Academic literature on the topic 'Multiaxial'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multiaxial.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Multiaxial"

1

Kosaka, Rui, Fumio Ogawa, Takamoto Itoh, and Masao Sakane. "Creep Damage Evaluation using Uniaxial Miniature Specimens for Multiaxially Damaged Components." MATEC Web of Conferences 300 (2019): 07003. http://dx.doi.org/10.1051/matecconf/201930007003.

Full text
Abstract:
This study discusses a method of evaluating multiaxial creep damage for high temperature components subjected to multiaxial creep damage utilizing a miniature creep testing. A new model of the damage evaluation is proposed based on a linear creep damage accumulation and von Mises equivalent stress being a measure of multiaxial creep damage. The model clearly indicates that conventional creep damage evaluation methods utilizing a unidirectional miniature creep testing give an unconservative estimate in some cases for multiaxially creep damaged components. To verify the appropriateness of the proposed model, multiaxial creep tests were performed using cruciform specimens of a Mod.9Cr-1Mo steel. Miniature specimens in two directions were machined from a pre-damaged cruciform specimen and the uniaxial creep rupture lifetimes of the miniature specimens demonstrate the validity of the proposed model.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, C. H., and M. W. Brown. "Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories." Journal of Engineering Materials and Technology 118, no. 3 (July 1, 1996): 367–70. http://dx.doi.org/10.1115/1.2806821.

Full text
Abstract:
Fatigue life prediction under multiaxis random loading is an extremely complex and intractable topic; only a few methods have been proposed in the literature. In addition, experimental results under multiaxis random loading are also scarce. In part one of this two-part paper, a multiaxial non-proportional cycle counting method and fatigue damage calculation procedure are proposed, which is compared with one published damage-searching method. Both theories are based on critical plane concepts, one being an extension of the local strain approach for uniaxial variable amplitude loading and the other employing a new counting algorithm for multiaxis random loading. In principle, these two methods can be considered as bounding solutions for fatigue damage accumulation under multiaxis random loading.
APA, Harvard, Vancouver, ISO, and other styles
3

Ozdemir, Huseyin, and Kadir Bilisik. "Off-Axis Flexural Properties of Multiaxis 3D Basalt Fiber Preform/Cementitious Concretes: Experimental Study." Materials 14, no. 11 (May 21, 2021): 2713. http://dx.doi.org/10.3390/ma14112713.

Full text
Abstract:
Multiaxis three-dimensional (3D) continuous basalt fiber/cementitious concretes were manufactured. The novelty of the study was that the non-interlace preform structures were multiaxially created by placing all continious filamentary bundles in the in-plane direction of the preform via developed flat winding-molding method to improve the fracture toughness of the concrete composite. Principle and off-axis flexural properties of multiaxis three-dimensional (3D) continuous basalt fiber/cementitious concretes were experimentally studied. It was identified that the principle and off-axis flexural load-bearing, flexural strength and the toughness properties of the multiaxis 3D basalt concrete were extraordinarily affected by the continuous basalt filament bundle orientations and placement in the pristine concrete. The principle and off-axis flexural strength and energy absorption performance of the uniaxial (B-1D-(0°)), biaxial ((B-2D-(0°), B-2D-(90°) and B-2D-(+45°)), and multiaxial (B-4D-(0°), B-4D-(+45°) and B-4D-(−45°)) concrete composites were considerably greater compared to those of pristine concrete. Fractured four directional basalt concretes had regional breakages of the brittle cementitious matrix and broom-like damage features on the filaments, fiber-matrix debonding, intrafilament bundle splitting, and minor filament entanglement. Multiaxis 3D basalt concrete, particularly in the B-4D structure, controlled the crack phenomena and it was recognized as a more damage-tolerant material than the neat concrete.
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Fucong, Kun Zhang, Yuhang Hou, and Zhiwen Wu. "Investigation on Temperature-Dependent Multiaxial Ratchetting of Polycarbonate by a Novel Experimental Method." Advances in Materials Science and Engineering 2022 (May 13, 2022): 1–9. http://dx.doi.org/10.1155/2022/6577569.

