Journal articles on the topic 'Multiaxial fatigue of rubber'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multiaxial fatigue of rubber.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Poisson, J. L., S. Méo, F. Lacroix, G. Berton, and N. Ranganathan. "MULTIAXIAL FATIGUE CRITERIA APPLIED TO A POLYCHLOROPRENE RUBBER." Rubber Chemistry and Technology 85, no. 1 (March 1, 2012): 80–91. http://dx.doi.org/10.5254/1.3672431.
Full textMars, W. V. "Multiaxial Fatigue Crack Initiation in Rubber." Tire Science and Technology 29, no. 3 (July 1, 2001): 171–85. http://dx.doi.org/10.2346/1.2135237.
Full textZINE, A., N. BENSEDDIQ, M. NAIT ABDELAZIZ, N. AIT HOCINE, and D. BOUAMI. "Prediction of rubber fatigue life under multiaxial loading." Fatigue Fracture of Engineering Materials and Structures 29, no. 3 (March 2006): 267–78. http://dx.doi.org/10.1111/j.1460-2695.2005.00989.x.
Full textSAINTIER, N., G. CAILLETAUD, and R. PIQUES. "Multiaxial fatigue life prediction for a natural rubber." International Journal of Fatigue 28, no. 5-6 (May 2006): 530–39. http://dx.doi.org/10.1016/j.ijfatigue.2005.05.011.
Full textRanganathan, Narayanaswami. "The Energy Based Approach to Fatigue." Advanced Materials Research 891-892 (March 2014): 821–26. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.821.
Full textWang, Y. P., X. Chen, and W. W. Yu. "Microscopic mechanism of multiaxial fatigue of vulcanised natural rubber." Plastics, Rubber and Composites 40, no. 10 (December 2011): 491–96. http://dx.doi.org/10.1179/1743289811y.0000000012.
Full textTobajas, Rafael, Daniel Elduque, Elena Ibarz, Carlos Javierre, and Luis Gracia. "A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials." Polymers 12, no. 5 (May 23, 2020): 1194. http://dx.doi.org/10.3390/polym12051194.
Full textMARS, W., and A. FATEMI. "Multiaxial stress effects on fatigue behavior of filled natural rubber." International Journal of Fatigue 28, no. 5-6 (May 2006): 521–29. http://dx.doi.org/10.1016/j.ijfatigue.2005.07.040.
Full textZine, A., N. Benseddiq, and M. Naït Abdelaziz. "Rubber fatigue life under multiaxial loading: Numerical and experimental investigations." International Journal of Fatigue 33, no. 10 (October 2011): 1360–68. http://dx.doi.org/10.1016/j.ijfatigue.2011.05.005.
Full textPoisson, J. L., S. Méo, F. Lacroix, G. Berton, M. Hosséini, and N. Ranganathan. "COMPARISON OF FATIGUE CRITERIA UNDER PROPORTIONAL AND NON-PROPORTIONAL MULTIAXIAL LOADING." Rubber Chemistry and Technology 91, no. 2 (April 1, 2018): 320–38. http://dx.doi.org/10.5254/rct.18.82696.
Full textMARS, W. V., and A. FATEMI. "Multiaxial fatigue of rubber: Part I: equivalence criteria and theoretical aspects." Fatigue Fracture of Engineering Materials and Structures 28, no. 6 (June 2005): 515–22. http://dx.doi.org/10.1111/j.1460-2695.2005.00891.x.
Full textMARS, W. V., and A. FATEMI. "Multiaxial fatigue of rubber: Part II: experimental observations and life predictions." Fatigue Fracture of Engineering Materials and Structures 28, no. 6 (June 2005): 523–38. http://dx.doi.org/10.1111/j.1460-2695.2005.00895.x.
Full textSAINTIER, N., G. CAILLETAUD, and R. PIQUES. "Crack initiation and propagation under multiaxial fatigue in a natural rubber." International Journal of Fatigue 28, no. 1 (January 2006): 61–72. http://dx.doi.org/10.1016/j.ijfatigue.2005.03.006.
Full textVERRON, E., and A. ANDRIYANA. "Definition of a new predictor for multiaxial fatigue crack nucleation in rubber." Journal of the Mechanics and Physics of Solids 56, no. 2 (February 2008): 417–43. http://dx.doi.org/10.1016/j.jmps.2007.05.019.
Full textMars, W. V. "Cracking Energy Density as a Predictor of Fatigue Life under Multiaxial Conditions." Rubber Chemistry and Technology 75, no. 1 (March 1, 2002): 1–17. http://dx.doi.org/10.5254/1.3547670.
Full textRublon, Pierre, Bertrand Huneau, Erwan Verron, Nicolas Saintier, Stéphanie Beurrot, Adrien Leygue, Cristian Mocuta, Dominique Thiaudière, and Daniel Berghezan. "Multiaxial deformation and strain-induced crystallization around a fatigue crack in natural rubber." Engineering Fracture Mechanics 123 (June 2014): 59–69. http://dx.doi.org/10.1016/j.engfracmech.2014.04.003.
