Academic literature on the topic 'Multiaxial fatigue of rubber'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiaxial fatigue of rubber.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multiaxial fatigue of rubber"
Poisson, J. L., S. Méo, F. Lacroix, G. Berton, and N. Ranganathan. "MULTIAXIAL FATIGUE CRITERIA APPLIED TO A POLYCHLOROPRENE RUBBER." Rubber Chemistry and Technology 85, no. 1 (March 1, 2012): 80–91. http://dx.doi.org/10.5254/1.3672431.
Full textMars, W. V. "Multiaxial Fatigue Crack Initiation in Rubber." Tire Science and Technology 29, no. 3 (July 1, 2001): 171–85. http://dx.doi.org/10.2346/1.2135237.
Full textZINE, A., N. BENSEDDIQ, M. NAIT ABDELAZIZ, N. AIT HOCINE, and D. BOUAMI. "Prediction of rubber fatigue life under multiaxial loading." Fatigue Fracture of Engineering Materials and Structures 29, no. 3 (March 2006): 267–78. http://dx.doi.org/10.1111/j.1460-2695.2005.00989.x.
Full textSAINTIER, N., G. CAILLETAUD, and R. PIQUES. "Multiaxial fatigue life prediction for a natural rubber." International Journal of Fatigue 28, no. 5-6 (May 2006): 530–39. http://dx.doi.org/10.1016/j.ijfatigue.2005.05.011.
Full textRanganathan, Narayanaswami. "The Energy Based Approach to Fatigue." Advanced Materials Research 891-892 (March 2014): 821–26. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.821.
Full textWang, Y. P., X. Chen, and W. W. Yu. "Microscopic mechanism of multiaxial fatigue of vulcanised natural rubber." Plastics, Rubber and Composites 40, no. 10 (December 2011): 491–96. http://dx.doi.org/10.1179/1743289811y.0000000012.
Full textTobajas, Rafael, Daniel Elduque, Elena Ibarz, Carlos Javierre, and Luis Gracia. "A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials." Polymers 12, no. 5 (May 23, 2020): 1194. http://dx.doi.org/10.3390/polym12051194.
Full textMARS, W., and A. FATEMI. "Multiaxial stress effects on fatigue behavior of filled natural rubber." International Journal of Fatigue 28, no. 5-6 (May 2006): 521–29. http://dx.doi.org/10.1016/j.ijfatigue.2005.07.040.
Full textZine, A., N. Benseddiq, and M. Naït Abdelaziz. "Rubber fatigue life under multiaxial loading: Numerical and experimental investigations." International Journal of Fatigue 33, no. 10 (October 2011): 1360–68. http://dx.doi.org/10.1016/j.ijfatigue.2011.05.005.
Full textPoisson, J. L., S. Méo, F. Lacroix, G. Berton, M. Hosséini, and N. Ranganathan. "COMPARISON OF FATIGUE CRITERIA UNDER PROPORTIONAL AND NON-PROPORTIONAL MULTIAXIAL LOADING." Rubber Chemistry and Technology 91, no. 2 (April 1, 2018): 320–38. http://dx.doi.org/10.5254/rct.18.82696.
Full textDissertations / Theses on the topic "Multiaxial fatigue of rubber"
Hallett, Joseph F. "Multiaxial strength and fatigue of rubber compounds." Thesis, Loughborough University, 1997. https://dspace.lboro.ac.uk/2134/6759.
Full textWarneboldt, Iona. "Multiaxial fatigue design of elastomeric parts using Equivalent Fatigue Loads." Electronic Thesis or Diss., Brest, École nationale supérieure de techniques avancées Bretagne, 2022. http://www.theses.fr/2022ENTA0002.
Full textThis thesis introduces an Equivalent Fatigue Load (EFL) approach for the multiaxial fatigue design of elastomeric parts. As direct Finite Element Analysis (FEA) calculations of automotive in-service loads (Road Load Data (RLD)) are too expensive, the objective is to derive simplified load blocks as a realistic input for numerical damage calculations. Three streps are applied for this method: the localization method, the material damage function and the EFL determination process. Various fatigue tests have been conducted (415 samples) to study the fatigue behavior of this complex type of relaxing and non-relaxing multiaxial loading on natural rubber specimens. Lifetime and crack features are analyzed to eventually introduce an appropriate critical planebased fatigue measure and to establish a novel mean strain effect model. This criterion is generalized throughout an original critical plane search method. To estimate the local mechanical response (localization method), this thesis identifies an axes-coupling method that is fitted for the nonlinear nature of elastomeric structures. It is based on the multiplicative decomposition of the deformation gradient tensors. These two steps are then implemented in the framework of the EFLdetermination process. For this, a global optimization method is added to determine the simplified load blocks, causing locally the same fatigue behavior in the given structure. The computational costs of this optimization are reduced by only considering a subset of the most damaged material points for EFLdetermination. Finally, the method has been challenged on a specimen to outline its capabilities and to validate the approach
Saintier, Nicolas. "Fatigue multiaxiale dans un élastomère de type NR : mécanismes d'endommagement et critère local d'amorçage de fissure." Phd thesis, Paris, ENMP, 2001. https://pastel.archives-ouvertes.fr/tel-00397910.
Full textLiu, Mu-Hsin. "Multiaxial Fatigue Testing Machine." Ohio University / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1266241731.
Full textSwalla, Dana Ray. "Fretting fatigue damage prediction using multiaxial fatigue criteria." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/17033.
Full textFEIFERIS, ANDRE DOS REIS. "STRUCTURAL EVALUATION OF CRANKSHAFT UNDER MULTIAXIAL FATIGUE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35967@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTITUIÇÕES COMUNITÁRIAS DE ENSINO PARTICULARES
Eixos de virabrequim estão sujeitos a carregamentos multiaxiais quando em serviço. Por se tratar de um estado complexo de tensões, os modelos aplicados na determinação da vida em fadiga de tais componentes devem permitir, também, uma abordagem multiaxial, mais avançados do que aqueles adotados para carregamentos uniaxiais. O objetivo deste trabalho foi prever a falha em serviço de eixos virabrequins de unidades geradoras Diesel ou gás de plantas termoelétricas. Falhas recentemente ocorridas em eixos virabrequins no parque termoelétrico nacional justificam o presente estudo, para garantir eficiência e segurança nas operações industriais. Com base no método de elementos finitos, foram calculadas as tensões atuantes em um eixo virabrequim de unidade geradora a gás, com 10 mancais, duas bielas por mancal e fabricado com aço estrutural DIN 34CrNiMo6. Em sequência, adotando-se estas tensões atuantes calculadas, foram aplicados diversos critérios de fadiga para prever sua falha. Para tal, adotaram-se os modelos de Papadopoulos, Findley, Matake, McDiarmid, Carpinteri e Spagnoli, Liu e Mahadevan, Mises, Sines e Crossland, todos de fadiga de alto ciclo, baseados no plano crítico ou na tensão de von Mises. Propriedades de resistência à fadiga do material foram retiradas da literatura. Os resultados obtidos indicaram que o componente é seguro quando avaliado usando tais critérios.
Crankshaft axles are subject to multiaxial loading when in service. Because the resulting state of stresses is complex, models applied to determining the fatigue life of such components employ a multiaxial approach as well, more advanced than those adopted for uniaxial loads. The objective of this work is to predict the failure in service of crankshafts of diesel or gas generating units of thermoelectric plants. Crankshafts reported recent failures in the national thermoelectric power plant justifies the present study, to guarantee efficiency and safety in such industrial operations. Based on the finite element method, the resulting stresses on a DIN 34CrNiMo6 structural steel gas generating unit crankshaft, with 10 bearings, two connecting rods per bearing were calculated. Using these finite element calculated stresses, several fatigue criteria were applied to predict this cranckshaft structural failure. Models due to Papadopoulos, Findley, Matake, McDiarmid, Carpinteri and Spagnoli, Liu and Mahadevan, Mises, Sines and Crossland, all of high cycle fatigue based on the critical plane or von Mises strain, were adopted. Material fatigue properties used in the analyses were compiled from specidized literature. Obtained results indicated that the component considered is safe regarding fatigue loadings, as evaluated using such criteria.
Bold, P. E. "Multiaxial fatigue crack growth in rail steel." Thesis, University of Sheffield, 1990. http://etheses.whiterose.ac.uk/14807/.
Full textKawamoto, Jiro. "Fatigue of rubber composites." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/14566.
Full textJuneja, Lokesh Kumar. "Multiaxial fatigue damage model for random amplitude loading histories." Thesis, Virginia Tech, 1992. http://hdl.handle.net/10919/41522.
Full textThe minimum of the two life values obtained from SWT model and the shear
strain model is compared with the life estimated by the proposed model with the
modified Morrow's mean stress model. The former is essentially the life predicted by
Socie. The results of the proposed model, as reduced to the uniaxial case, are also
compared with the experimental data obtained by conducting one-channel random
amplitude loading history experiments.
Master of Science
Sharifimehr, Shahriar. "Multiaxial Fatigue Analysis under Complex Non-proportional Loading Conditions." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544787705876488.
Full textBooks on the topic "Multiaxial fatigue of rubber"
Socie, Darrell. Multiaxial Fatigue. Warrendale, PA: SAE International, 1999. http://dx.doi.org/10.4271/r-234.
Full textMiller, KJ, and MW Brown, eds. Multiaxial Fatigue. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1985. http://dx.doi.org/10.1520/stp853-eb.
Full textInternational Conference on Biaxial/Multiaxial Fatigue (4th 1994 Saint-Germain en Laye, France). Multiaxial fatigue and design. London: Mechanical Engineering, 1996.
Find full textMcDowell, DL, and JR Ellis, eds. Advances in Multiaxial Fatigue. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1993. http://dx.doi.org/10.1520/stp1191-eb.
Full text1956-, McDowell David L., and Ellis Rod 1939-, eds. Advances in multiaxial fatigue. Philadelphia, PA: ASTM, 1993.
Find full text1947-, Brown M. W., and Miller K. J, eds. Biaxial and multiaxial fatigue. London: Mechanical Engineering, 1988.
Find full textEwald, Macha, Będkowski W, Łagoda T, and European Structural Integrity Society, eds. Multiaxial fatigue and fracture. Kidlington, Oxford: Elsevier, 1999.
Find full textJ, Miller K., Brown M. W. 1947-, ASTM Committee E-9 on Fatigue., and ASTM Committee E-24 on Fracture Testing., eds. Multiaxial fatigue: A symposium. Philadelphia, Pa: American Society for Testing and Materials, 1985.
Find full textInternational Conference on Biaxial/Multiaxial Fatigue (2nd 1985 University of Sheffield). Biaxial and multiaxial fatigue. London: Mechanical Engineering Publications, 1989.
Find full textAndrea, Carpinteri, Freitas Manuel de, Spagnoli Andrea, Instituto Superior Técnico (Lisbon, Portugal), Portugal. Ministério da Ciência e da Tecnologia., and European Structural Integrity Society, eds. Biaxial/multiaxial fatigue and fracture. Amsterdam ; Boston: Elsevier, 2003.
Find full textBook chapters on the topic "Multiaxial fatigue of rubber"
Ayoub, G., M. Naït Abdelaziz, and F. Zaïri. "Multiaxial Fatigue of Rubbers: Comparative Study Between Predictive Tools." In Proceedings of the 17th International Conference on New Trends in Fatigue and Fracture, 123–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70365-7_14.
Full textBlétry, Marc, and Georges Cailletaud. "Multiaxial Fatigue." In Fatigue of Materials and Structures, 1–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118616994.ch1.
Full textMilella, Pietro Paolo. "Multiaxial Fatigue." In Fatigue and Corrosion in Metals, 477–520. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_9.
Full textBrown, M. W. "Multiaxial Fatigue Failure." In Advances in Fatigue Science and Technology, 339–61. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2277-8_14.