Full text
Abstract:
A novel method to heat the multiaxial hollow thin-wall specimen was proposed, where its gauge length section can be heated by the liquid (i.e., water) filled inside the specimen instead of the closed furnace. This method realizes the direct measurement of multiaxial strain on the surface of specimen at different temperatures by the noncontact digital image correlation. By utilizing the proposed method, the multiaxial stress-control cyclic tests were performed to investigate the multiaxial ratchetting of polycarbonate (PC) at different temperatures. It is found that the multiaxial ratchetting of PC depends greatly on the test temperatures and the multiaxial ratchetting strain increases with increasing the test temperature. The temperature-dependent multiaxial ratchetting is also influenced by valley stresses. The unrecoverable part of deformation in the multiaxial ratchetting strain increases with increasing temperature.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Lei, Wu Zhen Li, and Tian Zhong Sui. "Review of Multiaxial Fatigue Life Prediction Technology under Complex Loading." Advanced Materials Research 118-120 (June 2010): 283–88. http://dx.doi.org/10.4028/www.scientific.net/amr.118-120.283.

Full text
Abstract:
The research on multiaxial fatigue life prediction methods is reviewed in the present paper from two aspects of experiment and theory. It is pointed out that the reasonable methods of the critical plane determining, multiaxial cycle counting and multiaxial fatigue damage parameter fixing are necessary if the fatigue life prediction models established under the multiaxial constant amplitude loading were applied to the life prediction of the complex multiaxial load. The shortcomings of existing researches are discussed. In the aspect of experiment, it is devoid of the multiaxial fatigue test that the loading components acted with different frequencies, and in the aspect of theory, the additional hardening effect of the multiaxial out-of-frequency loading is not considered. Both in the theoretical research and practical engineering applications, the problem of the out-of-frequency multiaxial loading is a pressing issue.
APA, Harvard, Vancouver, ISO, and other styles
6

Shirafuji, Nakao, Kenji Shimomizuki, Masao Sakane, and Masateru Ohnami. "Tension-Torsion Multiaxial Low Cycle Fatigue of Mar-M247LC Directionally Solidified Superalloy at Elevated Temperature." Journal of Engineering Materials and Technology 120, no. 1 (January 1, 1998): 57–63. http://dx.doi.org/10.1115/1.2806838.

Full text
Abstract:
This paper studies the high temperature multiaxial low cycle fatigue of Mar-M247LC directionally solidified superalloy. Tension-torsion multiaxial low cycle fatigue tests were carried out using Mar-M247LC tubular specimens at 1173K in air. Several multiaxial strain and stress parameters were applied to the experimental data to examine the suitability of the parameters. All the multiaxial strain parameters proposed so far could not successfully correlate the multiaxial low cycle fatigue data of the directionally solidified superalloy, but the maximum principal stress and the equivalent stress based on crack opening displacement could correlate the data within a small scatter. This paper proposes a new multiaxial strain parameter which takes account of the anisotropy of elastic constant of directionally solidified superalloys. The proposed strain parameter correlates the multiaxial low cycle fatigue data within a factor of two scatter band. This paper also describes the crack mode and cyclic constitutive relation of the superalloy in connection with the anisotropy of the elastic constant.
APA, Harvard, Vancouver, ISO, and other styles
7

Bercelli, Lorenzo, Cédric Doudard, and Sylvain Moyne. "Taking into account the non-proportional loading effect on high cycle fatigue life predictions obtained by invariant-based approaches." MATEC Web of Conferences 300 (2019): 12003. http://dx.doi.org/10.1051/matecconf/201930012003.

Full text
Abstract:
Industrial structures are often subjected to multiaxial fatigue loadings. If the multiple stress signals are not synced the loading is said to be non-proportional. Most of the multiaxial fatigue criteria give highly inaccurate lifetime predictions when used in the case of such loadings. The scalar equivalent stress defined by the criteria does not take into account the non-proportional nature of the multiaxial loading and leads to non-conservative predictions. Moreover a multiaxial fatigue criterion can only be applied on a stress cycle which has no clear definition when multiple unsynced signals are to be considered. This study addresses these issues by proposing a correction of an invariant based multiaxial fatigue criterion through the definition of a non-proportional degree indicator. A definition of multiaxial cycle is also given based on the Wang-Brown method. Finally a complete chain of invariant based lifetime prediction for non-proportional multiaxial fatigue is validated.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Er Nian, and Wei Lian Qu. "Multiaxial Fatigue Life Prediction of Metallic Materials Based on Critical Plane Method under Non-Proportional Loading." Key Engineering Materials 730 (February 2017): 516–20. http://dx.doi.org/10.4028/www.scientific.net/kem.730.516.

