation activation strategy. The final chapter extends the concept of aromatic cation activation of alcohols to additional reaction manifolds. A dehydrative cyclization of diols employing aromatic cations is explored. The efficacy of alternative cyclopropenyl leaving groups is examined and the scope of viable nucleophiles for the aromatic activation strategy is extended. Along with Chapter 2, these seminal investigations have laid the foundation for future advances towards the realization of a general aromatic cation activation strategy.
APA, Harvard, Vancouver, ISO, and other styles
7

Tundel, Rachel E. "I. Multicatalysis: Development of a BiOTf3-catalyzed Nucleophilic Addition/Hydrofunctionalization Reaction in the Synthesis of Complex Heterocycles; . ." Thesis, 2012. https://doi.org/10.7916/D8VX0NV5.

Full text
Abstract:
One of the major drawbacks to traditional syntheses is the requirement for iterative synthesis, which is not only chemically inefficient and time-consuming, but environmentally unfriendly due to waste generated during purification procedures. A way to circumvent problems posed by iterative synthesis is through the development of multicatalytic protocols, in which multiple, distinct synthetic steps can be performed in one reaction pot. Saturated 5-membered oxygen- and nitrogen-containing heterocycles are extremely common structural motifs in many biologically important molecules--a multicatalytic synthetic strategy for their syntheses would be of incredible use. To that end, a bismuth(III) triflate-catalyzed hydroalkoxylation procedure was developed for the synthesis of substituted tetrahydrofurans. This operationally simple method successfully generated complex tetrahyrofurans in moderate to good diastereoselectivity with good functional group tolerance. An analogous hydroamination of non-basic N-tosyl amines was also developed and featured similar levels of diastereoselectivity and functional group compatibility. The methodology was part of a multicatalytic strategy combining nucleophilic additions to aliphatic aldehydes and N-tosyl imines to quickly generate complex 5-membered heterocycles in moderate to good diastereoselectivity. The palladium-pivalate catalytic system has emerged as one of the most efficient and general catalysts for the C-H arylation of arenes and heteroarenes with haloarene donors. Despite the importance of this class of catalytic reactions, the mechanistic understanding is limited by the lack of direct experimental evidence, especially in the context of Lewis basic heteroarene substrates. To address this problem, we chose the catalytic C-H arylation of 2-methylthiazole as a representative reaction for a detailed mechanistic study. Direct kinetic evidence was provided for the involvement of a palladium(II) pivalate species in the C-H arylation of heteroarenes by identifying the resting state of the catalyst - complex 2a [(Cy3P)(2-methylthiazole)Pd(Ph)(OPiv)] - and examining its reactivity. The pivalate ligand, in comparison to acetate, does not yield faster rates of C-H activation, but instead stabilizes the resting state of the catalyst against decomposition to inactive palladium species. An experimentally supported rationale for the superiority of the palladium(II) pivalate system in C-H arylation reactions was provided. The choice of phosphine ligand is an incredibly important aspect of catalyst design in many metal-catalyzed transformations, including direct arylations and cross-couplings. A relatively unexplored area of study was the effect of the phosphine ligand on the C-H metalation step of palladium-catalyzed direct arylation reactions. Through our studies and related studies in the literature, we can conclude that the phosphine ligand is generally deactivating toward deprotonative metalation (CMD/EMD) pathways, however the phosphine ligand is necessary in the C5 arylation of triazole and C2 arylation of thiazole, as well as substituted pyridines. In the case of azoles, arylation probably proceeds via a mechanism different to that of C5 arylations; the phosphine ligand stabilizes catalytic intermediates, affording efficient C2 arylation of azoles. In the case of pyridine, the major issue is that of catalyst decomposition; in approaching catalyst design, one must balance tuning of the reactivity of the palladium catalyst toward C-H metalation versus protecting the catalyst during prolonged reaction times and high reaction temperatures. Two common ligands in palladium catalysis, Cy3P and t-Bu3P, were directly compared in terms of their interaction with basic substrates. While complexes ligated to a single Cy3P ligand were able to accommodate basic heteroarenes in the palladium coordination sphere, complexes with the bulkier t-Bu3P ligand behaved very differently, which could have important ramifications on future catalyst design. Heteroaromatic substrates have typically provided challenges for the development of direct arylation protocols. However, how the properties of the substrate affect the rate-limiting metalation step of palladium-catalyzed direct arylation reactions was mostly unknown. Thus, we correlated the rates of C-H metalation of azoles and substituted pyridines with various intrinsic properties of heterocycles, such as aromaticity, and pKa. It was found that for the C5 arylation of azoles, a stronger correlation on the rate of metalation with pKa was observed. Degree of aromaticity appears to have little correlation with the rates of C-H metalation of azoles and pyridines.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Multicatalyse"

1

Pellissier, Hélène. Enantioselective multicatalysed tandem reactions. Cambridge: Royal Soc Of Chemistry, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Jian, ed. Multicatalyst System in Asymmetric Catalysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kelly, Brendan Douglas. Part I : Development of New Methods for Multicatalysis: Bismuth Triflate-Catalyzed Hydrofunctionalizations . . . [New York, N.Y.?]: [publisher not identified], 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tundel, Rachel E. I. Multicatalysis: Development of a BiOTf3-catalyzed Nucleophilic Addition/Hydrofunctionalization Reaction in the Synthesis of Complex Heterocycles; . . . [New York, N.Y.?]: [publisher not identified], 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Enantioselective Multicatalysed Tandem Reactions. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Jian. Multicatalyst System in Asymmetric Catalysis. Wiley & Sons, Limited, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Multicatalyse"

1

Cao, Zhong-Yan, Feng Zhu, and Jian Zhou. "Multicatalyst System." In Multicatalyst System in Asymmetric Catalysis, 37–157. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zeng, Xing-Ping, and Jian Zhou. "Asymmetric Assisted Catalysis by Multicatalyst System." In Multicatalyst System in Asymmetric Catalysis, 411–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Feng, Yun-Lin Liu, and Jian Zhou. "Multicatalyst System Realized Asymmetric Tandem Reactions." In Multicatalyst System in Asymmetric Catalysis, 501–631. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Jian, and Jin-Sheng Yu. "Toward Ideal Asymmetric Catalysis." In Multicatalyst System in Asymmetric Catalysis, 1–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Yun-Lin, and Jian Zhou. "Multicatalyst System Mediated Asymmetric Reactions in Total Synthesis." In Multicatalyst System in Asymmetric Catalysis, 671–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Jin-Sheng, and Jian Zhou. "Asymmetric Multifunctional Catalysis." In Multicatalyst System in Asymmetric Catalysis, 159–289. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Long, Yun-Lin Liu, and Jian Zhou. "Asymmetric Cooperative Catalysis." In Multicatalyst System in Asymmetric Catalysis, 291–371. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Long, Zhong-Yan Cao, and Jian Zhou. "Asymmetric Double Activation Catalysis by Multicatalyst System." In Multicatalyst System in Asymmetric Catalysis, 373–410. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cao, Zhong-Yan, and Jian Zhou. "Asymmetric Catalysis Facilitated by Photochemical or Electrochemical Methods." In Multicatalyst System in Asymmetric Catalysis, 475–500. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Jian, and Xing-Ping Zeng. "Waste-Mediated Reactions." In Multicatalyst System in Asymmetric Catalysis, 633–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118846919.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography