Academic literature on the topic 'Multibiometric'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multibiometric.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multibiometric"
Jain, Anil K., and Arun Ross. "Multibiometric systems." Communications of the ACM 47, no. 1 (January 1, 2004): 34. http://dx.doi.org/10.1145/962081.962102.
Full textRuchay, A. N. "DEVELOPMENT OF NEW ELECTIVE MULTIBIOMETRIC AUTHENTICATION." Journal of the Ural Federal District. Information security 20, no. 3 (2020): 34–41. http://dx.doi.org/10.14529/secur200304.
Full textAftab, Anum, Farrukh Aslam Khan, Muhammad Khurram Khan, Haider Abbas, Waseem Iqbal, and Farhan Riaz. "Hand-based multibiometric systems: state-of-the-art and future challenges." PeerJ Computer Science 7 (October 7, 2021): e707. http://dx.doi.org/10.7717/peerj-cs.707.
Full textSelvarani, P., and N. Malarvizhi. "Multibiometric authentication with MATLAB simulation." International Journal of Engineering & Technology 7, no. 1.7 (February 5, 2018): 47. http://dx.doi.org/10.14419/ijet.v7i1.7.9389.
Full textNair, Suresh Kumar Ramachandran, Bir Bhanu, Subir Ghosh, and Ninad S. Thakoor. "Predictive models for multibiometric systems." Pattern Recognition 47, no. 12 (December 2014): 3779–92. http://dx.doi.org/10.1016/j.patcog.2014.05.020.
Full textAlMahafzah, Harbi, and Maen Zaid AlRwashdeh. "A Survey of Multibiometric Systems." International Journal of Computer Applications 43, no. 15 (April 30, 2012): 36–43. http://dx.doi.org/10.5120/6182-8612.
Full textKovaliuk, Tеtiana, Anastasiia Shevchenko, and Nataliia Kobets. "Multibiometric Identification of the Student by His Voice and Visual Biometric Indicators in the Process of Distance Education." Digital Platform: Information Technologies in Sociocultural Sphere 5, no. 1 (June 30, 2022): 90–102. http://dx.doi.org/10.31866/2617-796x.5.1.2022.261293.
Full textMahajan, Smita, and Asmita Deshpande. "Multibiometric Template Security using Fuzzy Vault." International Journal of Computer Applications 154, no. 3 (November 17, 2016): 21–26. http://dx.doi.org/10.5120/ijca2016912053.
Full textGyaourova, Aglika, and Arun Ross. "Index Codes for Multibiometric Pattern Retrieval." IEEE Transactions on Information Forensics and Security 7, no. 2 (April 2012): 518–29. http://dx.doi.org/10.1109/tifs.2011.2172429.
Full textKumar, Amioy, and Ajay Kumar. "A Cell-Array-Based Multibiometric Cryptosystem." IEEE Access 4 (2016): 15–25. http://dx.doi.org/10.1109/access.2015.2428277.
Full textDissertations / Theses on the topic "Multibiometric"
Dhamala, Pushpa. "Multibiometric Systems." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for telematikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18895.
Full textSepasian, Mojtaba. "Multibiometric security in wireless communication systems." Thesis, Brunel University, 2010. http://bura.brunel.ac.uk/handle/2438/5081.
Full textNandakumar, Karthik. "Multibiometric systems fusion strategies and template security /." Diss., Connect to online resource - MSU authorized users, 2008.
Find full textTitle from PDF t.p. (viewed on Mar. 30, 2009) Includes bibliographical references (p. 210-228). Also issued in print.
Smiley, Garrett. "Investigating the Role of Multibiometric Authentication on Professional Certification E-examination." NSUWorks, 2013. http://nsuworks.nova.edu/gscis_etd/307.
Full textJanečka, Petr. "Multimodální biometrický systém kombinující duhovku a sítnici." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234910.
Full textGiulia, Droandi. "Secure Processing of Biometric Signals in Malicious Setting." Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1061228.
Full textVertamatti, Rodolfo. "Assimetria humana no reconhecimento multibiométrico." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032012-151923/.
Full textCombination of non-redundant biometric sources in multibiometrics overcomes individual source accuracy (monobiometrics). Moreover, two problems in biometrics, noise and impostor attacks, can be minimized by the use of multi-sensor, multi-modal biometrics. However, if similarities are in all traits, as in monozygotic twins (MZ), multiple source processing does not improve performance. To distinguish extreme similitude, epigenetic and environmental influences are more important than DNA inherited. This thesis examines phenotypic plasticity in human asymmetry as a tool to ameliorate multibiometrics. Bilateral Processing (BP) technique is introduced to analyze discordances in left and right trait sides. BP was tested in visible and infrared spectrum images using Cross-Correlation, Wavelets and Artificial Neural Networks. Selected traits were teeth, ears, irises, fingerprints, nostrils and cheeks. Acoustic BP was also implemented for vibration asymmetry evaluation during voiced sounds and compared to a speaker recognition system parameterized via MFCC (Mel Frequency Cepstral Coefficients) and classified by Vector Quantization. Image and acoustic BP gathered 20 samples per biometric trait during one year from nine adult male brothers. For test purposes, left biometrics was impostor to right biometrics from the same individual and vice-versa, which led to 18 entities to be identified per trait. Results achieved total identification in all biometrics treated with BP, compared to maximum 44% of correct identification without BP. This study concludes that bilateral peculiarities improve multibiometric performance and can complement any recognition approach.
Falguera, Fernanda Pereira Sartori [UNESP]. "Fusão de métodos baseados em minúcias e em cristas para reconhecimento de impressões digitais." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/98675.
Full textBiometria refere-se ao uso de características físicas (impressões digitais, íris, retina) ou comportamentais (assinatura, voz) para a identificação humana. As impressões digitais são formadas por cristas e minúcias. As cristas são linhas distribuídas paralelamente com uma orientação e um espaçamento característico e as minúcias representam os vários modos pelos quais uma crista pode se tornar descontínua. Graças a sua universalidade, unicidade e permanência, as impressões digitais tornaram-se as características biométricas mais amplamente utilizadas. Entretanto, considerar o reconhecimento automático de impressões digitais um problema totalmente resolvido é um erro muito comum. Nenhum sistema de reconhecimento de impressões digitais proposto até hoje é infalível, nenhum garante taxas de erro nulas. Imagens de baixa qualidade e com pequena área de sobreposição entre a imagem template e a imagem de consulta ainda representam um desafio para os métodos de reconhecimento de impressões digitais mais utilizados, os métodos baseados no casamento de pontos de minúcias. Uma das maneiras de superar as limitações e melhorar a acurácia de um sistema biométrico é o uso da multibiometria, isto é, a combinação de diferentes tipos de informação em um sistema de reconhecimento biométrico. Neste contexto, esta dissertação de mestrado objetiva aprimorar a acurácia dos sistemas de reconhecimento de impressões digitais por meio da fusão de métodos baseados em minúcias e em cristas. Para tanto, foram implementadas técnicas de fusão no nível de pontuação, classificação e decisão. No nível de pontuação, a fusão propiciou uma redução na taxa de erro igual (EER) de 42,53% em relação ao método mais preciso. Para o nível de classificação, a fusão significou um aumento de 75% na taxa de recuperação correta...
Biometrics refers to the use of physical (fingerprints, iris, retina) or behavioral (signature, voice) characteristics to determine the identity of a person. Fingerprints are formed by ridges and minutiae. The ridges are lines distributed in parallel with an orientation and a characteristic spacing and the minutiae represent the several ways a ridge can become discontinued. As to its universality, uniqueness and permanence, the fingerprints became the most widely used biometric characteristic. However, it is a common mistake to consider the automatic fingerprint recognition as a totally solved problem. No fingerprint recognition system proposed until now is infallible, none of them guarantee null error rates. Poor quality images and when just a small area of overlap between the template and the query images exists are still a complex challenge to the most used fingerprint recognition methods, the methods based on minutiae points matching. One of the possibilities to overcome the limitations and improve the accuracy of a biometric system is the use of multibiometrics, the combination of different kinds of information in a biometric system. In this context, this master thesis aims to improve the accuracy of fingerprint recognition systems through the fusion of minutiae based and ridge based methods. To achieve this, fusion techniques on score, rank and decision levels were implemented. For the score level, the fusion lead to a reduction of the Equal Error Rate to 42.53% compared to the most precise method. For the rank level, the fusion meant an increase of 75% in the Correct Retrieval Rate. And, in the decision level fusion the Recognition Rate changed from 99.25% to 99.75%. The results have demonstrated that the fusion of minutiae based and ridge based methods can represent a significant accuracy improvement for the fingerprint recognition systems.
Nassar, Alaa S. N. "A Hybrid Multibiometric System for Personal Identification Based on Face and Iris Traits. The Development of an automated computer system for the identification of humans by integrating facial and iris features using Localization, Feature Extraction, Handcrafted and Deep learning Techniques." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/16917.
Full textHigher Committee for Education Development in Iraq
Kisel, Andrej. "Asmens identifikavimas pagal pirštų atspaudus ir balsą." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20101230_093653-59895.
Full textThis dissertation focuses on person identification problems and proposes solutions to overcome those problems. First part is about fingperprint feaures extraction algorithm performance evaluaiton. Modifications to a known synthesis algorithm are proposed to make it fast and suitable for performance evaluation. Matching of deformed fingerprints is discussed in the second part of the work. New fingerprint matching algorithm that uses local structures and does not perform fingerprint alignment is proposed to match deformed fingerprints. The use of group delay features of linear prediciton model for speaker identification is proposed in the third part of the work. New similarity metric that uses group delay features is described. It is demonstrated that automatic speaker identification system with proposed features and similarity metric outperforms traditional speaker identification systems. Multibiometrics using fingerprints and voice is adressed in the last part of the dissertation.
Books on the topic "Multibiometric"
Thanki, Rohit M., Vedvyas J. Dwivedi, and Komal R. Borisagar. Multibiometric Watermarking with Compressive Sensing Theory. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4.
Full textBhanu, Bir, and Venu Govindaraju, eds. Multibiometrics for Human Identification. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511921056.
Full textBorisagar, Komal R., Rohit M. Thanki, and Vedvyas J. Dwivedi. Multibiometric Watermarking with Compressive Sensing Theory: Techniques and Applications. Springer, 2019.
Find full textBorisagar, Komal R., Rohit M. Thanki, and Vedvyas J. Dwivedi. Multibiometric Watermarking with Compressive Sensing Theory: Techniques and Applications. Springer, 2018.
Find full textA, Karthik Nandakumar &. Anil K. Jain Ross Arun. Handbook Of Multibiometrics. Springer India, 2009.
Find full textHandbook of Multibiometrics. Boston: Kluwer Academic Publishers, 2006. http://dx.doi.org/10.1007/0-387-33123-9.
Full textHandbook Of Multibiometrics. Springer, 2011.
Find full textRoss, Arun A., Karthik Nandakumar, and Anil K. Jain. Handbook of Multibiometrics. Springer London, Limited, 2006.
Find full textBhanu, Bir, and Venu Govindaraju. Multibiometrics for Human Identification. Cambridge University Press, 2011.
Find full textBhanu, Bir, and Venu Govindaraju. Multibiometrics for Human Identification. Cambridge University Press, 2011.
Find full textBook chapters on the topic "Multibiometric"
Thanki, Rohit M., Vedvyas J. Dwivedi, and Komal R. Borisagar. "Introduction." In Multibiometric Watermarking with Compressive Sensing Theory, 1–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_1.
Full textThanki, Rohit M., Vedvyas J. Dwivedi, and Komal R. Borisagar. "Background Information and Related Works." In Multibiometric Watermarking with Compressive Sensing Theory, 19–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_2.
Full textThanki, Rohit M., Vedvyas J. Dwivedi, and Komal R. Borisagar. "Issues in Biometric System and Proposed Research Methodology." In Multibiometric Watermarking with Compressive Sensing Theory, 47–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_3.
Full textThanki, Rohit M., Vedvyas J. Dwivedi, and Komal R. Borisagar. "Multibiometric Watermarking Technique Using Discrete Wavelet Transform (DWT)." In Multibiometric Watermarking with Compressive Sensing Theory, 65–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_4.