Full text
Abstract:
The critical plane method is widely discussed because of its effectiveness for predicting the multiaxial fatigue life prediction of metallic materials under the non-proportional loading conditions. The aim of the present paper is to give a comparison of the applicability of the critical plane methods on multiaxial fatigue life prediction. A total of 205 multiaxial fatigue test data of nine kinds of metallic materials under various strain paths are adopted for the experimental verification. Results shows that the von Mises effective strain parameter and KBM critical plane parameter can give well predicted fatigue lives for multiaxial proportional loading conditions, but give poor prediction lives evaluation for multiaxial non-proportional loading conditions. However, FS parameter shows better accuracy than the KBM parameter for multiaxial fatigue prediction for both proportional and non-proportional loading conditions.
APA, Harvard, Vancouver, ISO, and other styles
9

Stouffer, D. C., V. G. Ramaswamy, J. H. Laflen, R. H. Van Stone, and R. Williams. "A Constitutive Model for the Inelastic Multiaxial Response of Rene’ 80 at 871C and 982C." Journal of Engineering Materials and Technology 112, no. 2 (April 1, 1990): 241–46. http://dx.doi.org/10.1115/1.2903315.

Full text
Abstract:
This paper contains an extension of the uniaxial state variable constitutive model of Ramaswamy et al. (1988) to the case of multiaxial loading. The correlation between uniaxial and multiaxial loading conditions is achieved through the assumptions of material isotropy and conservation of inelastic volume. The multiaxial extension is based only on the material parameters evaluated from uniaxial loading. The research is accompanied by a multiaxial experimental program to evaluate the response of Rene’ 80 at 871°C and 982° C. Experiments in the program include torsion, proportional axial and torsion, and nonproportional loading. It was shown experimentally that there is no extra hardening from the multiaxial loading than results from uniaxial loading. Further, it is shown that the multiaxial model is successful in predicting the experimental results using only the parameters determined from the uniaxial experiments.
APA, Harvard, Vancouver, ISO, and other styles
10

Hiyoshi, Noritake, and Yoshihisa Iriyama. "Development of Tension-Torsion Multiaxial Creep Testing Apparatus for Heat Resisting Steel." MATEC Web of Conferences 159 (2018): 02015. http://dx.doi.org/10.1051/matecconf/201815902015.

Full text
Abstract:
This paper describes development of a combined tensiontorsion multiaxial creep testing apparatus for heat resisting steel. It is essential for high temperature component designing to investigate creep rupture life and creep properties of heat resisting steel. Although high temperature structural components undergo multiaxial stress damage due to complex loading situation or shape discontinuity of the actual structure, there is no commercial testing apparatus which can conduct a creep testing under multiaxial stress conditions. In this study, we developed a combined tension-torsion multiaxial creep testing apparatus which can apply multiaxial stress to a hollow cylinder type testing specimen with 6 kN axial load and 12 Nm torsional load at high temperatures. Since the testing apparatus also has measuring devices for axial and shear displacements of the specimen, relationship curve between testing time and equivalent strain under multiaxial stress conditions of type 304 stainless steel is also discussed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Multiaxial"

1

Liu, Mu-Hsin. "Multiaxial Fatigue Testing Machine." Ohio University / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1266241731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alsayed, Mahmoud Ibrahim. "Rock behaviour under multiaxial compression." Thesis, University of Newcastle Upon Tyne, 1996. http://hdl.handle.net/10443/1565.

