Academic literature on the topic 'Multi principal element alloys'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multi principal element alloys.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multi principal element alloys"
Reiberg, Marius, Leonhard Hitzler, Lukas Apfelbacher, Jochen Schanz, David Kolb, Harald Riegel, and Ewald Werner. "Additive Manufacturing of CrFeNiTi Multi-Principal Element Alloys." Materials 15, no. 22 (November 8, 2022): 7892. http://dx.doi.org/10.3390/ma15227892.
Full textDerimow, N., R. F. Jaime, B. Le, and R. Abbaschian. "Hexagonal (CoCrCuTi)100-Fe multi-principal element alloys." Materials Chemistry and Physics 261 (March 2021): 124190. http://dx.doi.org/10.1016/j.matchemphys.2020.124190.
Full textScully, John R., Samuel B. Inman, Angela Y. Gerard, Christopher D. Taylor, Wolfgang Windl, Daniel K. Schreiber, Pin Lu, James E. Saal, and Gerald S. Frankel. "Controlling the corrosion resistance of multi-principal element alloys." Scripta Materialia 188 (November 2020): 96–101. http://dx.doi.org/10.1016/j.scriptamat.2020.06.065.
Full textCharpagne, M. A., K. V. Vamsi, Y. M. Eggeler, S. P. Murray, C. Frey, S. K. Kolli, and T. M. Pollock. "Design of Nickel-Cobalt-Ruthenium multi-principal element alloys." Acta Materialia 194 (August 2020): 224–35. http://dx.doi.org/10.1016/j.actamat.2020.05.003.
Full textChoudhury, Amitava, Tanmay Konnur, P. P. Chattopadhyay, and Snehanshu Pal. "Structure prediction of multi-principal element alloys using ensemble learning." Engineering Computations 37, no. 3 (November 21, 2019): 1003–22. http://dx.doi.org/10.1108/ec-04-2019-0151.
Full textXie, Chenyang, Xuejie Li, Fan Sun, Junsoo HAN, and Kevin Ogle. "The Spontaneous Repassivation of Cr Containing Steels and Multi-Principal Element Alloys." ECS Meeting Abstracts MA2022-02, no. 11 (October 9, 2022): 735. http://dx.doi.org/10.1149/ma2022-0211735mtgabs.
Full textXing, Bin, Xinyi Wang, William J. Bowman, and Penghui Cao. "Short-range order localizing diffusion in multi-principal element alloys." Scripta Materialia 210 (March 2022): 114450. http://dx.doi.org/10.1016/j.scriptamat.2021.114450.
Full textZhao, Shijun, Yaoxu Xiong, Shihua Ma, Jun Zhang, Biao Xu, and Ji-Jung Kai. "Defect accumulation and evolution in refractory multi-principal element alloys." Acta Materialia 219 (October 2021): 117233. http://dx.doi.org/10.1016/j.actamat.2021.117233.
Full textSenkov, O. N., J. D. Miller, D. B. Miracle, and C. Woodward. "Accelerated exploration of multi-principal element alloys for structural applications." Calphad 50 (September 2015): 32–48. http://dx.doi.org/10.1016/j.calphad.2015.04.009.
Full textIslam, Nusrat, Wenjiang Huang, and Houlong L. Zhuang. "Machine learning for phase selection in multi-principal element alloys." Computational Materials Science 150 (July 2018): 230–35. http://dx.doi.org/10.1016/j.commatsci.2018.04.003.
Full textDissertations / Theses on the topic "Multi principal element alloys"
Mridha, Sanghita. "Structure Evolution and Nano-Mechanical Behavior of Bulk Metallic Glasses and Multi-Principal Element Alloys." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984260/.
Full textSlone, Connor. "Influence of composition and processing on the mechanical response of multi-principal element alloys containing Ni, Cr, and Co." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555522223986934.
Full textBryant, Nathan J. "EXPERIMENTAL VALIDATION OF THE CALPHAD APPROACH APPLIED TO MULTI-PRINCIPLE ELEMENT ALLOYS." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1433176902.
Full textAkbari, Azin. "COMBINATORIAL SCREENING APPROACH IN DEVELOPING NON-EQUIATOMIC HIGH ENTROPY ALLOYS." UKnowledge, 2018. https://uknowledge.uky.edu/cme_etds/87.
Full textJha, Rajesh. "Combined Computational-Experimental Design of High-Temperature, High-Intensity Permanent Magnetic Alloys with Minimal Addition of Rare-Earth Elements." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2621.
Full textO'Donnell, Martin. "Finite element modelling of a multi-stage stretch-forming operation using aerospace alloys." Thesis, University of Ulster, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270463.
Full textPaquet, Daniel. "Adaptive Multi-level Model for Multi-scale Ductile Fracture Analysis in Heterogeneous Aluminum Alloys." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1324565883.
Full textTedjaseputra, Erik Nugroho. "Numerical Simulations of Microstructure-based Crystal Plasticity Finite Element Model for Titanium and Nickel Alloys." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1325084673.
Full textBunnell, Spencer Reese. "Real Time Design Space Exploration of Static and Vibratory Structural Responses in Turbomachinery Through Surrogate Modeling with Principal Components." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8451.
Full textXu, Rui. "Multiscale modeling of heterogeneous materials : application to Shape Memory Alloys." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0066.
Full textThe main aim of this thesis is to develop advanced and efficient multiscale modeling and simulation techniques for Shape Memory Alloys (SMAs) composite and architected materials. Towards this end, a 3D generic multiscale model for architected SMAs is implemented in ABAQUS, where a thermodynamic model, proposed by Chemisky et al. [1], is adopted to describe the local constitutive behavior of the SMA, and the multiscale finite element method (FE2) to realize the real-time interaction between the microscopic and macroscopic levels. Microscopic fiber instability is also efficiently investigated in this framework by introducing the Asymptotic Numerical Method (ANM) and the Technique of Slowly Variable Fourier Coefficients (TSVFC). To improve the computational efficiency of the concurrent mulitscale approach, in which tremendous microscopic problems are solved online to update macroscopic stress, data-driven multiscale computing methods are proposed for composite structures. Decoupling the correlated scales in concurrent FE2 framework, microscopic problems are solved offline, while the online macroscopic computational cost is significantly reduced. Further, by formulating the data-driven scheme in generalized stress and strain, Structural-Genome-Driven computing is developed for thin-walled composite structures
Books on the topic "Multi principal element alloys"
O'Donnell, Martin. Finite element modelling of a multi-stage stretch-forming operation using aerospace alloys. [S.l: The author], 2003.
Find full textBook chapters on the topic "Multi principal element alloys"
Han, Linge, Hui Jiang, Dongxu Qiao, Yiping Lu, and Tongmin Wang. "Effects of Iron on Microstructure and Properties of CoCrFexNi Multi-principal Element Alloys." In Advanced Functional Materials, 253–58. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0110-0_28.
Full textChau, Nguyen Hai, Masatoshi Kubo, Le Viet Hai, and Tomoyuki Yamamoto. "Phase Prediction of Multi-principal Element Alloys Using Support Vector Machine and Bayesian Optimization." In Intelligent Information and Database Systems, 155–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73280-6_13.
Full textBeniwal, Dishant, Jhalak, and Pratik K. Ray. "Data-Driven Phase Selection, Property Prediction and Force-Field Development in Multi-Principal Element Alloys." In Forcefields for Atomistic-Scale Simulations: Materials and Applications, 315–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3092-8_16.
Full textJayaraman, Tanjore V., and Ramachandra Canumalla. "Data-driven Search and Selection of Ti-containing Multi-principal Element Alloys for Aeroengine Parts." In The Minerals, Metals & Materials Series, 501–16. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-22524-6_45.
Full textBarton, G., X. Li, and Gerhard Hirt. "Finite-Element Modeling of Multi-Pass Forging of Nickel-Base Alloys Using a Multi-Mesh Method." In THERMEC 2006, 2503–8. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.2503.
Full textGroßmann, Christian, Andreas Schäfer, and Martin F. X. Wagner. "Finite Element Simulation of Localized Phase Transformations in Pseudoelastic NiTi Shape Memory Alloys Subjected to Multi-Axial Stress States." In ICOMAT, 525–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118803592.ch76.
Full textSharma, Prince, Nushrat Naushin, Sahil Rohila, and Abhishek Tiwari. "Magnesium containing High Entropy Alloys." In Magnesium Alloys Structure and Properties [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98557.
Full textSun, Yugang. "Microwave-enabled flash heating and cooling for synthesizing single-phase multi-principal element alloy nanoparticles." In Reference Module in Materials Science and Materials Engineering. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822425-0.00118-4.
Full textMing, Kaisheng, Shijian Zheng, and Jian Wang. "Microstructures and Deformation Mechanisms of FCC-Phase High-Entropy Alloys." In High Entropy Alloys - Recent Advances, New Perspectives and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104822.
Full textPoon, S. Joseph, and Jian He. "Multi-Principal-Element Approach to High-Performance Thermoelectric Materials." In Reference Module in Materials Science and Materials Engineering. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-803581-8.11719-9.
Full textConference papers on the topic "Multi principal element alloys"
Scully, John. "Corrosion and passivation of multi-principal element alloys in aqueous solutions." In 1st Corrosion and Materials Degradation Web Conference. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09921.
Full textAksoy, Doruk, Megan McCarthy, Ian Geiger, and Timothy Rupert. "Local and Near-Boundary Environments in NbMoTaW Refractory Multi-Principal Element Alloy." In Proposed for presentation at the 2nd World Congress on High Entropy Alloys (HEA 2021) held December 5-8, 2021 in Charlotte, North Carolina. US DOE, 2021. http://dx.doi.org/10.2172/1905965.
Full textBirbilis, Nick, Sanjay Choudhary, and Sebastian Thomas. "On the corrosion and passivation of lightweight Al-based multi-principal element alloys (MPEAs)." In 1st Corrosion and Materials Degradation Web Conference. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09919.
Full textParedes, Marcelo. "High Entropy Alloys as a New Alternative to Corrosion-Resistant Alloys For Marine Applications." In SNAME 28th Offshore Symposium. SNAME, 2023. http://dx.doi.org/10.5957/tos-2023-020.
Full textFrankel, Gerald, Christopher Taylor, Yehia Khalifa, and Anup Panindre. "Corrosion of single-phase Ni-Fe-Cr-Mo-W-X non-equimolar multi-principal element alloys." In 1st Corrosion and Materials Degradation Web Conference. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09922.
Full textHan, Junsoo, Pin Lu, James Saal, Gerald Frankel, Kevin Ogle, and John Scully. "Refining anodic and cathodic dissolution mechanisms of the multi-principal element alloys using atomic emission spectroelectrochemistry coupled with electrochemical impedance spectroscopy." In 1st Corrosion and Materials Degradation Web Conference. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09920.
Full textGerdt, L., M. Müller, M. Heidowitzsch, J. Kaspar, E. Lopez, M. Zimmermann, C. Leyens, A. Hilhorst, and P. J. Jacques. "Alloy Design of Feedstock Material for Additive Manufacturing—Exploring the Al-Co-Cr-Fe-Ni-Ti Compositionally Complex Alloys." In ITSC 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.itsc2023p0414.
Full textDemers, Sébastien, Abdel-Hakim Bouzid, and Sylvie Nadeau. "Analytical and Finite Element Multi-Shell Modelling of an Intervertebral Disc." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78194.
Full textAng, Andrew S. M., Christopher C. Berndt, Mitchell L. Sesso, Ameey Anupam, Praveen S. Ravi Sankar Kottada, and B. S. Murty. "Comparison of Plasma Sprayed High Entropy Alloys with Conventional Bond Coat Materials." In ITSC2015, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0027.
Full textBrown, Jeffrey M., Alex A. Kaszynski, Daniel L. Gillaugh, Emily B. Carper, and Joseph A. Beck. "Gaussian Stochastic Process Modeling of Blend Repaired Airfoil Modal Response Using Reduced Basis Mode Shape Approach." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60238.
Full textReports on the topic "Multi principal element alloys"
Sharma, Aayush. Multi-principal element alloys: Design, properties and heuristic explorations. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1593312.
Full text