Full textThanki, Rohit M., Vedvyas J. Dwivedi, and Komal R. Borisagar. "Multibiometric Watermarking Technique Using Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT)." In Multibiometric Watermarking with Compressive Sensing Theory, 91–113. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_5.
Full textThanki, Rohit M., Vedvyas J. Dwivedi, and Komal R. Borisagar. "Multibiometric Watermarking Technique Using Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD)." In Multibiometric Watermarking with Compressive Sensing Theory, 115–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_6.
Full textThanki, Rohit M., Vedvyas J. Dwivedi, and Komal R. Borisagar. "Multibiometric Watermarking Technique Using Fast Discrete Curvelet Transform (FDCuT) and Discrete Cosine Transform (DCT)." In Multibiometric Watermarking with Compressive Sensing Theory, 137–60. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_7.
Full textThanki, Rohit M., Vedvyas J. Dwivedi, and Komal R. Borisagar. "Conclusions and Future Work." In Multibiometric Watermarking with Compressive Sensing Theory, 161–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_8.
Full textDe Marsico, Maria, Michele Nappi, and Daniel Riccio. "Multibiometric People Identification: A Self-tuning Architecture." In Advances in Biometrics, 980–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01793-3_99.
Full textVatsa, Mayank, Richa Singh, and Afzel Noore. "Context Switching Algorithm for Selective Multibiometric Fusion." In Lecture Notes in Computer Science, 452–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-11164-8_73.
Full textConference papers on the topic "Multibiometric"
Vertamatti, Rodolfo, and Miguel Arjona Ramirez. "Human asymmetry in multibiometric recognition." In 2011 Ieee Workshop On Computational Intelligence In Biometrics And Identity Management - Part Of 17273 - 2011 Ssci. IEEE, 2011. http://dx.doi.org/10.1109/cibim.2011.5949214.
Full textRattani, Ajita, D. R. Kisku, Manuele Bicego, and Massimo Tistarelli. "Robust Feature-Level Multibiometric Classification." In 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference. IEEE, 2006. http://dx.doi.org/10.1109/bcc.2006.4341631.
Full textLazarick, R. "Multibiometric techniques and standards activities." In Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology. IEEE, 2005. http://dx.doi.org/10.1109/ccst.2005.1594883.
Full textGhouti, Lahouari, and Ahmed A. Bahjat. "Iris fusion for multibiometric systems." In 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 2009. http://dx.doi.org/10.1109/isspit.2009.5407577.
Full textNandakumar, Karthik, and Anil K. Jain. "Multibiometric Template Security Using Fuzzy Vault." In 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems. IEEE, 2008. http://dx.doi.org/10.1109/btas.2008.4699352.
Full textSilva, Arnaldo G. A., Herman M. Gomes, Hugo N. Oliveira, Paulo R. B. Lins, Diego F. S. Lima, and Leonardo V. Batista. "BioPass-UFPB: a Novel Multibiometric Database." In 2019 International Conference on Biometrics (ICB). IEEE, 2019. http://dx.doi.org/10.1109/icb45273.2019.8987313.
Full textSharma, Renu, Sukhendu Das, and Padmaja Joshi. "Rank level fusion in multibiometric systems." In 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG). IEEE, 2015. http://dx.doi.org/10.1109/ncvpripg.2015.7489952.
Full textMonwar, Md Maruf, and Marina L. Gavrilova. "Enhancing security through a hybrid multibiometric system." In 2009 IEEE Workshop on Computational Intelligence in Biometrics: Theory, Algorithms, and Applications (CIB). IEEE, 2009. http://dx.doi.org/10.1109/cib.2009.4925691.
Full textTalreja, Veeru, Matthew C. Valenti, and Nasser M. Nasrabadi. "Multibiometric secure system based on deep learning." In 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2017. http://dx.doi.org/10.1109/globalsip.2017.8308652.
Full textJunfeng, Li. "An Efficient Multibiometric-based Continuous Authentication Scheme." In 2022 IEEE 10th International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2022. http://dx.doi.org/10.1109/iccsnt56096.2022.9972922.
Full text