Full text
Abstract:
An experimental study has been carried out to investigate the behaviour of rock under multiaxial compression and assess the influence of both the stress conditions and test configuration on the apparent characteristics of this behaviour. Over three hundred specimens of Springwell sandstone, of various forms, have been tested using different loading techniques and most encountered stress fields. Cubes and thick-walled hollow cylinders have been subjected to uniaxial, biaxial, triaxial and polyaxial compression, and solid cylinders have been subjected to standard uniaxial and triaxial compression. Extensive work has initially been put into designing and developing the testing facilities required. A new multiaxial hollow cylinder test apparatus has been devised using a Hoek triaxial cell and specially designed system for the application of internal pressure, major modifications have been made to an existing multiaxial cubical test apparatus, and appropriate testing arrangements and procedures have been developed. Prior to initiating the experimental programme, characterisation tests have been conducted to determine the fundamental properties of the rock, and non-destructive ultrasonic wave velocity tests have been utilised together with statistical methods to examine any inherent variations in the specimens used. A remarkable agreement has emerged between the rock static and dynamic Young's moduli and the results have confirmed that the Springwell sandstone can practically be regarded as linear elastic, homogeneous and isotropic. The concept of the multiple failure state triaxial test has been utilised and extended to conduct multiple failure state polyaxial tests. While the concept remains useful, strain results obtained beyond the first failure state are likely to be inconsistent. Results of cube tests have been found to be highly influenced by the boundary conditions. Although the use of PTFE sheets can reduce the effect of friction between the specimen and the loading platens, it may equally have a weakening effect on the test specimen. The theory of elasticity has been found adequate to calculate the stresses in the hollow cylinders but remains inexact when deviation from linear behaviour occurs prior to failure. When the outer and inner surfaces of the cylinder are not perfectly concentric, the effect on the test results has proved negligible. Hollow cylinders have been found to provide an alternative means for measuring the rock indirect tensile strength. Results of biaxial and polyaxial tests on both cubes and hollow cylinders have confirmed the marked influence of the intermediate principal stress on the apparent strength of rock. Comparison of results from multiaxial tests on cubes, hollow and solid cylinders have shown that the apparent strength, deformability and failure characteristics of the rock are remarkably influenced by the stress conditions imposed as well as the test configuration used. Available failure criteria have advantages and disadvantages, but none of them can explain the diversity of the results obtained. On the whole, the results appear to cast doubt on common conceptions of rock failure and ultimately pose the question of how realistic current testing techniques are in their prediction of the actual behaviour of rock.
APA, Harvard, Vancouver, ISO, and other styles
3

Tomlinson, Philip S. "Multiaxial deformation of AZ80 magnesium alloy." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45362.

Full text
Abstract:
The multiaxial deformation of magnesium alloys is important for developing reliable, robust models for both the forming of components and also analysis of in service performance of structures, for example, in the case of crash worthiness. This work presents a combination of unique biaxial experimental tests and biaxial crystal plasticity simulations using a visco-plastic self-consistent (VPSC) formulation conducted on AZ80 magnesium alloy in two different conditions - extruded and a more weakly textured as cast condition. The experiments were conducted on tubular samples which are loaded in axial tension or compression along the tube and with internal pressure to generate hoop stresses orthogonal to the axial direction. The results were analyzed in stress and strain space and also in terms of the evolution of crystallographic texture. In general, it was found that the VPSC simulations matched well with the experiments, particularly for the more weakly textured cast material. However, some differences were observed for cases where basal < a > slip and {10¯12} extension twinning were in close competition such as in the biaxial tension quadrant of the plastic potential. The evolution of texture measured experimentally and predicted from the VPSC simulations was qualitatively in good agreement. Finally, experiments and VPSC simulations were conducted in which samples of the extruded AZ80 material were subjected to a small uniaxial strain prior to biaxial loading in order to further explore the competition between basal slip and extension twinning.
APA, Harvard, Vancouver, ISO, and other styles
4

Triantafillou, Thanasis C. (Thanasis Christos). "Multiaxial failure criteria for celluar materials." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gonçalves, Camilla de Andrade. "Fadiga multiaxial policíclica : modelagem e simulação." reponame:Repositório Institucional da UnB, 2006. http://repositorio.unb.br/handle/10482/3638.

Full text
Abstract:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2006.
Submitted by Érika Rayanne Carvalho (carvalho.erika@ymail.com) on 2009-10-01T02:06:54Z No. of bitstreams: 1 2006_Camilla de Andrade Gonçalves.pdf: 1648259 bytes, checksum: 4965bdd7c725fcd3f0af9b6d41eacd12 (MD5)
Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2010-02-12T23:02:17Z (GMT) No. of bitstreams: 1 2006_Camilla de Andrade Gonçalves.pdf: 1648259 bytes, checksum: 4965bdd7c725fcd3f0af9b6d41eacd12 (MD5)
Made available in DSpace on 2010-02-12T23:02:17Z (GMT). No. of bitstreams: 1 2006_Camilla de Andrade Gonçalves.pdf: 1648259 bytes, checksum: 4965bdd7c725fcd3f0af9b6d41eacd12 (MD5) Previous issue date: 2006-09-13
O objetivo deste trabalho é o estudo de critérios de resistência à fadiga multiaxial de metais em regime de alto número de ciclos. Os modelos apresentados por vários autores propõem, como medidas principais, a contribuição das tensões normais e das tensões cisalhantes para a degradação por fadiga do componente, além dos parâmetros do material. A questão que se coloca no contexto de solicitações multiaxiais é: qual é a melhor medida para caracterizar a amplitude de tensões cisalhantes e como incorporar o efeito das tensões normais? O estudo desenvolve então, uma análise destas questões relacionadas à modelagem de um critério de resistência à fadiga. Tensões normais trativas contribuem de forma maléfica para a degradação por fadiga por agirem no processo de abertura de microtrincas; quase a totalidade dos modelos de fadiga multiaxial considera a tensão hidrostática como medida das tensões normais atuantes na solicitação à fadiga. Sabe-se que esta é basicamente uma média das tensões normais e propõe-se aqui a substituição desta, pela máxima tensão principal. A aplicação da proposta a um conjunto grande de resultados experimentais disponíveis na literatura confirmou a hipótese de que a pior situação, que corresponde à existência de uma micro-trinca ortogonalmente orientada à máxima tensão principal, deve ser considerada e fornece uma previsão de resistência à fadiga mais conservativa e portanto, a favor da segurança. Quanto às tensões cisalhantes, primeiro apresentam-se as propostas de alguns autores, destacando-se dentre elas a abordagem do envelope elíptico e do envelope prismático. As duas aproximações fornecem as mesmas boas previsões de resistência à fadiga para dados experimentais de carregamentos senoidais com ciclos de mesma freqüência. Avança-se a análise para carregamentos mais gerais cujas trajetórias se distanciam da forma de um elipsóide e verifica-se de maneira inédita que, para uma ampla faixa de histórias de carregamento, as medidas de amplitude de tensões cisalhantes obtidas pelo máximo envelope prismático são equivalentes às medidas correspondentes obtidas pelo mínimo envelope elíptico. Tal verificação foi comprovada considerando-se trajetórias com ciclos senoidais assíncronos proporcionais e fora de fase, e ciclos não senoidais selecionadas a partir de resultados experimentais relativos a situações limites de resistência à fadiga. ________________________________________________________________________________________ ABSTRACT
The aim of this work is to evaluate multiaxial high cycle fatigue criteria for metals. The models presented by many authors propose that the the normal and shear stresses are the main variables controlling the fatigue damage, as well as the materials parameters. In the multiaxial context, the fundamental question to be answered is: which is the best measure to characterize the shear stress amplitude and how the well known effect of the mean normal stresses can be incorporated in the modeling process? This work carries out an analysis of such issues! Tensile stresses reduce the fatigue strength of metals as they keep the crack faces opened. Almost the totally of the multiaxial fatigue models available in the literature considers the hydrostatic stress as a measure for the normal stresses acting upon the fatigue solicitation. The hydrostatic stress is basically an average of the normal stresses acting in three orthogonal planes passing through a material point. Here we claim that the worst situation in terms of fatigue solicitation corresponds to the existence of a micro-crack orthogonally oriented to the maximum principal stress. Therefore, the maximum principal stress rather than the hydrostatic stress should be considered as an appropriate measure of the mean normal stress effect on the fatigue solicitation. To validate this hypothesis available experimental data published in the literature were selected and compared with the estimates provided by a modified version of the Prismatic Hull criterion developed by Mamiya and Araujo. Concerning the shear stresses, some models which consider the Minimum Circunscribing Ellipsoid or the Maximum Prismatic Hull of the deviatoric stress path as an appropriate measure for the shear stress amplitude are presented. The analysis carried out considering different materials subjected to a broad range of loading paths involving sinusoidal loadings with distinct frequencies and non-harmonic loadings revealed the shear stress amplitudes measured by the prismatic hull are equivalent to the ones measured by the elliptic hull.
APA, Harvard, Vancouver, ISO, and other styles
6

Phillips, Peter Louis. "Integrated Multiaxial Experimentation and Constitutive Modeling." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1492598070791388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hausding, Jan. "Entwicklung einer Verfestigungseinrichtung an einer Multiaxial-Nähwirkmaschine." Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1161074776507-67779.

Full text
Abstract:
Eine nachträgliche Verfestigung von nähgewirkten multiaxialen Gelegen führt zu einer verbesserten Ausnutzung der Verstärkungsfadeneigenschaften. Zu diesem Zweck wurden Lösungsansätze für eine entsprechende Verfestigungseinrichtung gesucht und bewertet. Drei Anlagenvarianten wurden durch die Kombination verschiedener Verfahren (Strahlungswärme, die Kombination aus Wärme und Druck sowie Walzenbeschichtung) und Bindemittel (Thermoplaste in verschiedenen Aufmachungen, Beschichtungsmassen) entworfen. Sie bieten auf die Einsatzzwecke Produktion, Laborbetrieb und geringster Aufwand abgestimmte Eigenschaften
The additional stabilization of open grid warp knits provides a better exploitation of the reinforcing yarns. To realize such an additional stabilization, various possible methods have been examined and assessed. Three different types of stabilization installations have been developed by combining the most promising technologies (infrared radiation, combination of heat and pressure, roll coater) and binding agents (thermoplastics, liquid agents). These installations offer special fea-tures for different needs: production, laboratory and least expense
APA, Harvard, Vancouver, ISO, and other styles
8

Cherif, Chokri, Jan Hausding, Ulrike Berger, Ayham Younes, and Roland Kleicke. "Textile Betonbewehrungen auf Basis der Multiaxial-Kettenwirktechnik." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-77780.

Full text
Abstract:
Dieser Beitrag bietet einen Überblick über die in zwölf Jahren Forschungsarbeit am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) erzielten Ergebnisse auf dem Gebiet textiler Betonbewehrungen unter Einsatz der Nähwirktechnik. Standen zunächst die Weiterentwicklung der Nähwirk- bzw. Multiaxial-Kettenwirktechnik und die Integration zusätzlicher Prozessschritte im Mittelpunkt, so wurde dies mit der Einführung neuer Faserwerkstoffe durch die Beantwortung grundlegender Fragen zum Materialverhalten von Glas- und Carbonfasern unter verschiedensten Belastungsszenarien ergänzt. Aufbauend auf den gewonnen Erkenntnissen stehen heute Multiaxialgelege als Bewehrung für Beton zur Verfügung, die ein weites Anforderungsspektrum abdecken können, mit hoher Qualität und Produktivität herstellbar sind und damit den praktischen Einsatz des Textilbetons auf breiter Basis ermöglichen
This paper provides an overview on the results of textile concrete achieved in twelve years of research at the Institute of Textile Machinery and High Performance Material Technology (ITM) in the field of textile reinforcements for concrete based on the multiaxial stitch-bonding technology. During the early years the research focused on the development of the textile manufacturing process and the integration of additional functions in stitch-bonding machines. With the introduction of new fiber materials this was shifted towards the description of the material behavior of glass and carbon fibers under different load scenarios. Based on the results of this research, multiaxial multi-ply fabrics are available now as reinforcements for concrete, covering a broad range of applications. These fabrics can be produced with high quality and productivity and enable the practical usage of textile reinforced concrete
APA, Harvard, Vancouver, ISO, and other styles
9

Lousberg, Henri Béatrice. "Chronic pain multiaxial assessment and behavioral mechanisms /." Maastricht : Maastricht : Universitaire Pers Maastricht ; University Library, Maastricht University [Host], 1994. http://arno.unimaas.nl/show.cgi?fid=6589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hallett, Joseph F. "Multiaxial strength and fatigue of rubber compounds." Thesis, Loughborough University, 1997. https://dspace.lboro.ac.uk/2134/6759.

Full text
Abstract:
Despite real applications having complex triaxial loading, current physical test methods to predict component behaviour are mainly uniaxial. But previous work has indicated that there may be substantial differences between the rubber's uniaxial and biaxial behaviour and hence through incompressibility, its triaxial properties. In order to quantify these differences equipment was developed to assess the biaxial performance of selected rubber compounds using inflated circular diaphragms. Although allowing higher extensions than stretching a sheet in its own plane, such tests do not allow stress and strain to be measured directly, requiring careful marking of the sample, or calculation through simulation. On the grounds of perceived accuracy, the latter was chosen, requiring accurate, general, elastic constants to high extensions. In this thesis the development of this apparatus, along with the associated techniques is described, along with the development of a new elastic theory. The tests on this new apparatus indicated significant differences between the uniaxial and biaxial strength and fatigue of rubber. In a unimdal test natural rubber (NR) is much stronger than styrene butadiene rubber (SBR) below 35pphr of carbon black. In a biaxial test though the converse is true, although there is some evidence of crystallinity in NR during the biaxial test. Distinct differences were also found in fatigue between the two load cases. When plotted against extension ratio the biaxial life of SBR was found to increase, while the converse is true for NR. However if life is plotted against a function of strain energy, the biaxial life of both polymers increases for a given energy.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Multiaxial"