Full textBelkhiria, Salma, Adel Hamdi, and Raouf Fathallah. "Cracking energy density for rubber materials: Computation and implementation in multiaxial fatigue design." Polymer Engineering & Science 60, no. 9 (July 7, 2020): 2190–203. http://dx.doi.org/10.1002/pen.25462.
Full textMoon, Seong-In, Chang-Su Woo, and Wan-Doo Kim. "Study on the Determination of Fatigue Damage Parameter for Rubber Component under Multiaxial Loading." Elastomers and Composites 47, no. 3 (September 30, 2012): 194–200. http://dx.doi.org/10.7473/ec.2012.47.3.194.
Full textAyoub, G., M. Naït-abdelaziz, F. Zaïri, and J. M. Gloaguen. "Multiaxial fatigue life prediction of rubber-like materials using the continuum damage mechanics approach." Procedia Engineering 2, no. 1 (April 2010): 985–93. http://dx.doi.org/10.1016/j.proeng.2010.03.107.
Full textLuo, Robert Keqi. "Effective stress criterion for rubber multiaxial fatigue under both proportional and non-proportional loadings." Engineering Failure Analysis 121 (March 2021): 105172. http://dx.doi.org/10.1016/j.engfailanal.2020.105172.
Full textMars, W. V., and A. Fatemi. "Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading." Journal of Materials Science 41, no. 22 (October 17, 2006): 7324–32. http://dx.doi.org/10.1007/s10853-006-0962-2.
Full textLe Cam, Jean-Benoît, Bertrand Huneau, and Erwan Verron. "Fatigue damage in carbon black filled natural rubber under uni- and multiaxial loading conditions." International Journal of Fatigue 52 (July 2013): 82–94. http://dx.doi.org/10.1016/j.ijfatigue.2013.02.022.
Full textEbbott, T. G. "An Application of Finite Element-Based Fracture Mechanics Analysis to Cord-Rubber Structures." Tire Science and Technology 24, no. 3 (July 1, 1996): 220–35. http://dx.doi.org/10.2346/1.2137520.
Full textGosar, Ales, Marko Nagode, and Simon Oman. "Continuous fatigue damage prediction of a rubber fibre composite structure using multiaxial energy-based approach." Fatigue & Fracture of Engineering Materials & Structures 42, no. 1 (August 20, 2018): 307–20. http://dx.doi.org/10.1111/ffe.12908.
Full textMars, W. V., and A. Fatemi. "The Correlation of Fatigue Crack Growth Rates in Rubber Subjected to Multiaxial Loading Using Continuum Mechanical Parameters." Rubber Chemistry and Technology 80, no. 1 (March 1, 2007): 169–82. http://dx.doi.org/10.5254/1.3548164.
Full textAyoub, G., M. Naït-Abdelaziz, F. Zaïri, J. M. Gloaguen, and P. Charrier. "A continuum damage model for the high-cycle fatigue life prediction of styrene-butadiene rubber under multiaxial loading." International Journal of Solids and Structures 48, no. 18 (September 2011): 2458–66. http://dx.doi.org/10.1016/j.ijsolstr.2011.04.003.
Full textMars, William V., Yintao Wei, Wang Hao, and Mark A. Bauman. "Computing Tire Component Durability via Critical Plane Analysis." Tire Science and Technology 47, no. 1 (March 1, 2019): 31–54. http://dx.doi.org/10.2346/tire.19.150090.
Full textAyoub, G., M. Naït-Abdelaziz, and F. Zaïri. "Multiaxial fatigue life predictors for rubbers: Application of recent developments to a carbon-filled SBR." International Journal of Fatigue 66 (September 2014): 168–76. http://dx.doi.org/10.1016/j.ijfatigue.2014.03.026.
Full textAbrate, S. "The Mechanics of Short Fiber-Reinforced Composites: A Review." Rubber Chemistry and Technology 59, no. 3 (July 1, 1986): 384–404. http://dx.doi.org/10.5254/1.3538207.
Full textXu, Zongchao, Stephen Jerrams, Hao Guo, Yanfen Zhou, Liang Jiang, Yangyang Gao, Liqun Zhang, Li Liu, and Shipeng Wen. "Influence of graphene oxide and carbon nanotubes on the fatigue properties of silica/styrene-butadiene rubber composites under uniaxial and multiaxial cyclic loading." International Journal of Fatigue 131 (February 2020): 105388. http://dx.doi.org/10.1016/j.ijfatigue.2019.105388.
Full textLuo, Robert Keqi. "Effective strain criterion under multimode and multiaxial loadings – A rubber S–N curve with the scatter-band factor of 1.6 from 90 fatigue cases." Express Polymer Letters 16, no. 2 (2022): 130–41. http://dx.doi.org/10.3144/expresspolymlett.2022.11.
