Journal articles on the topic 'MULTIBAND METAMATERIAL ABSORBER (MMA)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MULTIBAND METAMATERIAL ABSORBER (MMA).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mohanty, Ayesha, Om Prakash Acharya, Bhargav Appasani, Kriangkrai Sooksood, and Sushanta Kumar Mohapatra. "A THz Metamaterial Absorber with Multiple Polarization - Insensitive, Sensitive, and Tunable." ECTI Transactions on Electrical Engineering, Electronics, and Communications 19, no. 2 (June 1, 2021): 165–73. http://dx.doi.org/10.37936/ecti-eec.2021192.242019.
Full textSaxena, G., Y. Khanna, Y. K. Awasthi, and P. Jain. "Multi-Band Polarization Insensitive Ultra-Thin THz Metamaterial Absorber for Imaging and EMI Shielding Applications." Advanced Electromagnetics 10, no. 3 (November 12, 2021): 43–49. http://dx.doi.org/10.7716/aem.v10i3.1759.
Full textHakim, Mohammad Lutful, Touhidul Alam, Mohammad Tariqul Islam, Mohd Hafiz Baharuddin, Ahmed Alzamil, and Md Shabiul Islam. "Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku- and K-Band Sensing Applications." Sensors 22, no. 12 (June 14, 2022): 4489. http://dx.doi.org/10.3390/s22124489.
Full textWang, Wenjie, Mingde Feng, Jun Wang, Zhiqiang Li, Jiafu Wang, Hua Ma, and Shaobo Qu. "Quadruple-band metamaterial absorber based on the cuboid dielectric particles." Journal of Advanced Dielectrics 08, no. 04 (August 2018): 1850023. http://dx.doi.org/10.1142/s2010135x18500236.
Full textHossain, I., M. Samsuzzaman, M. S. J. Singh, B. B. Bais, and M. T. Islam. "Numerical investigation of polarization-insensitive multiband metamaterial for terahertz solar absorber." Digest Journal of Nanomaterials and Biostructures 16, no. 2 (2021): 593–600. http://dx.doi.org/10.15251/djnb.2021.162.593.
Full textWu, Han, Shijun Ji, Ji Zhao, Chengxin Jiang, and Handa Dai. "Design and Analysis of a Five-Band Polarization-Insensitive Metamaterial Absorber." International Journal of Antennas and Propagation 2020 (December 7, 2020): 1–12. http://dx.doi.org/10.1155/2020/8827517.
Full textHannan, Islam, Hoque, Singh, and Almutairi. "Design of a Novel Double Negative Metamaterial Absorber Atom for Ku and K Band Applications." Electronics 8, no. 8 (July 31, 2019): 853. http://dx.doi.org/10.3390/electronics8080853.
Full textGu, Chao, Shao-Bo Qu, Zhi-Bin Pei, Zhuo Xu, Jia Liu, and Wei Gu. "Multiband terahertz metamaterial absorber." Chinese Physics B 20, no. 1 (January 2011): 017801. http://dx.doi.org/10.1088/1674-1056/20/1/017801.
Full textXu, Zong-Cheng, Run-Mei Gao, Chun-Feng Ding, Ya-Ting Zhang, and Jian-Quan Yao. "Multiband Metamaterial Absorber at Terahertz Frequencies." Chinese Physics Letters 31, no. 5 (May 2014): 054205. http://dx.doi.org/10.1088/0256-307x/31/5/054205.
Full textTian, Yiran, Guangjun Wen, and Yongjun Huang. "Multiband Negative Permittivity Metamaterials and Absorbers." Advances in OptoElectronics 2013 (July 28, 2013): 1–7. http://dx.doi.org/10.1155/2013/269170.
Full textZou, Jinglan, Jianfa Zhang, Yuwen He, Qilin Hong, Cong Quan, and Zhihong Zhu. "Multiband metamaterial selective absorber for infrared stealth." Applied Optics 59, no. 28 (September 28, 2020): 8768. http://dx.doi.org/10.1364/ao.405015.
