Dissertations / Theses on the topic 'Multi-scale architecture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 31 dissertations / theses for your research on the topic 'Multi-scale architecture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Olivares, Chauvet Pedro. "Multi-scale analysis of chromosome and nuclear architecture." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/multiscale-analysis-of-chromosome-and-nuclear-architecture(32a7b634-035b-4c6b-83f9-735f83bc73fb).html.
Full textJavalera, Rincón Valeria. "Distributed large scale systems : a multi-agent RL-MPC architecture." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/393922.
Full textEsta tesis describe una metodología para hacer frente a la interacción entre controladores MPC en una arquitectura MPC distribuida. Este enfoque combina las ideas de Inteligencia Artificial Distribuida (DIA) y aprendizaje por refuerzo (RL) con el fin de proporcionar una interacción entre controladores basado en agentes de cooperativos y técnicas de aprendizaje. El objetivo de esta metodología es proporcionar una estructura general para llevar a cabo un control óptimo en entornos de redes distribuidas, donde se encuentran varias dependencias entre subsistemas. Esas dependencias o conexiones corresponden a menudo a variables de control. En ese caso, el control distribuido tiene que ser coherente en ambos subsistemas. Uno de los principales conceptos novedosos de esta arquitectura es el agente negociador. Los agentes negociadores actúan junto con agentes MPC para determinar el valor óptimo de las variables de control compartidas de forma cooperativa utilizando técnicas de aprendizaje (RL). El valor óptimo de esas variables compartidas debe lograr un objetivo común, probablemente diferente de los objetivos específicos de cada agente que está compartiendo la variable. Se consideran dos casos de estudio, en el que la arquitectura propuesta se ha aplicado y probado, una pequeña red de distribución de agua y la red de agua de Barcelona. Los resultados sugieren que este enfoque es una estrategia prometedora cuando el control centralizado no es una opción razonable.
Zhu, Weirong. "Efficient synchronization for a large-scale multi-core chip architecture." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 206 p, 2007. http://proquest.umi.com/pqdweb?did=1362532791&sid=27&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textSoler, Vila Paula 1989. "Multi-scale study of the genome architecture and its dynamical facets." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/668229.
Full textEl desarrollo de métodos experimentales basados en la captura de la conformación cromosómica (3C) ha permitido tener una visión más detallada de la arquitectura genómica. El Hi-C, derivado del 3C, se ha convertido en una técnica de referencia para analizar la estructura tridimensional de la cromatina, así como su relación con el estado funcional celular. Sin embargo, varios aspectos del análisis y la interpretación de los datos de Hi-C siguen siendo un desafío, y pueden ocultar un potencial aún por descubrir. En esta tesis se exploran múltiples niveles de organización estructural de la cromatina. Hemos realizado un estudio integrativo combinando datos de in situ Hi-C con nueve capas epigenéticas y hemos revelado un nuevo compartimento genómico caracterizado por su dinámica y capacidad de transición, enriquecido en cromatina reprimida por polycomb. Este nuevo compartimento intermedio juega un papel importante en la modulación del genoma durante la diferenciación de células B y durante su transformación neoplásica, específicamente en pacientes con leucemia linfocítica crónica (CLL) o con linfoma de células del manto (MCL). Además, hemos desarrollado TADpole, un nuevo método computacional destinado a la detección de la jerarquía de dominios asociados topológicamente (TADs) empleando mapas de interacciones de Hi-C. Hemos demostrado su robustez ante una evaluación técnica y biológica, así como su capacidad de detectar diferencias topológicas en experimentos de capture Hi-C de alta resolución.
Sclaroff, Stanley Edward. "Deformable solids and displacement maps--a multi-scale technique for model recovery and recognition." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/70198.
Full textDuro, Royo Jorge. "Towards Fabrication Information Modeling (FIM) : workflow and methods for multi-scale trans-disciplinary informed design." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101843.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 67-70).
This thesis sets the stage for Fabrication Information Modeling (FIM); a design approach for enabling seamless design-to-production workflows that can derive complex designs fusing advanced digital design technologies associated with analysis, engineering and manufacturing. Present day digital fabrication platforms enable the design and construction of high-resolution and complex material distribution structures. However, virtual-to-physical workflows and their associated software environments are yet to incorporate such capabilities. As preliminary methods towards FIM I have developed four computational strategies for the design and digital construction of custom systems. These methods are presented in this thesis in the context of specific design challenges and include a biologically driven fiber construction algorithm; an anatomically driven shell-to-wearable translation protocol; an environmentally-driven swarm printing system; and a manufacturing-driven hierarchical fabrication platform. I discuss and analyze these four challenges in terms of their capabilities to integrate design across media, disciplines and scales through the concepts of multidimensionality, media-informed computation and trans-disciplinary data in advanced digital design workflows. With FIM I aim to contribute to the field of digital design and fabrication by enabling feedback workflows where materials are designed rather than selected; where the question of how information is passed across spatiotemporal scales is central to design generation itself; where modeling at each level of resolution and representation is based on various methods and carried out by various media or agents within a single environment; and finally, where virtual and physical considerations coexist as equals.
by Jorge Duro Royo.
S.M.
Krüger, Martin Wolfgang [Verfasser]. "Personalized Multi-Scale Modeling of the Atria: Heterogeneities, Fiber Architecture, Hemodialysis and Ablation Therapy / Martin Wolfgang Krüger." Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.
Full textDeserranno, Dimitri. "A Multi-Scale Finite Element Model of the Cardiac Ventricles." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1148984314.
Full textHardy, Clément. "Architectures multi-échelles de type encοdeur-décοdeur pοur la stéréοphοtοmétrie." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC222.
Full textPhotometric stereo is a technique for 3D surface reconstruction of objects. This field has seen a surge in research interest due to its potential applications in industry. Specifically, photometric stereo can be employed for tasks such as detecting machining defects in mechanical components or facial recognition. This thesis delves into deep learning methods for photometry stero, with a particular focus on training data and network architectures.While neural network over-parameterization is often adequate, the training dataset plays a pivotal role in task adaptation. To generate a highly diverse and extensible training set, we propose a new synthetic dataset. This dataset incorporates a broad spectrum of geometric, textural, lighting, and environmental variations, allowing for the creation of nearly infinite training instances.The second decisive point of a good reconstruction concerns the choice of architecture. The architecture of a network must ensure a good generalization capacity on new data to generate very good results on unseen data. And this, regardless of the application. In particular, for the photometric stereo problem, the challenge is to be able to reconstruct very high-resolution images in order not to lose any details. We therefore propose a multi-scale encoder-decoder architecture to address this problem.We first introduce a convolutional neural network architecture for calibrated photometric stereo, where the lighting direction is known. To handle unconstrained environments, we propose a Transformers-based approach for universal photometric stereo. Lastly, for challenging materials shiny like translucent or shiny surfaces, we introduce a ``weakly calibrated'' approach that assumes only approximate knowledge of the lighting direction.The approaches we have investigated have consistently demonstrated strong performance on standard benchmarks, as evidenced by both quantitative metrics and visual assessments. Our results, particularly the improved accuracy of reconstructed normal maps, represent a significant advancement in photometric stereo
Stephan, André. "Towards a comprehensive energy assessment of residential buildings: a multi-scale life cycle energy analysis framework." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209465.
Full textHowever, most current building energy assessments focus solely on operational energy overlooking other energy uses such as embodied and transport energy. Embodied energy comprises the energy requirements for building materials production, construction and replacement. Transport energy represents the amount of energy required for the mobility of building users.
Decisions based on partial assessments might result in an increased energy demand during other life cycle stages or at different scales of the built environment. Recent studies have shown that embodied and transport energy demands often account for more than half of the total lifecycle energy demand of residential buildings. Current assessment tools and policies therefore overlook more than 50% of the life cycle energy use.
This thesis presents a comprehensive life cycle energy analysis framework for residential buildings. This framework takes into account energy requirements at the building scale, i.e. the embodied and operational energy demands, and at the city scale, i.e. the embodied energy of nearby infrastructures and the transport energy of its users. This framework is implemented through the development, verification and validation of an advanced software tool which allows the rapid analysis of the life cycle energy demand of residential buildings and districts. Two case studies, located in Brussels, Belgium and Melbourne, Australia, are used to investigate the potential of the developed framework.
Results show that each of the embodied, operational and transport energy requirements represent a significant share of the total energy requirements and associated greenhouse gas emissions of a residential building, over its useful life. The use of the developed tool will allow building designers, town planners and policy makers to reduce the energy demand and greenhouse gas emissions of residential buildings by selecting measures that result in overall savings. This will ultimately contribute to reducing the environmental impact of the built environment.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Abbott, Sunshine. "Depositional architecture and facies variability in anhydrite and polyhalite sequences : a multi-scale study of the Jurassic (Weald Basin, Brightling Mine) and Permian (Zechstein Basin, Boulby Mine) of the UK." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/45720.
Full textKalua, Amos. "Framework for Integrated Multi-Scale CFD Simulations in Architectural Design." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/105013.
Full textDoctor of Philosophy
The use of natural ventilation strategies in building design has been identified as one viable pathway toward minimizing energy consumption in buildings. Natural ventilation can also reduce the prevalence of the Sick Building Syndrome (SBS) and enhance the productivity of building occupants. This research study sought to develop a framework that can improve the usage of Computational Fluid Dynamics (CFD) analyses in the architectural design process for purposes of enhancing the efficiency of natural ventilation strategies in buildings. CFD is a branch of computational physics that studies the behaviour of fluids as they move from one point to another. The usage of CFD analyses in architectural design requires the input of wind environment data such as direction and velocity. Presently, this data is obtained from a weather station and there is an assumption that this data remains the same even for a building site located at a considerable distance away from the weather station. This potentially compromises the accuracy of the CFD analyses as studies have shown that due to a number of factors such the urban built form, vegetation, terrain and others, the wind environment is bound to vary from one point to another. This study sought to develop a framework that quantifies this variation and provides a way for translating the wind data obtained from a weather station to data that more accurately characterizes a local building site. With this accurate site wind data, the CFD analyses can then provide more meaningful insights into the use of natural ventilation in the process of architectural design. This newly developed framework was deployed on a study site at Virginia Tech. The findings showed that the framework was able to demonstrate that the wind flow field varies from one place to another and it also provided a way to capture this variation, ultimately, generating a wind flow field characterization that was more representative of the local conditions.
Eid, Elie. "Towards a multi-scale analysis of dynamic failure in architectured materials." Thesis, Ecole centrale de Nantes, 2021. https://tel.archives-ouvertes.fr/tel-03670412.
Full textArchitectured materials are a rising class of materials that provide tremendous possibilities in terms of functional properties. Interest is drawn on the failure of architectured materials in which scale separation ceases to exist. This directly translates to strong interactions between a crack tip and the architecture independently of the considered scale. Moreover, under dynamic loadings, stress-waves come into play and interactions between the crack-tip, the microstructure (architecture) and the stress-waves eventually pilot together the structural behaviour. In this thesis, three types of architectured materials are considered: one periodic and two Penrose-type quasi-periodic lattices of holes. The analysis is broken into three parts. To study the influence of the microstructure on crack-propagat ion at different scales, numerical simulations of failure are analysed; they show improved resistance to crack propagation in the quasi-periodic materials. At the core of the work is also the development of a coarse-graining technique that requires no representative volume element. This technique allows for a physically consistent multiscale evaluation of the effective failure properties of the architectures. The inevitability of the consideration of a non-homogeneous effective medium to accurately model microstructural effects at larger scales is highlighted. In dynamics, the influence of the architectures on the stress-wave attenuation shows improved attenuation properties of the quasi-periodic lattices. Moreover, to understand the mechanism(s) governing the dynamic branching phenomenon in a homogeneous material, a criterion based on dynamic fracture mechanics is developed and validated on a novel experimental setup where Ultra-High-Speed-High- Resolution imaging is combined with Digital Image Correlation to capture extraordinary phenomena. The unquestionable role of T-stress in dynamic branching is put forth. This thesis brings forth the necessary tools towards a multi-scale analysis of dynamic failure of architectured materials
Devlin, John M. "Revitalizing Downtown Houston - Bringing Back the Human Scale." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71872.
Full textGu, Tang. "Modélisation multi-échelles du comportement électrique et élasto-plastique de fils composites Cu-Nb nanostructurés et architecturés." Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0017/document.
Full textNanostructured and architectured copper niobium composite wires are excellent candidates for the generation of intense pulsed magnetic fields (>90T) as they combine both high strength and high electrical conductivity. Multi-scaled Cu-Nb wires are fabricated by accumulative drawing and bundling (a severe plastic deformation technique), leading to a multiscale, architectured and nanostructured microstructure exhibiting a strong fiber crystallographic texture and elongated grain shapes along the wire axis. This thesis presents a comprehensive study of the effective electrical and elasto-plastic behavior of this composite material. It is divided into three parts: electrical, elastic and elasto-plastic multiscale modeling. In order to investigate the link between the effective material behavior and the wire microstructure, several homogenization methods are applied which can be separated into two main types: mean-field and full-field theories. As the specimens exhibit many characteristic scales, several scale transition steps are carried out iteratively from the grain scale to the macro-scale. The general agreement among the model responses allows suggesting the best strategy to estimate reliably the effective electrical and elasto-plastic behavior of Cu-Nb wires and save computational time. The electrical models are demonstrated to predict accurately the anisotropic experimental data. Moreover, the mechanical models are also validated by the available ex-situ and in-situ X-ray/neutron diffraction experimental data with a good agreement
Kalayci, Selim. "Techniques for Efficient Execution of Large-Scale Scientific Workflows in Distributed Environments." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1664.
Full textFerreira, Leite Alessandro. "A user-centered and autonomic multi-cloud architecture for high performance computing applications." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112355/document.
Full textCloud computing has been seen as an option to execute high performance computing (HPC) applications. While traditional HPC platforms such as grid and supercomputers offer a stable environment in terms of failures, performance, and number of resources, cloud computing offers on-Demand resources generally with unpredictable performance at low financial cost. Furthermore, in cloud environment, failures are part of its normal operation. To overcome the limits of a single cloud, clouds can be combined, forming a cloud federation often with minimal additional costs for the users. A cloud federation can help both cloud providers and cloud users to achieve their goals such as to reduce the execution time, to achieve minimum cost, to increase availability, to reduce power consumption, among others. Hence, cloud federation can be an elegant solution to avoid over provisioning, thus reducing the operational costs in an average load situation, and removing resources that would otherwise remain idle and wasting power consumption, for instance. However, cloud federation increases the range of resources available for the users. As a result, cloud or system administration skills may be demanded from the users, as well as a considerable time to learn about the available options. In this context, some questions arise such as: (a) which cloud resource is appropriate for a given application? (b) how can the users execute their HPC applications with acceptable performance and financial costs, without needing to re-Engineer the applications to fit clouds' constraints? (c) how can non-Cloud specialists maximize the features of the clouds, without being tied to a cloud provider? and (d) how can the cloud providers use the federation to reduce power consumption of the clouds, while still being able to give service-Level agreement (SLA) guarantees to the users? Motivated by these questions, this thesis presents a SLA-Aware application consolidation solution for cloud federation. Using a multi-Agent system (MAS) to negotiate virtual machine (VM) migrations between the clouds, simulation results show that our approach could reduce up to 46% of the power consumption, while trying to meet performance requirements. Using the federation, we developed and evaluated an approach to execute a huge bioinformatics application at zero-Cost. Moreover, we could decrease the execution time in 22.55% over the best single cloud execution. In addition, this thesis presents a cloud architecture called Excalibur to auto-Scale cloud-Unaware application. Executing a genomics workflow, Excalibur could seamlessly scale the applications up to 11 virtual machines, reducing the execution time by 63% and the cost by 84% when compared to a user's configuration. Finally, this thesis presents a product line engineering (PLE) process to handle the variabilities of infrastructure-As-A-Service (IaaS) clouds, and an autonomic multi-Cloud architecture that uses this process to configure and to deal with failures autonomously. The PLE process uses extended feature model (EFM) with attributes to describe the resources and to select them based on users' objectives. Experiments realized with two different cloud providers show that using the proposed model, the users could execute their application in a cloud federation environment, without needing to know the variabilities and constraints of the clouds
Ryu, Kyeong Keol. "Automated Bus Generation for Multi-processor SoC Design." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5076.
Full textSimon, Loïc. "Procedural reconstruction of buildings : towards large scale automatic 3D modeling of urban environments." Phd thesis, Ecole Centrale Paris, 2011. http://tel.archives-ouvertes.fr/tel-00637638.
Full textDjourachkovitch, Tristan. "Conception de matériaux micro-architecturés innovants : Application à l'optimisation topologique multi-échelle." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI086.
Full textThe design on innovative micro-architectured materials is a key issue of modern material science. One can find many examples of this kind of materials such as composites materials, foams, and even micro-architectured materials (materials which come along with some periodicity properties at the small scale). A common criterion for these materials is their ratio between weight and stiffness. Topology optimization is well suited for the design of this kind of material since the criterion that is subject to improvement is directly integrated in the formulation of the minimization problem. In this context, we propose some methods for the design of micro-architectured materials using topology optimization and for several criteria. We afterwards illustrate the benefits of these materials thought multi-scale simulations based on the theory of the first gradient and the scale separability assumption in the homogenization framework.A coupled macro/micro optimization method is presented for the concurrent optimization of the these two interdependent scales. The development of a numerical demonstrator has allowed to illustrated those various methods and to test several optimization criteria, mechanical models etcetera. In order to reduce the computational costs that might become exorbitant especially for multi-scale problems since the number of design variables increases significantly, a database approach is proposed. A broad range of micro-architectured materials is stored (and enhanced) for several criteria (weight, stiffness, original behaviour). This database is then consulted throughout the coupled optimization
Sutor, S. R. (Stephan R. ). "Large-scale high-performance video surveillance." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526205618.
Full textTiivistelmä Viime vuosikymmen tunnetaan vahingollisista tapahtumista alkaen talouskriiseistä ja ulottuen järjestelmälliseen rikollisuuteen, terrori-iskuihin ja luonnonkatastrofeihin. Tämä tilanne on muuttanut suhtautumista turvallisuuteen. Miljoonia valvontakameroita on otettu käyttöön, mikä on johtanut uusiin haasteisiin, koska kameroihin liittyvät järjestelmät ja toiminnot eivät pysty toimimaan yhdessä lukuisien uusien videokameroiden ja järjestelmien kanssa. Nykyajan valvontahuoneissa voidaan nähdä satojen tai tuhansien kameroiden tuottavan kuvaa ja samalla runsaasti tarpeetonta informaatiota turvallisuusvirkailijoiden katsottavaksi. Tämän tutkimuksen tarkoitus oli luoda uusi videovalvontajärjestelmä, jossa on automaattiset analyysimekanismit, jotka mahdollistavat turva-alan toimijoiden ja niiden operaattoreiden suoriutuvan informaatiotulvasta. Automaattisen videovalvontaprosessin avulla videovalvonta muokattiin proaktiiviseksi tietojärjestelmäksi. Teknologian kehitys ja kasvanut turvallisuusvaatimus osoittautuivat olevan merkittävä ajuri turvallisuusteknologian tutkimukselle, kuten tämä tutkimus oli. Tämä tutkimus hyödyttää yksittäisen ihmisen henkilökohtaista vapautta, elämää ja omaisuutta sekä yhteisöä estämällä rikoksia ja terroristihyökkäyksiä. Tässä tutkimuksessa suunnittelutiedettä sovellettiin varmistamaan tieteellinen kurinalaisuus, kun artefakteja luotiin ja arvioitiin. Tutkimuksen vaatimukset perustuivat läheiseen yhteistyöhön korkeatasoisten turva-alan viranomaisten kanssa, ja lisäksi aiempi tutkimus analysoitiin yksityiskohtaisesti. Luotu artefakti - ’älykäs videovalvontajärjestelmä’ - on hajautettu, skaalautuva ohjelmistoviitekehys, joka voi toimia perustana monenlaiselle huipputehokkaalle videovalvontajärjestelmälle alkaen toteutuksista, jotka keskittyvät saatavuuteen, ja päättyen joustaviin pilviperustaisiin toteutuksiin, jotka skaalautuvat useisiin sijainteihin ja kymmeniin tuhansiin kameroihin. Järjestelmän tukevaksi perustaksi luotiin hajautettu järjestelmäarkkitehtuuri, jota laajennettiin monisensorianalyysiprosessilla. Siten mahdollistettiin monista lähteistä peräisin olevan datan analysointi, videokuvan ja muiden sensorien datan yhdistäminen ja automaattinen kriittisten tapahtumien tunnistaminen. Lisäksi tässä työssä luotiin älykäs kännykkäsovellus, videovalvonnan paikallinen kontrolloija, joka ohjaa sovelluksen etäkäyttöä. Viimeksi tuotettiin langaton itsenäinen valvontajärjestelmä – uudenlainen älykäs kamerakonsepti – joka mahdollistaa ad hoc -tyyppisen ja mobiilin valvonnan. Luotujen artefaktien arvo voitiin todentaa arvioimalla ne kahdessa reaalimaailman ympäristössä: kansainvälinen lentokenttä, jonka laajamittaisessa toteutuksessa on korkeat turvavaatimukset, ja turvallisuuspalveluntuottaja, joka tarjoaa moninaisia videopohjaisia palveluja videovalvontakeskuksen avulla käyttäen tuhansia kameroita
Rodosik, Sandrine. "Etude de l'impact d'architectures fluidiques innovantes sur la gestion, la performance et la durabilité de systèmes de pile à combustible PEMFC pour les transports." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI090.
Full textAlthough hydrogen is booming, fuel cell electric vehicles are still rare on the market. Their high volume and complexity are still major hurdles to the development of PEM (Proton Exchange Membrane) systems for transport applications. This PhD. work aimed at studying two new fluidic circuits that can both simplify and reduce the system volume. Namely, the cathodic recirculation, and the Ping-Pong, which is a new fluidic architecture that alternate the fuel feed locations during operation. The performances of both architectures have been studied experimentally in automotive conditions on a 5 kW system. A multiscale analysis was conducted to compare, with other known architectures, the performances of the system, the stack and the homogeneity of the cell voltages inside the stack. The study was completed with a Ping-Pong durability test to evaluate the impact of this new operation on the fuel cell stack. The experimental data have been analyzed at different scales up to the post-mortem expertise of membrane-electrode assemblies
PalChaudhuri, Santashil. "An adaptive sensor network architecture for multi-scale communication." Thesis, 2006. http://hdl.handle.net/1911/18954.
Full textDong, Jingqi. "Multi-scale hydrological information system using an OGC standards-based architecture." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-05-3527.
Full texttext
Rodrigues, J. M. F. "Integrated multi-scale architecture of the cortex with application to computer vision." Doctoral thesis, 2007. http://hdl.handle.net/10400.1/413.
Full textThe main goal of this thesis is to try to understand the functioning of the visual cortex through the development of computational models. In the input layer V1 of the visual cortex there are simple, complex and endstopped cells. These provide a multi-scale representation of objects and scene in terms of lines, edges and keypoints. In this thesis we combine recent progress concerning the development of computational models of these and other cells with processes in higher cortical areas V2 and V4 etc. Three pertinent challenges are discussed: (i) object recognition embedded in a cortical architecture; (ii) brightness perception, and (iii) painterly rendering based on human vision. Specific aspects are Focusof- Attention by means of keypoint-based saliency maps, the dynamic routing of features from V1 through higher cortical areas in order to obtain translation, rotation and size invariance, and the construction of normalized object templates with canonical views in visual memory. Our simulations show that the multi-scale representations can be integrated into a cortical architecture in order to model subsequent processing steps: from segregation, via different categorization levels, until final object recognition is obtained. As for real cortical processing, the system starts with coarse-scale information, refines categorization by using mediumscale information, and employs all scales in recognition. We also show that a 2D brightness model can be based on the multi-scale symbolic representation of lines and edges, with an additional low-pass channel and nonlinear amplitude transfer functions, such that object recognition and brightness perception are combined processes based on the same information. The brightness model can predict many different effects such as Mach bands, grating induction, the Craik-O’Brien-Cornsweet illusion and brightness induction, i.e. the opposite effects of assimilation (White effect) and simultaneous brightness contrast. Finally, a novel application is introduced: painterly rendering has been linked to computer vision, but we propose to link it to human vision because perception and painting are two processes which are strongly interwoven.
Hsu, Ya-Chun, and 許雅淳. "A Qemu-based Multi-core Simulator with Flexible Performance Model for Large Scale Architecture Exploration." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/19969845988787135254.
Full text國立中正大學
資訊工程研究所
100
It is now clear that processors with hundreds or thousands of cores will eventually be available according current industry trends. To accelerate hardware development, simulations of future multicore architecture which have huge computational resources and more complex than current machine are unavoidable. This thesis builds a trace-driven simulator based on Qemu with a flexible performance model. The trace mechanism is implemented in Qemu and supports exchanging information with the performance model. Users can control what time to start the trace and what time to finish the trace by themselves. To achieve this, this thesis adds a device on target architecture. The trace mechanism also can filter out kernel mode information and only allow user mode information to produce performance statistics. Based on swappable modules, the performance modular design offers a programming interface for integrations with other customized hardware modules. Users can use the provided module interface to write their customized modules for detailed timing models or performance-demand models.
Pal, Biswajit. "A multi-physics-based modelling approach to predict mechanical and thermo-mechanical behaviour of cementitious composite in a multi-scale framework." Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6069.
Full textMinistry of Human Resource and Development, Government of India
Patel, Parita. "Compilation of Graph Algorithms for Hybrid, Cross-Platform and Distributed Architectures." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/3803.
Full textPatel, Parita. "Compilation of Graph Algorithms for Hybrid, Cross-Platform and Distributed Architectures." Thesis, 2017. http://etd.iisc.ernet.in/2005/3803.
Full textRosner, Jakub. "Methods of parallelizing selected computer vision algorithms for multi-core graphics processors." Rozprawa doktorska, 2015. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=28390.
Full textRosner, Jakub. "Methods of parallelizing selected computer vision algorithms for multi-core graphics processors." Rozprawa doktorska, 2015. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=28390.
Full text