Full textSocie, Darrell. "Multiaxial Fatigue Damage Assessment." In Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, 465–72. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3459-7_72.
Full textShang, De Guang, Guo Qin Sun, Jing Deng, and Chu Liang Yan. "Multiaxial Fatigue Damage Models." In Fracture and Damage Mechanics V, 747–50. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-413-8.747.
Full textEllyin, Fernand. "Multiaxial Fatigue--A Perspective." In The Mechanical Behavior of Materials X, 205–10. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-440-5.205.
Full textBrown, R. P. "Fatigue." In Physical Testing of Rubber, 203–13. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0529-3_12.
Full textEllul, Maria D. "Mechanical Fatigue." In Engineering with Rubber, 159–203. München: Carl Hanser Verlag GmbH & Co. KG, 2012. http://dx.doi.org/10.3139/9783446428713.006.
Full textEllyin, Fernand. "Multiaxial experimental facilities." In Fatigue Damage, Crack Growth and Life Prediction, 179–204. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1509-1_5.
Full textConference papers on the topic "Multiaxial fatigue of rubber"
Wang, Xiao-Li, Chun-Yu Kong, and Xiang-Kun Zeng. "Multiaxial fatigue life prediction of rubber materials using cracking energy density." In The 2015 International Conference on Mechanics and Mechanical Engineering (MME 2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813145603_0085.
Full textZarrin-Ghalami, Touhid, and Sandip Datta. "Automotive Applications Multiaxial Proving Grounds and Road Test Simulator: Durability Prediction Methodology Development and Correlation for Rubber Components." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0723.
Full textJiang, Yanyao, Tianwen Zhao, Xiaogui Wang, and Zengliang Gao. "Multiaxial Fatigue of 16MnR Steel." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93473.
Full textZhang, Cheng-cheng, Yuan Ren, Jing-yun Gao, Ying Li, and Kun Yang. "Analysis of Multiaxial Fatigue Evaluation in Engine Components Using an Improved Multiaxial Fatigue Life Model." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57128.
Full textWei, Haoyang, and Yongming Liu. "Energy-based multiaxial fatigue damage modelling." In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0646.
Full textKurath, Peter. "Multiaxial Fatigue Criteria for Spot Welds." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920668.
Full textHay, N. C. "Conditioned Spectral Analysis in Multiaxial Fatigue." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/970707.
Full textKazemi, Amir, Zhijun Wu, and Sayed A. Nassar. "Multiaxial Fatigue of Preloaded Threaded Fasteners." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45698.
Full textLiu, Yongming, and Sankaran Mahadevan. "Fatigue Life prediction under multiaxial loading." In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-2321.
Full textCurtit, F., A. Le Pecheur, and J. M. Stephan. "Comparison of Fatigue Damage Criteria Applied to Multiaxial Fatigue." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61735.
Full textReports on the topic "Multiaxial fatigue of rubber"
Donovan, James A. Fatigue, Fracture and Wear Properties of Rubber. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada204743.
Full textBeaver, P. W. A Review of Multiaxial Fatigue and Fracture of Fibre-Reinforced Composites. Fort Belvoir, VA: Defense Technical Information Center, January 1987. http://dx.doi.org/10.21236/ada191990.
Full textRiveros, Guillermo, Hussam Mahmoud, and Santiago Lopez. Multiaxial fatigue strength of structural bolts under combined cyclic axial and shear demands. Engineer Research and Development Center (U.S.), July 2019. http://dx.doi.org/10.21079/11681/33270.
Full textKallmeyer, Alan. Development of a Nonlinear Cumulative Fatigue Damage Methodology for Aircraft Engine Components under Multiaxial Loadings. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada589686.
Full textMessner, M. C., and T. L. Sham. Development of a multiaxial deformation measure and creep-fatigue damage summation for multiple load cycle types in support of an improved creep-fatigue design method. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1601810.
Full textLissenden, Cliff, Tasnin Hassan, and Vijaya Rangari. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1214660.
Full textHassan, Tasnim, Cliff Lissenden, and Laura Carroll. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1178428.
Full text