Full textAyoub, G., M. Naït-Abdelaziz, F. Zaïri, J. M. Gloaguen, and P. Charrier. "Fatigue life prediction of rubber-like materials under multiaxial loading using a continuum damage mechanics approach: Effects of two-blocks loading and R ratio." Mechanics of Materials 52 (September 2012): 87–102. http://dx.doi.org/10.1016/j.mechmat.2012.03.012.
Full textShang, De Guang, Guo Qin Sun, Jing Deng, and Chu Liang Yan. "Multiaxial Fatigue Damage Models." Key Engineering Materials 324-325 (November 2006): 747–50. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.747.
Full textEllyin, Fernand. "Multiaxial Fatigue--A Perspective." Key Engineering Materials 345-346 (August 2007): 205–10. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.205.
Full textSocie, D. "Multiaxial Fatigue Damage Models." Journal of Engineering Materials and Technology 109, no. 4 (October 1, 1987): 293–98. http://dx.doi.org/10.1115/1.3225980.
Full textEllyin, F., and K. Golos. "Multiaxial Fatigue Damage Criterion." Journal of Engineering Materials and Technology 110, no. 1 (January 1, 1988): 63–68. http://dx.doi.org/10.1115/1.3226012.
Full textChateauminois, Antoine. "Multiaxial fatigue and fracture." Tribology International 34, no. 10 (October 2001): 725–26. http://dx.doi.org/10.1016/s0301-679x(01)00060-3.
Full textAinsworth, R. A. "Multiaxial Fatigue and Fracture." International Journal of Pressure Vessels and Piping 77, no. 7 (June 2000): 435–36. http://dx.doi.org/10.1016/s0308-0161(00)00039-9.
Full textHales, R. "Multiaxial creep-fatigue rules." Nuclear Engineering and Design 153, no. 2-3 (January 1995): 257–64. http://dx.doi.org/10.1016/0029-5493(94)00832-j.
Full textHales, R., and R. A. Ainsworth. "Multiaxial creep–fatigue rules." Nuclear Engineering and Design 153, no. 2-3 (January 1995): 257–64. http://dx.doi.org/10.1016/0029-5493(95)90017-9.
Full textRadhakrishnan, V. M. "Multiaxial fatigue — An overview." Sadhana 20, no. 1 (February 1995): 103–22. http://dx.doi.org/10.1007/bf02747286.
Full textLu, Chun, Jiliang Mo, Ruixue Sun, Yuanke Wu, and Zhiyong Fan. "Investigation into Multiaxial Character of Thermomechanical Fatigue Damage on High-Speed Railway Brake Disc." Vehicles 3, no. 2 (June 1, 2021): 287–99. http://dx.doi.org/10.3390/vehicles3020018.
Full textLiu, Jianhui, Xin Lv, Yaobing Wei, Xuemei Pan, Yifan Jin, and Youliang Wang. "A novel model for low-cycle multiaxial fatigue life prediction based on the critical plane-damage parameter." Science Progress 103, no. 3 (July 2020): 003685042093622. http://dx.doi.org/10.1177/0036850420936220.
Full textLi, C. G., and P. S. Steif. "Multiaxial Cyclic Response of Filled Rubber." Rubber Chemistry and Technology 73, no. 2 (May 1, 2000): 193–204. http://dx.doi.org/10.5254/1.3547584.
Full textWang, Lei, Wu Zhen Li, and Tian Zhong Sui. "Review of Multiaxial Fatigue Life Prediction Technology under Complex Loading." Advanced Materials Research 118-120 (June 2010): 283–88. http://dx.doi.org/10.4028/www.scientific.net/amr.118-120.283.
Full textZhao, Er Nian, and Wei Lian Qu. "Multiaxial Fatigue Life Prediction of Metallic Materials Based on Critical Plane Method under Non-Proportional Loading." Key Engineering Materials 730 (February 2017): 516–20. http://dx.doi.org/10.4028/www.scientific.net/kem.730.516.
Full textKarolczuk, Aleksander, and Ewald Macha. "Critical Planes in Multiaxial Fatigue." Materials Science Forum 482 (April 2005): 109–14. http://dx.doi.org/10.4028/www.scientific.net/msf.482.109.
Full textAlexander Araújo, José, Gabriel Magalhães Juvenal Almeida, Fábio Comes Castro, and Raphael Araújo Cardoso. "Multiaxial High Cycle Fretting Fatigue." MATEC Web of Conferences 300 (2019): 02002. http://dx.doi.org/10.1051/matecconf/201930002002.
Full textFernando, U. S., K. J. Miller, and M. W. Brown. "COMPUTER AIDED MULTIAXIAL FATIGUE TESTING." Fatigue & Fracture of Engineering Materials and Structures 13, no. 4 (July 1990): 387–98. http://dx.doi.org/10.1111/j.1460-2695.1990.tb00609.x.
Full textJunyi, Feng, Bian Mengxin, and Dang Zijou. "THERMAL FATIGUE UNDER MULTIAXIAL STRESSES." Fatigue & Fracture of Engineering Materials and Structures 13, no. 5 (September 1990): 525–34. http://dx.doi.org/10.1111/j.1460-2695.1990.tb00622.x.
Full text