1

Socie, Darrell. Multiaxial Fatigue. Warrendale, PA: SAE International, 1999. http://dx.doi.org/10.4271/r-234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miller, KJ, and MW Brown, eds. Multiaxial Fatigue. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1985. http://dx.doi.org/10.1520/stp853-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

International Conference on Biaxial/Multiaxial Fatigue (4th 1994 Saint-Germain en Laye, France). Multiaxial fatigue and design. London: Mechanical Engineering, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

McDowell, DL, and JR Ellis, eds. Advances in Multiaxial Fatigue. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1993. http://dx.doi.org/10.1520/stp1191-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

1956-, McDowell David L., and Ellis Rod 1939-, eds. Advances in multiaxial fatigue. Philadelphia, PA: ASTM, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1947-, Brown M. W., and Miller K. J, eds. Biaxial and multiaxial fatigue. London: Mechanical Engineering, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ewald, Macha, Będkowski W, Łagoda T, and European Structural Integrity Society, eds. Multiaxial fatigue and fracture. Kidlington, Oxford: Elsevier, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

J, Miller K., Brown M. W. 1947-, ASTM Committee E-9 on Fatigue., and ASTM Committee E-24 on Fracture Testing., eds. Multiaxial fatigue: A symposium. Philadelphia, Pa: American Society for Testing and Materials, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Conference on Biaxial/Multiaxial Fatigue (2nd 1985 University of Sheffield). Biaxial and multiaxial fatigue. London: Mechanical Engineering Publications, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gooch, D. J., and I. M. How, eds. Techniques for Multiaxial Creep Testing. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3415-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Multiaxial"

1

Kurylo, Monica, and Edward Liebmann. "Multiaxial Assessment." In Encyclopedia of Clinical Neuropsychology, 2285–86. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_2026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kurylo, Monica, and Trisha Hay. "Multiaxial Assessment." In Encyclopedia of Clinical Neuropsychology, 1671. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-79948-3_2026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kurylo, Monica, and Edward Liebmann. "Multiaxial Assessment." In Encyclopedia of Clinical Neuropsychology, 1–3. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_2026-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Blétry, Marc, and Georges Cailletaud. "Multiaxial Fatigue." In Fatigue of Materials and Structures, 1–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118616994.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Milella, Pietro Paolo. "Multiaxial Fatigue." In Fatigue and Corrosion in Metals, 477–520. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lexcellent, Christian. "Multiaxial PlasticityMultiaxial plasticity." In Linear and Non-linear Mechanical Behavior of Solid Materials, 91–116. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55609-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Munz, Dietrich, and Theo Fett. "Multiaxial Failure Criteria." In Ceramics, 167–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58407-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cantwell, Dennis P., and Lorian Baker. "Multiaxial Diagnostic Approaches." In Diagnosis and Assessment in Autism, 111–22. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-0792-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ellyin, Fernand. "Multiaxial experimental facilities." In Fatigue Damage, Crack Growth and Life Prediction, 179–204. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1509-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brown, M. W. "Multiaxial Fatigue Failure." In Advances in Fatigue Science and Technology, 339–61. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2277-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Multiaxial"

1

Camarena, Ernesto, Anthony G. Quintana, Victoria Yim, Peter W. Grimmer, John P. Mersch, Jeff Smith, John Emery, and Gustavo Castelluccio. "Multiaxial Loading of Threaded Fasteners." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-2271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mousselmal, H. D., P. J. Cottinet, L. Quiquerez, B. Remaki, and L. Petit. "A multiaxial piezoelectric energy harvester." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Henry Sodano. SPIE, 2013. http://dx.doi.org/10.1117/12.2009621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MEZZICH, JUAN E., and MARIA ISABEL ZAPATA-VEGA. "MULTIAXIAL DIAGNOSIS OF SCHIZOPHRENIC PATIENTS." In IX World Congress of Psychiatry. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789814440912_0095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wallner, Oswald, Josep M. Perdigues Armengol, and Anders L. Karlsson. "Multiaxial single-mode beam combiner." In SPIE Astronomical Telescopes + Instrumentation, edited by Wesley A. Traub. SPIE, 2004. http://dx.doi.org/10.1117/12.551072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, Yanyao, Tianwen Zhao, Xiaogui Wang, and Zengliang Gao. "Multiaxial Fatigue of 16MnR Steel." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93473.