Full textGao, Runmei, Zongcheng Xu, Chunfeng Ding, Liang Wu, and Jianquan Yao. "Graphene metamaterial for multiband and broadband terahertz absorber." Optics Communications 356 (December 2015): 400–404. http://dx.doi.org/10.1016/j.optcom.2015.08.023.
Full textJung, Seungwon, Young Ju Kim, Young Joon Yoo, Ji Sub Hwang, Bui Xuan Khuyen, Liang-Yao Chen, and YoungPak Lee. "High-Order Resonance in a Multiband Metamaterial Absorber." Journal of Electronic Materials 49, no. 3 (October 3, 2019): 1677–88. http://dx.doi.org/10.1007/s11664-019-07661-1.
Full textChen, Xu, and Wenhui Fan. "Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber." Applied Optics 54, no. 9 (March 18, 2015): 2376. http://dx.doi.org/10.1364/ao.54.002376.
Full textLee, Hong-Min, and Hyung-Sup Lee. "A Method for Extending the Bandwidth of Metamaterial Absorber." International Journal of Antennas and Propagation 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/859429.
Full textMuthukrishnan, Kavitha, and Venkateswaran Narasimhan. "Multiband Terahertz Metamaterial Absorber Based on Multipolar Plasmonic Resonances." Plasmonics 16, no. 4 (January 20, 2021): 1049–57. http://dx.doi.org/10.1007/s11468-020-01322-4.
Full textLuo, Zhiyou, Shijun Ji, Ji Zhao, Han Wu, and Handa Dai. "A multiband metamaterial absorber for GHz and THz simultaneously." Results in Physics 30 (November 2021): 104893. http://dx.doi.org/10.1016/j.rinp.2021.104893.
Full textHu, Fangrong, Li Wang, Baogang Quan, Xinlong Xu, Zhi Li, Zhongan Wu, and Xuecong Pan. "Design of a polarization insensitive multiband terahertz metamaterial absorber." Journal of Physics D: Applied Physics 46, no. 19 (April 24, 2013): 195103. http://dx.doi.org/10.1088/0022-3727/46/19/195103.
Full textZhao, Wenhan, Junqiao Wang, Ran Li, and Bin Zhang. "Ultranarrow dual-band metamaterial perfect absorber and its sensing application." Journal of Optics 24, no. 3 (February 2, 2022): 035103. http://dx.doi.org/10.1088/2040-8986/ac4aba.
Full textSong, Shitong, Fanyi Liu, Limei Qi, Zhao Zhang, Haodong Wang, and Yuting Zhou. "A MoS2-based broadband and multiband metamaterial absorber in the visible band." Modern Physics Letters B 34, no. 34 (August 20, 2020): 2050397. http://dx.doi.org/10.1142/s0217984920503972.
Full textGuo, Tian-Long, Fangfang Li, and Matthieu Roussey. "Dielectric multilayer cavity coupled metamaterial." EPJ Web of Conferences 287 (2023): 04027. http://dx.doi.org/10.1051/epjconf/202328704027.
Full textChowdhury, Md Zikrul Bari, Mohammad Tariqul Islam, Ahasanul Hoque, Ahmed S. Alshammari, Ahmed Alzamil, Haitham Alsaif, Badr M. Alshammari, Ismail Hossain, and Md Samsuzzaman. "Design and Parametric Analysis of a Wide-Angle and Polarization Insensitive Ultra-Broadband Metamaterial Absorber for Visible Optical Wavelength Applications." Nanomaterials 12, no. 23 (November 29, 2022): 4253. http://dx.doi.org/10.3390/nano12234253.
Full textHossain, Ismail, Md Samsuzzaman, Mohd Hafiz Baharuddin, Norsuzlin Binti Mohd Sahar, Mandeep Singh Jit Singh, and Mohammad Tariqul Islam. "Computational Investigation of Multiband EMNZ Metamaterial Absorber for Terahertz Applications." Computers, Materials & Continua 71, no. 2 (2022): 3905–20. http://dx.doi.org/10.32604/cmc.2022.022027.
Full textZhang, Man, and Zhengyong Song. "Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption." Optics Express 29, no. 14 (June 23, 2021): 21551. http://dx.doi.org/10.1364/oe.432967.
Full textLv, Yisong, Jinping Tian, and Rongcao Yang. "Multiband tunable perfect metamaterial absorber realized by different graphene patterns." Journal of the Optical Society of America B 38, no. 8 (July 29, 2021): 2409. http://dx.doi.org/10.1364/josab.428026.
Full textYahiaoui, Riad, Jean Paul Guillet, Frédérick de Miollis, and Patrick Mounaix. "Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications." Optics Letters 38, no. 23 (November 21, 2013): 4988. http://dx.doi.org/10.1364/ol.38.004988.
Full textJiang, Hao, Zhenghui Xue, Weiming Li, and Wu Ren. "Multiband polarisation insensitive metamaterial absorber based on circular fractal structure." IET Microwaves, Antennas & Propagation 10, no. 11 (August 2016): 1141–45. http://dx.doi.org/10.1049/iet-map.2015.0789.
Full textLiao, Y. L., and Y. Zhao. "A multiband polarization-insensitive metamaterial absorber in the infrared regime." Indian Journal of Physics 89, no. 2 (July 30, 2014): 195–98. http://dx.doi.org/10.1007/s12648-014-0550-2.
Full textWu, Han, Shijun Ji, Ji Zhao, Zhiyou Luo, and Handa Dai. "Design and Analysis of a Triple-band Non-zonal Polarization Electromagnetic Metamaterial Absorber." Applied Computational Electromagnetics Society 36, no. 6 (August 6, 2021): 697–706. http://dx.doi.org/10.47037/2020.aces.j.360611.
Full textAli, Hema Omer, and Asaad M. Al-Hindawi. "A Ultra-broadband Thin Metamaterial Absorber for Ku and K Bands Applications." Journal of Engineering 27, no. 5 (April 28, 2021): 1–16. http://dx.doi.org/10.31026/j.eng.2021.05.01.
Full textHakim, Mohammad Lutful, Abu Hanif, Touhidul Alam, Mohammad Tariqul Islam, Haslina Arshad, Mohamed S. Soliman, Saleh Mohammad Albadran, and Md Shabiul Islam. "Ultrawideband Polarization-Independent Nanoarchitectonics: A Perfect Metamaterial Absorber for Visible and Infrared Optical Window Applications." Nanomaterials 12, no. 16 (August 18, 2022): 2849. http://dx.doi.org/10.3390/nano12162849.
Full textA., Elakkiya, Radha Sankararajan, Sreeja B.S., and Manikandan E. "Modified I-shaped hexa-band near perfect terahertz metamaterial absorber." Circuit World 46, no. 4 (July 16, 2020): 281–84. http://dx.doi.org/10.1108/cw-11-2019-0155.
Full textLuo, Hao, and Yong Zhi Cheng. "Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures." Modern Physics Letters B 31, no. 25 (September 6, 2017): 1750231. http://dx.doi.org/10.1142/s0217984917502311.
Full textEl Assal, Aicha, Hanadi Breiss, Ratiba Benzerga, Ala Sharaiha, Akil Jrad, and Ali Harmouch. "Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber." Micromachines 11, no. 10 (October 13, 2020): 930. http://dx.doi.org/10.3390/mi11100930.
Full textTang, Yibo, Longhui He, Anfeng Liu, Cuixiu Xiong, and Hui Xu. "Optically transparent metamaterial absorber based on Jerusalem cross structure at S-band frequencies." Modern Physics Letters B 34, no. 16 (March 31, 2020): 2050175. http://dx.doi.org/10.1142/s0217984920501754.
Full textChen, Fu, Yongzhi Cheng, and Hui Luo. "A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene." Materials 13, no. 4 (February 14, 2020): 860. http://dx.doi.org/10.3390/ma13040860.
Full textWang Wen-Jie, Wang Jia-Fu, Yan Ming-Bao, Lu Lei, Ma Hua, Qu Shao-Bo, Chen Hong-Ya, and Xu Cui-Lian. "Ultra-thin multiband metamaterial absorber based on multi-order plasmon resonances." Acta Physica Sinica 63, no. 17 (2014): 174101. http://dx.doi.org/10.7498/aps.63.174101.
Full textTran, Cuong Manh, Hai Van Pham, Hien Thuy Nguyen, Thuy Thi Nguyen, Lam Dinh Vu, and Tung Hoang Do. "Creating Multiband and Broadband Metamaterial Absorber by Multiporous Square Layer Structure." Plasmonics 14, no. 6 (May 11, 2019): 1587–92. http://dx.doi.org/10.1007/s11468-019-00953-6.
Full textGunduz, O. T., and C. Sabah. "Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application." Journal of Computational Electronics 15, no. 1 (August 2, 2015): 228–38. http://dx.doi.org/10.1007/s10825-015-0735-8.
Full textMulla, Batuhan, and Cumali Sabah. "Ultrathin thermally stable multiband metamaterial absorber design for solar energy applications." Journal of Nanophotonics 12, no. 01 (January 25, 2018): 1. http://dx.doi.org/10.1117/1.jnp.12.016005.
Full textLi, Xiaoman, He Feng, Maojin Yun, Zan Wang, Yigu Hu, Yunjiao Gu, Fenghua Liu, and Weiping Wu. "Polarization-independent and all-optically modulated multiband metamaterial coherent perfect absorber." Optics & Laser Technology 166 (November 2023): 109644. http://dx.doi.org/10.1016/j.optlastec.2023.109644.
Full textHakim, Mohammad Lutful, Mohammad Tariqul Islam, Touhidul Alam, Sharul Kamal Abdul Abdul Rahim, Badariah Bais, Md Shabiul Islam, and Mohamed S. Soliman. "Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications." Nanomaterials 13, no. 2 (January 4, 2023): 222. http://dx.doi.org/10.3390/nano13020222.
Full textQi, Buxiong, Wenqiong Chen, Tiaoming Niu, and Zhonglei Mei. "Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion." Nanomaterials 11, no. 8 (July 21, 2021): 1872. http://dx.doi.org/10.3390/nano11081872.
Full textLuo, Zhiyou, Shijun Ji, Ji Zhao, Zhenze Liu, and Handa Dai. "An ultra-thin flexible conformal four-band metamaterial absorber applied in S-/C-/X-band." Physica Scripta 97, no. 4 (March 17, 2022): 045813. http://dx.doi.org/10.1088/1402-4896/ac5bbe.
Full textAlsulami, Qana A., S. Wageh, Ahmed A. Al-Ghamdi, Rana Muhammad Hasan Bilal, and Muhammad Ahsan Saeed. "A Tunable and Wearable Dual–Band Metamaterial Absorber Based on Polyethylene Terephthalate (PET) Substrate for Sensing Applications." Polymers 14, no. 21 (October 25, 2022): 4503. http://dx.doi.org/10.3390/polym14214503.
Full textSharma, Atipriya, Ravi Panwar, and Rajesh Khanna. "Development of Single layered, Wide angle, Polarization insensitive Metamaterial Absorber." Defence Science Journal 71, no. 03 (May 17, 2021): 372–77. http://dx.doi.org/10.14429/dsj.71.16701.
Full textEvangeline Persis, G. P., J. John Paul, Thusnavis Bella Mary, and R. Catherine Joy. "A compact tilted split ring multiband metamaterial absorber for energy harvesting applications." Materials Today: Proceedings 56 (2022): 368–72. http://dx.doi.org/10.1016/j.matpr.2022.01.206.
Full textXiao, Dong, and Keyu Tao. "Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies." Applied Physics Express 8, no. 10 (September 24, 2015): 102001. http://dx.doi.org/10.7567/apex.8.102001.
Full textMulla, Batuhan, and Cumali Sabah. "Multiband Metamaterial Absorber Design Based on Plasmonic Resonances for Solar Energy Harvesting." Plasmonics 11, no. 5 (January 13, 2016): 1313–21. http://dx.doi.org/10.1007/s11468-015-0177-y.
Full textAksimsek, Sinan. "Design of an ultra-thin, multiband, micro-slot based terahertz metamaterial absorber." Journal of Electromagnetic Waves and Applications 34, no. 16 (August 29, 2020): 2181–93. http://dx.doi.org/10.1080/09205071.2020.1809532.
Full text