Full text
Abstract:
Uniaxial, torsion, and axial-torsion fatigue experiments were conducted on a pressure vessel steel, 16MnR, at room temperature. The uniaxial experiments were conducted using solid cylindrical specimens. Axial-torsion experiments employed thin-walled tubular specimens subjected to proportional and nonproportional loading. A critical plane multiaxial fatigue criterion recently developed was found to correlate well with all the experiments conducted for the material. In addition, the fatigue criterion correctly predicted the cracking behavior of the material subjected to different loading paths.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Cheng-cheng, Yuan Ren, Jing-yun Gao, Ying Li, and Kun Yang. "Analysis of Multiaxial Fatigue Evaluation in Engine Components Using an Improved Multiaxial Fatigue Life Model." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57128.

Full text
Abstract:
Current design methodologies for LCF/HCF of aero engine components are based on traditional uniaxial stress/strain methods like strain-life (ε-N), stress-life (S-N) and Goodman / Haigh diagram approaches, often applied with a wide safe factors to account for uncertainties in the understanding of multiaxial loading and other effects. With constantly striving to improve the performance and life of gas turbine engines, there is a need to increase accuracy of life prediction and reduce maintenance cost. Some multiaxial fatigue methods like Manson-McKnight, Sines, Smith-Watson-Topper etc. were developed to convert the multiaxial stresses into an equivalent uniaxial stress. This conversion simply provides the treatment of both the mean stress, the stress amplitude and directions. However, critical locations in engine components often experience significant multiaxial non-proportional loading conditions, such as blades and LP/HP shafts are subjected to HCF loading associated with mixed bending and torsional vibration modes. In this paper, the use of a new multiaxial fatigue life model was explored in the prediction of multiaxial fatigue behavior in aeronautic materials and structural steel. This new life model is based on the multiaxial S-N curve and an improved multiaxial high-cycle fatigue criterion which validated before by authors. The applied range of this new multiaxial fatigue life model were also compared with other models. Several groups of solid and hollow specimens with different ductile materials were conducted and evaluated under multiaxial loading cases. The predictions based on the proposed model give a better statistical result than other models.
APA, Harvard, Vancouver, ISO, and other styles
7

Conle, F. A. "Durability Analysis Under Complex Multiaxial Loading." In Passenger Car Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/871969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wei, Haoyang, and Yongming Liu. "Energy-based multiaxial fatigue damage modelling." In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kurath, Peter. "Multiaxial Fatigue Criteria for Spot Welds." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hay, N. C. "Conditioned Spectral Analysis in Multiaxial Fatigue." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/970707.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Multiaxial"

1

Le, Jialiang, Joseph Labuz, Takaaki Koyanagi, and Chen Hu. Probabilistic Failure Criterion of SiC/SiC Composites Under Multiaxial Loading. Office of Scientific and Technical Information (OSTI), March 2023. http://dx.doi.org/10.2172/1963092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beaver, P. W. A Review of Multiaxial Fatigue and Fracture of Fibre-Reinforced Composites. Fort Belvoir, VA: Defense Technical Information Center, January 1987. http://dx.doi.org/10.21236/ada191990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kyriakides, S. Response and Crushing of Cellular Solids Under Uniaxial and Multiaxial Loadings. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada423997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Wei-Yang. Small-Scale Multiaxial Deformation Experiments on Solder for High-Fidelity Model Development. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/811190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ruggles, M. B., G. T. Yahr, and R. L. Battiste. Static properties and multiaxial strength criterion for design of composite automotive structures. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/290934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khan, Akhtar S. Dynamic and Quasi-Static Multiaxial Response of Ceramics and Constitutive/Damage Modeling. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada391958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peterson, P. D., D. J. Idar, R. Rabie, C. S. Fugard, W. King, G. A. Buntain, and N. B. Crane. Quasi-static multiaxial testing of PBX 9501: Creep effects on Estane molecular weight. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/334296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Riveros, Guillermo, Hussam Mahmoud, and Santiago Lopez. Multiaxial fatigue strength of structural bolts under combined cyclic axial and shear demands. Engineer Research and Development Center (U.S.), July 2019. http://dx.doi.org/10.21079/11681/33270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ding, J. L., K. C. Liu, and C. R. Brinkman. Multiaxial deformation and life prediction model and experimental data for advanced silicon nitride ceramics. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10162954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaneshige, Michael J., Md Fazle Rabbi, Michael J. Kaneshige, Robert Mach, Carlos A. Catzin, and Calvin M. Stewart. Novel Method to Characterize and Model the Multiaxial Constitutive and Damage Response of Energetic Materials. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography