Dissertations / Theses on the topic 'Multi-polymères'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Multi-polymères.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Maurel, Gaëtan. "Simulations multi-échelles de matériaux polymères." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22512/document.
Full textPolymer materials are widely used, both for everyday applications and in high-technology products. These materials involves a wide range of time and length scales, making the modelling of their properties challenging by using only one method. This thesis focuses on the development of a multiscale strategy, combining different levels of description of the matter. The aim is to reach the rheological properties of a polymer over a large time scale, while retaining the chemical structure inherent of its microstructure. The investigation of structure-property relationships will then be facilitated. The mesoscopic potentials are developped from atomistic configurations. A quantitative reproduction of several structural properties of the polymer such as density or end to end distance is obtained. Then, the transferability of the potentials has been studied through the dependence of temperature, pressure or polymer structure on thermomechanical properties. By using these potentials, nonequilibrium simulations have been carried out to calculate the entanglement mass and the plateau modulus. The multicale approach has been extended to model the polymer-silica interaction in order to study the impact of the degree of confinement or the grafting density on the dynamical and structural properties of polymer chains close to the surface
Tunckol, Meltem. "Fonctionnalisation de Nanotubes de Carbone Multi-Parois par des Polymères." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0066/document.
Full textThis thesis deals with the surface modification of multi-walled carbon nanotubes with polymers with the aim to achieve a high level of dispersion in polymer matrices. Chapter I gives a comprehensive review of the state of the art of hybrids of ionic liquids with carbon nanomaterials, particularly, nanotubes and more recently, graphene. Chapter II starts with a general overview of the non-covalent adsorption of polymers onto the CNT surfaces followed by a detailed description of the study carried out on the non-covalent functionalization of CNTs with various imidazolium based polymerized ionic liquids (PIL). For this purpose, we further compare the two experimental methods: in situ polymerization and solution mixing. One of the most important applications of CNT is in polymer/CNT composites. Chapter III describes the formation of polyetherimide/CNT composites starting from PIL-CNT hybrids obtained in Chapter II. The preparation and characterization of composites using solvent casting methods have been detailed. Pristine, acid oxidized and PIL functionalized CNTs have been compared. Mechanical, thermal and electrical property measurements on these composites have also been described. The last chapter – Chapter IV, divided into two sections, discusses the covalent functionalization of CNTs with a variety of polymers using two main approaches: “grafting from” and “grafting to”. Using the first approach we have grown polyamide (PA) chains from the surface of caprolactam grafted CNTs by anionic ring opening polymerization. The tensile properties of the PA based composites prepared therefrom containing pristine, amine- and PA-functionalized CNTs have been investigated. The radical polymerization of vinyl imidazolium based IL monomers attached to the activated CNT surface is also given in this section. In the second part of Chapter IV, we have reported several “grafting to” functionalization strategies including radical addition and “defect site” grafting used for the preparation of CNTs covalently attached with polymers intended to blend well with epoxy matrices
Chalal, Mohand. "Structure multi-échelle et propriétés physico-chimiques des gels de polymères thermosensibles." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00680076.
Full textMontana, garcia Juan. "Architecture multi-échelle de matériaux polymères : de l’auto-assemblage à l’assemblage forcé." Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0060/document.
Full textBlock copolymers (BCP) have proven to be of great interest, especially for their ability to spontaneously self-assemble in ordered and well-defined nanostructures. Some of their macroscopic properties can be altered by physical effects such as confinement (constraining domains at molecular scale) or shear (predominant orientation of domains with anisotropic mechanical response). Here, the study of these effects over the BCP structuration is achieved by using an industrially scalable technique, nanolayer coextrusion, which allows fabrication of macroscopic films made of thousands of alternating layers with individual thickness tuned down to a few tens of nanometers. Films are then coextruded using the triblock : poly(methyl methacrylate-b-butyl acrylate-b-methyl methacrylate) and the polymers : polymethyl methacrylate, polystyrene and polycarbonate (having different interfaces) by varying weight proportions and process parameters to target different layer thicknesses. A multi-scale characterization by coupling different technics as AFM, TEM (after samples staining) and SAXS allowed the local identification of nano-domains and the better understanding of process-structures-properties relation as a result of tensile tests showing improved mechanical behavior for these films. A low thermic stability for comparable process times showed a clear influence over structuration of this kind of BCP. We have observed a change in the triblock morphology from lamellar structures, when it is a close to thermodynamic equilibrium state, to cylindrical structures within the multilayer system which is maintained over long distances indistinct of layer thickness. The well understanding of the forming process parameters to create polymer-based materials at micro- or nanoscale scale is therefore an important factor in order to control nano-structures during a large-scale production of hierarchized materials consisting of BCP, which could strongly influence their macroscopic properties
Lacombe, Jérémie. "Organisation multi-échelle de matériaux polymères contrôlée par la chimie aux interfaces." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLET012.
Full textMaterials properties very often derive from their nano or micro-scale organization. In this thesis, we evidence that controlling the chemistry at the interfaces allows obtaining spontaneously very regular organizations in various polymer materials.In the first part, supramolecular chemistry has been used to control the organization in the bulk of polymer grafted at one or both extremities by thymine (Thy) or 2,6-diamino-1,3,5-triazine (DAT), two self-complementary supramolecular units interacting via hydrogen bonds. Whatever the polymer nature (PE, PDMS, PPG), materials present very regular nanoscale long-range ordered lamellar organizations if the end group crystallize (Thy) and/or the chain crystallize (PE). Respective contributions to these organizations of phase segregation, crystallization, supramolecular interactions and secondary interactions have been determined. It was shown that the confinement of chains in lamellae prevent the formation of high molecular weight chains, resulting in poor mechanical properties. However, Thy/DAT interactions allow creating supramolecular block copolymers by mixing incompatible chains functionalized with these units.In the second part, we have studied the spontaneous formation of patterns at the film surface of acrylate film during their photopolymerization under air. This phenomenon occurs if there is a balance at the film surface between the polymerization and the oxygen inhibition rates. Very regular microscale patterns (hexagons, lamellae, peanuts) have been generated by controlling some experimental parameters (UV intensity, initiator concentration) for a wide range of film thicknesses (6 µm – 2 mm). Self-patterning gives interesting optical properties to the films (haze, clarity) which can be modulated by adjusting the patterns wavelength and amplitude
Blivi, Adoté Sitou. "Effet de taille dans les polymères nano-renforcés : caractérisation multi-échelles et modélisation." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2431/document.
Full textThe work presented in this paper aims to highlight and to understand the size effect of nano-reinforcements on nanocomposite properties With an experimental approach. Nanocomposites of PMMA and silica particles With different sizes (15nm, 25nm, 60nm, 150nm and 500nm) and volume fractions (20/0, 4 0/0 and 60/0) were manufactured. Multiscale analysis (MET and DRX-WAXS) have shown that the characteristic parameters of the microstructure of nanocomposites vary With the size of the nanoparticles. Indeed, the decrease in the size of nanoparticles at a given volume fraction implies a decrease of the intermolecular distance. This decrease has induced a densification of the matrix and a decrease of the matrix chain mobility. Mechanical tests (tensile, DMA) have shown that the young (E) and the conservation (E') moduli of the nanocomposites increase With the decrease in the size of the nanoparticles With a constant volume fraction. And the increase of E l is kept when temperature growing. An increase in glass transition (Tg) and degradation temperature (Td) was also observed With the DSC, DMA and ATG tests. Experimental elastic properties of the nanocomposites were used to assess the relevance of size effect micromechanical models, particularly the Hashin-Shtrikman bounds With interface effects proposed by Brisard. The modeling has shown that to reproduce the experimental elastic moduli of nanocomposites, the elastic coefficients of the interface must be dependents on particle sizes. And the state of dispersion of particles must be taken into account
Arnaud, Marc-Alexandre Dimitri. "Modélisation multi-échelle de polymères conjugués pour le photovoltaïque organique : confrontation expérience / théorie." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3053/document.
Full textThis predictive research work, combined with an experimental study, aims at anticipate the behavior of a new donor :acceptor pair constituted by a P3HT-type of polymer and an innovative graphene-based acceptor material (HBC). This study is particularly interested in i) the absorption band of the donor (a « low band gap » polymer) and ii) its resistance towards degradation (cristallinity, oxidation stability), and finally iii) the modulation of the electronic properties of the acceptor, in keeping with those of the donor. Results show that polythiophenes grafted with an –OR group improve both conjugation, rigidity, cristallinity and photostability, in addition to their great electronic compatibility with functionalized HBCs. Besides, this new acceptor material will be fully compatible with a graphite electrode, thanks to its columnar structuration
Mauviel, Guillain. "Transport multi-composants dans les polymères : séparation hydrocarbures / hydrogène par membrane à sélectivité inverse." Vandoeuvre-les-Nancy, INPL, 2003. http://docnum.univ-lorraine.fr/public/INPL_T_2003_MAUVIEL_G.pdf.
Full textHydrocarbon / hydrogen separation by reverse selectivity membranes is investigated. The first goal is to develop materials showing an increased selectivity. Silicone membranes loaded with inorganic fillers have been prepared, but the expected enhancement is not observed. The second goal is to model the multi- component transport through rubbers. Indeed the permeability model is not able to predict correctly permeation when a vapour is present. Thus many phenomena have to be considered: diffusional interdependancy, sorption synergy, membrane swelling and drag effect. The dependence of diffusivities with the local composition is modelled according to free-volume theory. The model resolution allows to predict the permeation flow-rates of mixed species from their pure sorption and diffusion data. For the systems under consideration, the diffusional interdependancy is shown to be preponderant. Besides, sorption synergy importance is pointed out, whereas it is most often neglected
Nguyen, Thanh Loan. "Approche multi-échelles dans les matériaux polymères : de la caractérisation nanométrique aux effets d'échelles." Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP1951/document.
Full textThe signature of confinement effect onto the mechanical properties of the amorphous phase during crystallization of two polymers, Polyethylene terephthalate (PET) and poly(lactic acid) (PLA) was investigated at multi-scale. The two polymers have the advantage of being either in bulk amorphous or in semi-crystalline state. The relation between the microstructure and the viscoelastic properties of materials is put light on by the experiments of X-Ray Scattering, differential scanning calorimetry (DSC), by tensile strength tests, by dynamic mechanical analysis (DMA) and by nanoindentation. The difference in molecular structure of PET and PLA is essential for their physical and mechanical behavior. During crystallization, the second amorphous phase whose mechanical behavior is more rigid than conventional amorphous phase was formed. DSC is used to quantify the rigid amorphous fraction dependence on the crystallinity. The technique of X-ray scattering is used to study the evolution of the microstructure (crystallite size, lamella thickness) during crystallization. The mechanical behavior of materials was studied at different scale. DMA tests allow not only to study the macroscopic behavior of viscoelastic polymers but also to quantify the viscoelastic properties of each amorphous phase through their glass transition temperature. This was used as input data in micromechanical models. Nanoindentation is used to measure the mechanical properties of the materials at the extreme surface. In the last part, the homogenization micromechanical modeling was performed based on the matrix - inclusion morphology in order to predict the macroscopic mechanical behavior laws of materials
Sar, Bun Eang. "Une approche thermodynamique pour la modélisation multi-physique du comportement hygro-mécanique couplé des polymères." Nantes, 2012. http://www.theses.fr/2012NANT2084.
Full textAvril, Florence. "Développement de nouvelles formulations polymères thermoplastiques pour l’élaboration de multi-matériaux sandwich acier / polymère / acier." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10324.
Full textThe aim of this work is to develop multimaterials such as steel/polymer/steel composites for weight savings in automotive industry. To fully take advantage of properties of both steel and polymer materials, adhesion steel-polymer must be well controlled. Moreover, the composite must be compatible with processing on the industrial line and last not least, the structure must be flow resistant during the cataphoresis step (Painting process at 200°C for 30 minutes). This last condition is essential and our work will focuse on the development of compatibilized polymers blend made of polyamide 11 and polyolefin grafted maleic anhydride with yield stress properties. We successfully optimize the formulation via morphological control in order to develop a yield stress fluid with good adhesive properties
Prulho, Romain. "Analyse multi-échelle de la dégradation de membranes polymères d'ultrafiltration au contact de l'hypochlorite de sodium." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00866935.
Full textSlimane, Manel. "Développement d’une approche multi-échelle pour l'étude de la solubilité des flavonoïdes et leur assemblage avec les polymères." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0347.
Full textOver the past few decades, flavonoids have become increasingly used in different food and non-food applications due to their important antioxidant activities. However, the solubilization, dispersion and stabilization of these molecules are variable and constitute a brake on their use in different formulations. The objective of this work is to overcome those limitations by understanding the interactions between these compounds and their environment without and with the add of polymers, by a multi-scale approach approach (molecular modeling and mesoscale modeling and experimental study). Initially, interactions between 3 flavonoids (quercetin, rutin and isoquercetin) in various organic solvents, were studied. The obtained results (mainly Flory Huggins parameter and radial distribution function RDF) showed that the B2 part common to the three flavonoids (For example Flory Huggins parameter values were close to 0.5 in the M2B2 and much more important in acetonitrile) is responsible for the miscibility behavior of the flavonoids in the solvent. DDFT simulations showed aggregation of quercetin in M2B2 against dispersion in acetonitrile. All these observations were confirmed experimentally (study of solubility and microscopic observations). Then, quercetin was studied in the presence of a biopolymer, PLGA in water. Nanoparticles were formed by varying the concentration of the various compounds and the lactic acid / glycolic acid ratio in the PLGA. The tools of molecular modeling and mesoscale modeling (calculation of the solubility parameter by molecular dynamics and observation of the dispersion or the phase separation by DDFT) as well as the experimental approach (DSC, MET ...) led us to the same conclusions. Indeed, the particle size increases with the concentration of PLGA and the rate of lactic acid in the polymer. Also the concentration of the emulsifier in the medium has an important role in the formation of PLGA-Q aggregates. The higher its concentration, the more difficult the formation of the particles as it affects the viscosity of the medium and consequently the diffusivity of the molecules in the water. All the results obtained by molecular modeling and by mesoscale modeling have been confirmed experimentally. We can therefore conclude that the methodology adopted in the simulations can be considered as a tool to help on predicting the behavior of flavonoids in different medium
Saxer, Samantha. "Synthèse de structures macromoléculaires aromatiques et hétérocycliques originales par voies non conventionnelles." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI038.
Full textIn this thesis, the synthesis of new aromatic and heterocyclic macromolecular structures is reported. These polymers have been synthetized by unconventional polycondensation processes. Unlike classic reactions used in polycondensation, "multicomponent" condensation involving three or four reactive functions were here described. More particularly, the reactions of Debus-Radziszewski, Hantzsch, and Chichibabin, allowing the direct formation of aromatic and heterocyclic structures have been chosen. These polymerizations were carried out both by conventional thermal method and under microwave irradiation. Three types of polymer families have been synthesized successfully (PIM / PTAI, PPP, P-CNTP). The results show that microwave irradiation is beneficial for the synthesis of some structures, but this effect is not systematic. On the other hand, microwave irradiation is a powerful tool to develop new macromolecular structures by significantly reducing the time of polymerization. This work underlines the interest of polycondensation by multicomponent reaction and opens perspectives for the development of new aromatic / heterocyclic polymeric materials
Overton, Philip. "Electrolytes polymères monofonctionnels à conduction monocationique : synthèse et propriétés de transport d'ions lithium." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAV010/document.
Full textThis thesis presents "End-Capped Single-Ion Polymer Electrolytes" (EC-SIPEs) that are ionically conductive polymers having n repeating ethylene oxide (EO) units and an ionic functional group at one chain terminal. The library of EC-SIPEs presented are based on poly(ethylene oxide) mono methyl ether (mPEOn-OH) having EOn = 8, 10, 20 and 55. The anions of the electrolyte salt pair are covalently bound to the polymer as part of the end-group design. The mobility of the anion is thus limited by the low mobility of the polymer, relative to Li+. These are "Single-Ion" conductors because the majority of ionic charge transferred by Li+ cations, as demonstrated by chronoamperometry.The end-group designs target not only ionic interactions that facilitate "single-ion" conduction of Li+, but also other specific non-covalent interactions such as dipole-dipole, Van der Waals, and π-π stacking. End-groups having naphthalene (naph) and pyrene (pyr) polycyclic aromatic hydrocarbon (PAH) moieties are investigated. The functional end-groups are lithiated sulfonates (-SO3Li, -PhSO3Li), a N-naphyl sulfonamide (-SO2N(Li)Naph), and secondary N-aryl amines (-N(Li)Naph, -N(Li)Pyr). Two end-groups target specific properties: i) a "double salt" end-group has two ionic functions at one chain end, and ii) a zwitterionic EC-SIPE that conducts Li+ cations and TFSI- anions. The doubling of the number of Li+ per end-group does not correlate to an expected improvement in ionic conductivity (σ). This implies that σ is limited by the physicochemical properties of the EC-SIPE and not the Li+ concentration. The zwitterionic EC-SIPE has a high lithium transference number (t+Li= 0.8) that implies decreased mobility of the TFIS- counter-anion relative to Li+. The best overall performance is achieved by mPEOn-N(Li)Pyr (EOn= 10, 20, 55), that has σ > 1.0*10-4 S/cm at T > 40 °C, and reaches 1*10-3 S/cm at 100 °C. It exhibits constant resistivity under galvanostatic cycling (j= 10 μA.cm-2, 10*4h periods, Li|Li cell, 40 °C) and is electrochemically stable in the 0 V-3.7 V vs. Li/Li+ potential range (Li|stainless steel cell, 1.0 mV/s sweep rate, 40 °C).In Chapter I the context of the thesis is discussed through review of state-of-the-art polymer electrolytes for Li-ion batteries. These are divided into two sub-classes: i) Salt-in-Polymer (SiP) and ii) "Single-Ion" polymer electrolytes. The design of polymer electrolytes towards efficient and effective ionic conductivity is emphasized. Special attention is given to concepts for the organisation of bulk morphology for the creation of ion transport pathways that efficiently percolate through the micron length scale separating electrodes of a battery. Finally, the synthetic strategy implemented in this thesis is described.The principle results of the thesis are presented and discussed in Chapter II. A library of EC-SIPEs are characterised in terms of their electrochemical, thermal and specific ion-transport performances. Resistive features appear at high temperature and are expected to result from the aggregation of ionic end-groups. Surprisingly, the σ of EC-SIPEs having EOn= 55 improves by as much as half an order of magnitude with repeated cycling of temperature to above Tm of crystalline PEO (in the +40 °C to +100 °C range). The analysis of EC-SIPEs having different end-groups and PEO chains having EOn= 8, 10, 20, and 55 lead to the proposition of a tentative model for the percolation of ionic pathways through the EC-SIPE bulk. It is hypothesized that the ionic end-groups are localised at the grain boundaries of PEO domains. Percolation of these boundaries are proposed to be improved under appropriate, mild conditions of temperature and electromagnetic force. Finally, the synthesis methods implemented in this thesis and characterizations of EC-SIPEs are described in Chapter III
Falvo, Cyril. "DYNAMIQUE VIBRATIONNELLE MULTI-QUANTA DANS LES RÉSEAUX QUANTIQUES NON LINÉAIRES: Polarons et bi-polarons dans les bio-polymères et les nanostructures moléculaires." Phd thesis, Université de Franche-Comté, 2006. http://tel.archives-ouvertes.fr/tel-00128559.
Full textLes couplages dipolaires favorisent la délocalisation des vibrations donnant naissance à la propagation d'excitons vibrationnels : les vibrons.
L'anharmonicité intramoléculaire favorise une interaction attractive entre les vibrons et entraîne l'apparition d'états liés. Caractérisés par une localisation de l'interdistance vibronique, les états liés sont l'équivalent quantique d'objets non linéaires tels que les solitons.
L'interaction vibron-phonon modifie la nature des états à travers le mécanisme d'habillage qui traduit la création de polarons qui sont des vibrons habillés par une déformation du réseau. Ce mécanisme diminue la capacité de délocalisation des polarons et correspond à une seconde source de non linéarité.
Notre formalisme, appliqué aux hélices-alpha et aux nanostructures moléculaires, révèle les points suivants:
A température biologique, une hélice-alpha, bien représentée par un modèle 1D, est le siège de deux états liés dont la présence a été observée expérimentalement. A basse température, la nature des états polaroniques reflète le caractère 3D des hélices.
Dans un nanofil de taille finie, la singularité du mécanisme d'habillage entraîne l'apparition d'états localisés.
Les non linéarités locale et non locale permettent un transport énergétique cohérent véhiculé par des états liés liés spécifiques.
Anoukou, Kokou. "Modélisation multi-échelle du comportement mécanique de nanocomposites polymères à renforts d’argile de type montmorillonite : approche micromécanique et simulation de dynamique moléculaire." Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10139/document.
Full textPolymer nanocomposites reinforced with clay minerals have attracted a great consideration during the last two decades. That can be explained, firstly, by the availability and the reduced production cost of the reinforcing phase, and secondly, by the remarkable improvements in physical and mechanical properties. These improvements are observed even at very low amounts of reinforcements compared to their microcomposite counterparts. The development of these new materials creates a keen interest both in academic and industrial research. However, the mechanisms responsible of these property improvements are still poorly understood and remain a major concern of researchers. This work contributes to the understanding and to the development of predictive tools of the mechanical behavior of polymer nanocomposites reinforced with montmorillonite clay using two modeling approaches: the micromechanics of heterogeneous materials and the molecular dynamics simulation. An analytical micromechanical model based on the self-consistent approach is developed. The proposed model is validated by our experimental data and those from the literature. A new molecular dynamics simulation protocol is proposed for the modeling of these nanomaterials at the nanometric scale. This approach has allowed us, inter alia, to get insight into the molecular interactions between the different components and to determine the effective elastic properties of the nanocomposite
Mohamed, Salimo. "Optimisation des systèmes mono- et multi-analytes en spectrométrie de masse après ionisation electrospray. Implications pour la déterminationdes paramètres de distribution des polymères synthétiques." Aix-Marseille 3, 2008. http://www.theses.fr/2008AIX30054.
Full textOptimization of the ionization yield in electrospray mass spectrometry is generally empirical since numerous factors, such as the mobile phase composition, the source geometry and physico-chemical properties of the analyte, are involved in the process. Some parameters cannot be varied independently and synergetic effects of multiple factors may also exist. For systems containing more than one component, selectivity of electrospray response further complicates the way ions are expressed in the mass spectra. The first part of this thesis reports a chemometric approach to optimize ionization conditions for a single component system. The use of design of experiments allowed the identification of parameters which exhibit the greatest influence in the electrospray mechanism, amongst which the mobile phase flow rate, the identification of synergetic effects and a successful prediction of a set of optimal experimental conditions. In a second part, the selectivity of electrospray was explored for small poly(ethylene glycol)s, which are multiple component systems. When the oligomer mixture was ionized, a suppression effect was measured for all but the more hydrophobic congeners for which the response was enhanced. These results could be rationalized using the equilibrium partitioning model. The extend of selectivity was shown to be constant for any studied polymer concentrations as long as the quantity of salt in solution was sufficiently high. Nevertheless, determination of molecular weight distribution parameters was not affected by these effects as these values are average estimations of the polymer size
Mohamed, Rayane. "Analyse quantitative de contaminants chimiques dans des matrices alimentaires par spectrométrie de masse : évaluation de nouvelles technologies de préparation d'échantillon." Paris 6, 2007. http://www.theses.fr/2007PA066362.
Full textMarco, Yann. "Caractérisation multi-axiale du comportement et de la micro-structure d'un semi-cristallin : Application au cas du P.E.T." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2003. http://tel.archives-ouvertes.fr/tel-00005271.
Full textChauvin, David. "Réalisation d'un capteur optofluidique à champ évanescent à base de microrésonateurs polymères pour la détection ultrasensible d'espèces (bio)chimiques à haute toxicité." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN078/document.
Full textHigh sensitivity biochemical sensing is a concern for health, environment and defense. Thanks to the interaction between an analyte and an evanescent field at their surface, label-free polymer microring resonators, in association with a microfluidic channel, form an optofluidic sensor that can be used for biosensing. This thesis shows the realization of versatile optofluidic sensors based on polymer microring resonators combining a high detection limit with a short response time. High limit of detection of heavy ions in tap water was obtained after a careful optimization of the optical and microfluidic designs, signal processing, methodology of detection, surface chemistry and instrumentation. By functionalizing the resonator surface with 2,2’-((4Amino-1,2- Phenylene)Bis(Carboxylatoazanedyil))Diacetate, we obtained a limit of detection of 50 pmol/L in deionized water and 500 pmol/L in tap water. It should be stressed that the functionalized surface of the resonator was regenerated more than 60 times, enabling several sensing experiments with the same resonator. Besides, we were able to optimize the measurement sensitivity by an analysis of the orthogonal polarizations TE and TM from the sensor optical response. The simultaneous use of at least two microresonators in parallel (providing a reference signal and allowing multiplexing) enabled us to improve measurement accuracy and to compensate the signal from various external perturbations such as pressure, temperature and non-specific bindings. These “multi-sensors” are essential for (i) an in-depth understanding of surface reaction mechanism, (ii) an evaluation of the binding efficiency of different functionalization protocols and (iii) a high throughput characterization tool for multiple detections of pollutants
Lara, Garcia Alejandra. "Optimisation de l'adhésion interfaciale dans l'impression 3D multi-polymère pour améliorer les propriétés mécaniques des structures spatialement amorties." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0340.
Full textSolutions for improving multi-polymer FFF interlayer adhesion between PLA and a TPC were studied. Two solutions were proposed: (i) the use of adhesion promoter additives and (ii) the synthesis of copolymers incorporating PLA as building blocks. In the first one, different biosourced additives were individually incorporated into the formulation of the TPC. Filament fabrication conditions were optimized to achieve filaments with no defects and a constant diameter. Evaluation of adhesion was done using a modified version of the T-peel test. Only 2-hydroxyethyl starch presented the highest adhesion enhancement with low variabilities. Findings demonstrate the strategic potential of using modified biosourced additives to boost interfacial adhesion between two incompatible polymers. Furthermore, this formulation did not change the vibration-damping and filtering behavior of the TPC. Therefore, it was possible to print a prototype of protective equipment combining a PLA and the formulated TPC, such as a knee pad, using a multi-polymer FFF. The second solution refers to the synthesis through transesterification reactions of PLA and PBT new multiblock copolymers with a reactive extrusion process. Different experiments were done to optimize the transesterification's conditions. Although FTIR, 1H NMR, DSC and DMA results evidence the presence of the copolymer in small amounts, material had low printability presenting layer delamination. Therefore, the evaluation of adhesion was not achieved with this material
Zeng, Fanfei. "Contribution à la modélisation du comportement mécanique en grandes déformations élastoplastiques de films plastiques d’emballage." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10109.
Full textShrink wrap films are composed of semi-crystalline polymers, possibly combined in multi-layers in order to benefit from the advantages of each of them. This work deals with the modeling of the mechanical behavior (under heat) of such materials in order to predict the improvement of their mechanical capabilities with uniaxial or biaxial drawing. From micro-structural observations and experimental results in uniaxial and biaxial stretching, an original model including three phases (which differ by the average distance between crystalline blocks) is developed for the prediction of the behavior of these films under various solicitations in finite elastoplasticity. In addition to the “crystalline” phase and the “amorphous” phase represented by a standard elastoplastic constitutive law and the classical 8-chain model, respectively, the intermediate phase allows one to take into account the effect of entanglements in the material and to explain the main differences, experimentally observed, between the uniaxial and biaxial behaviors.The model is calibrated from uniaxial tests in the case of PA6 and PE, and then validated for these two materials as well as multi-layer films for the uniaxial and equi-biaxial behaviors. The model is implemented in a finite element software in order to perform structural applications, such as the open hole test and the crack propagation, and validate again the efficiency of our 3-phase model
Dieuzy, Éva. "Relationship between structural and rheological properties of dual-stimuli responsive microgel films for cosmetic and biomedical applications." Thesis, Pau, 2019. http://www.theses.fr/2019PAUU3035.
Full textThis research work relates to colloidal-based films formed by the self-assembly of pH- and thermo-responsive oligo(ethylene glycol) methacrylate-based microgels. In this study, the impact of the microgel structure on the macroscopic and mechanical properties of films has been investigated. To this end, microgels were synthesized with different core-shell architectures by varying the crosslinking density and the crosslinker type. Viscosity and creep measurements on highly concentrated dispersions of microgels have proved to be particularly sensitive to the microgel architecture. More precisely, softer particles with longer and/or more crosslinked dangling chains have a higher ability to interpenetrate and form a stronger network. In addition, the study of the microgel-based films in the linear and non-linear domains confirmed the chain interdiffusion largely drives the mechanism of deformation and consequently, the microgel architecture is a key parameter influencing the macroscopic properties of films. Considering their colloidal assembly, these films have demonstrated excellent mechanical properties such as strain hardening and high strain at break. In addition, they’ve exhibited suitable properties reaching the criteria that the underlying skin substrate imposes, i.e. a low Young’s modulus and a high elongation at break. Finally, in the light of potential industrial uses, a strategy has been developed to broaden and drive the mechanical properties of films by using a water-soluble polymer which is a side-product from the microgel synthesis
Cázares, Cortés Esther Del Carmen. "Synthèse de nanogels biocompatibles et multi-stimulables pour la libération contrôlée d'une molécule modèle par hyperthermie magnétique et photothermie." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066290/document.
Full textHybrid nanogels, composed of thermoresponsive polymers and inorganic responsive nanoparticles, such as magnetic nanoparticles (NPMs) and gold nanorods (AuNRs) are highly interesting for biomedical applications. Their polymeric matrix makes them able to uptake and release high quantities of drugs, whereas nanoparticles can generate heat when exposed to an alternating magnetic field (AMF) for NPMs, and to a near-infrared light for AuNRs. This thesis manuscript focuses on the synthesis and the characterization of biocompatible, pH- and thermoresponsive nanogels, based on oligo(ethylene glycol) monomers (OEGMAs), methacrylic acid (MAA) and encapsulating NPMs and/or AuNR for remotely triggered doxorubicin (DOX, anticancer drug) release, by magnetic hyperthermia or phothothermia. Hybrid magnetic, plasmonic and magneto-plasmonic nanogels were synthesized. Theses nanogels have a hydrodynamic diameter between 200 and 500 nm and a volume phase transition temperature (VPTT) from 30 to 54°C. The nanogels’ swelling-deswelling behavior can be induced by several stimuli (temperature, pH, AMF, NIR-L). These results demonstrate that MagNanoGels are excellent nanocarriers for enhancing cellular internalization enhancing DOX cytotoxicity and that DOX release was significantly enhanced upon exposure to AMF in athermic conditions. In addition, PlasMagNanoGels can efficiently generate heat by photothermy for thermotherapy. Therefore, the intrinsic properties of NPMs for magnetic targeting and as contrast agents for Magnetic Resonance Imaging (MRI), make these nanogels ideal candidates for a new therapeutic approach (diagnosis and treatment) against cancer
Authelin, Olivier. "Méthodologie de préparation à la fabrication de composants de grandes dimensions à partir de matériaux polymères thermoplastiques fondus." Thesis, Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0006.
Full textLarge-sized additively manufactured components made of thermoplastic polymer materials has experienced significant growth since the 2010s, the arrival of innovative materials having made possible to achieve a leap forward in terms of intrinsic mechanical properties. Large-scale demonstrators manufacturing, developed within the scientific literature, has highlighted therelevance of this process for the realization of structural (sports equipments, pedestrian bridges) and non-structural (large-dimension molds and tools) applications. Indeed, the advantages of this process are numerous, such as for example personalized components manufacturing or costs and lead times reduction. However, large-scale demonstrators manufacturing scientific obstacles resulting from state-of-the-art analysis emerges:- “trial - error - correction” procedure is costly in time, resources and money. There is no consensus on a generic method that allows large components manufacturing preparation;- issues concerning toolpaths generation in order to comply with specifications and the choice of a suitable manufacturing means must be resolved. Within the framework of this manuscript is developed a preparation methodology for large-sized components manufacturing made from fused thermoplastic polymer materials. It offers preparation for generic manufacturing, based on a set of process specific rules integrating the consideration of the previously mentioned issues. The steps of the methodology are processed chronologically in each chapter of the manuscript in which the specific issues and the solutions put in place to resolve them are explained. A research axis dedicated to components reinforcement from continuous fibers reinforced materials in order to overcome mechanical properties anisotropy, inherent in additive processes based on fused thermoplastic polymer materials is notably developed. Finally, large-scale demonstrators manufacturing makes it possible to highlight the methodology relevance but also the perspectives that can be brought to it
Mortazavi, Bohayra. "Multiscale modeling of thermal and mechanical properties of nanostructured materials and polymer nanocomposites." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAD007/document.
Full textNanostructured materials are gaining an ongoing demand because of their exceptional chemical and physical properties. Due to complexities and costs of experimental studies at nanoscale, computer simulations are getting more attractive asexperimental alternatives. In this PhD work, we tried to use combination of atomistic simulations and continuum modeling for the evaluation of thermal conductivity and elastic stiffness of nanostructured materials. We used molecular dynamics simulations to probe and investigate the thermal and mechanical response of materials at nanoscale. The finite element and micromechanics methods that are on the basis of continuum mechanics theories were used to evaluate the bulk properties of materials. The predicted properties are then compared with existing experimental results
Lu, Xiaoxin. "Modélisation électro-mécanique multi-échelle des nanocomposites graphène/polymère." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC058/document.
Full textThis work contributes to developing numerical methodologies for predicting the electrical and mechanical properties of graphene/polymer nanocomposites, which can provide a better view for the design of new materials.First, a nonlinear electrical conduction model taking into account the tunneling effect is introduced to determine the effective conductivity of the graphene/polymer nanocomposites through a numerical homogenization procedure. The influences of barrier height and microstructural parameters on the conductivity were demonstrated.Then, to characterize the properties of interphases and interfaces, we employed the Murdoch-Hardy procedure combined with the molecular dynamics method to study the mechanical properties of the graphene/polymer nanocomposites. The stiffness tensor components of the interphase, interface andnbulk polymer region are identified. Based on these fields, a continuous elastic model with imperfect interface has been identified and compared with the results of molecular dynamics simulations.Finally, the atomistic model was used to identify a nonlinear cohesive zone model to simulate the decohesion at the interface of polymer and graphene. A numerical homogenization procedure by finite element method was introduced to estimate the effective mechanical properties in the framework of the finite strains. The proposed mechanical modeling is finally extended to the finite strain problem to predict the evolution of percolation threshold under tension within the proposed electrical model
Zhao, Jing. "Étude des aspects cinétiques et thermodynamiques gouvernant la perméabilité de modèles d’essence à l’interface de deux matériaux polymères barrières : application à l’optimisation de réservoirs pour carburants." Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL088N/document.
Full textResponding to a strong demand for security, weight reduction and volume optimization, the fuel tanks are currently usually made of polymer multi-layer barriers in order to limit vapour emissions into the atmosphere. The prediction of their permeability remains a world-wide critical challenge for the multi-layer optimization. Thanks to original semi-automated experimental set-ups, sorption and permeability measurements were carried out for three leading polymer materials (HDPE, EVOH and Binder) and model fuel mixtures of ethanol, iso-octane and toluene. The modelling of the sorption properties was successfully achieved by the UNIQUAC model and a new model called SORPFIT. The parameters of the diffusion laws according to the TSVF2 or the generalized Long models were also optimized for each polymer despite some difficulty with EVOH. An original methodology was then proposed for predicting the partial fluxes of polymer multi-layers from the characteristic parameters of the corresponding mono-layers. Depending on the nature and disposition of each layer, two scenarios were identified: the kinetics limitation and the thermodynamics limitation of mass transfer, the latter being estimated from the sorption models initially optimized. The comparison of the calculated fluxes with the experimental data obtained for bi-layer and tri-layer films provided by the world-wide industrial company Arkema showed that the predictions were very satisfying. This approach was then extended to the simulation of the permeability of more complex multi-layer structures which are more representative of commercial fuel tanks
Gallu, Raïssa. "Design de polyuréthanes thermoplastiques (TPU) et étude des morphologies multi-échelles de mélanges bitume / TPU." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI087.
Full textThermoplastic polyurethane (TPU) containing hard and soft segments with variable molecular architecture are synthesized in two steps, the first one including a polyurethane pre-polymer. The microstructure of theses polymers shows phase separation occurring between soft and hard segments according to the nature of the segments. Hard segments can organize under two forms, either amorphous or crystalline. The morphology of TPU depends on the chemical structure of the hard segment involved. Incompatibility between soft and hard segments was highlighted from solubility parameters analysis, complete with characterization at various scales with microscopy (electron and AFM) and X-ray scattering technics. Theses thermoplastic polyurethanes are used to prepare bitumen-polymer blends. Interactions between the polymer segments and bitumen fractions are studied, considering solubility parameters of each of them and swelling measurements in order to study miscibility between the compounds. Model oils are used in the aims of mimicking some oily fractions of bitumen, and soft and hard segments are separately synthesized to study properties of each phases in the bitumen-polymer mixture. Multi-scale morphology of the blends is studied in connection with rheological properties and structure of the used polymer. The addition of polymer in bitumen allows to modify viscoelastic properties of bitumen beyond its glass transition due to the selective swelling of the polymer by the oily fractions. Having highlighted and analyzed the selective swelling by considering solubility parameters and interfacial tension measurements, we show that the presence of a continuous polymer-rich phase containing semi-crystalline hard segments in the blends leads to delay the flow of the bituminous material at highest temperatures. The oil composition of this polymer-rich phase will depend on its affinity with the fractions of bitumen and thus on the chemical structure of the polymer. In addition, semi-crystalline hard segment content of the polymer is also a key parameter allowing to adjust its affinity with bitumen and consequently on rheological properties of the bitumen-polymer mixture
Adlafi, Morwan. "Étude d’une protection pour le matériel embarqué du fantassin soumis à des projectiles de type fragment." Thesis, Lorient, 2021. http://www.theses.fr/2021LORIS614.
Full textThe protection of onboard electronic equipment has become a major issue in ensuring the safety of the combatant. We can cite various examples such as the protection of hydrogen cells in vehicles or in a soldier's onboard battery. It is in this context that the thesis is being carried out, studying multi-layers type of protection, solicited by fragment-type projectiles, weighing a few kilograms and at speeds of the order of 10 m/s. In order to ensure the commissioning of such protections, tests and simulations must be carried out over a wide range of stress states. The literature shows that multi-layer structures offer a good compromise between the ability to absorb impact energy and lightness. The studied sandwich is composed of a metallic layer, steel or aluminium, and a polymeric layer. The first part of this thesis is devoted to the characterisation of two sheet metals, namely a DP450 steel and AA2024-T3 aluminium alloy. A new sequenced shear test is proposed to identify the behaviour of the plate at large strains. The plane strain tension test is adapted to identify the dynamic failure of the sheets at strain rate up to 200/s. The second part is devoted to the complete identification of a new PDCPD resin called Nextene. An experimental campaign is carried out in order to identify the parameters of the SAMP behaviour law in the LS-Dyna software. In the last part of the study, structures are subjected to impacts in a catapult, using a 2.5 kilogram projectile at a speed of 10 m/s. Various combinations of sandwiches are compared, and the numerical simulation of the tests is proposed
Bourmaud, Alain Gilles. "Contribution à l'étude multi-échelles de fibres végétales et de biocomposites." Lorient, 2011. http://www.theses.fr/2011LORIS241.
Full textThe depletion of our natural resources as well as the increasing impacts of the society on our environment, involves a necessary modification of composite materials design. Thus, for many industrial products, vegetal fibres could be used to substitute synthetic fibres, as composite materials reinforcement. Due to their hierarchical and multi components structure, the vegetal fibres could be considered, at their scale, as complex composite materials. The purpose of this work is to contribute, at various scales, to the knowledge about the vegetal fibres and the associated composites. First of all, we evidenced the interest of nanoindentation and x-ray diffraction to obtain the mechanical and viscoelastic properties of the cell walls as well as their microfibrillar angles. The second experimental part highlights that the processing of soft water, or dopamine bio mimetic treatments, could significantly improve the division and manualy extraction of under retted flax fibres, or some mechanical properties of elaborated biocomposites. In the last section of this thesis report, we evidenced the influence of various manufacturing processes on the composites and fibres properties as well as those of the recycling on vegetal fibres reinforced composites. We showed a good stabilization of the composites mechanical properties after recycling and an important environmental interest to use a recycled matrix for their elaboration
Çakir, Pinar. "Molecularly imprinted polymer nanostructures by controlled / living radical polymerization with multi-iniferters." Compiègne, 2012. http://www.theses.fr/2012COMP2018.
Full textMolecularly imprinted polymers (MIPs) are synthetic materials with specific recognition properties for target molecules. They are considered an alternative to antibodies and are characterized by a higher chemical and physical stability, better availability and lower cost. Historically, MIPs were synthesized as bulk monoliths that were subsequently broken down mechanically in order to form particles of a size in the micrometer range, with irregular shapes. During the last decade, research has focused on the direct synthesis of spherical MIP micro and nanoparticles, and, more recently, on protein-sized, quasi-soluble MIP nanogels in order to widen the application range of MIPs in the biological field. The main difficulty of synthesizing MIPs with diameters in the low nm region is the low density of the resulting polymer network consisting only of a few polymer chains, which makes it difficult to imprint and maintain a molecular memory. In this thesis, we propose an original approach to the synthesis of quasisoluble MIP nanogels with a size in the low nm range, close to that of real antibodies. The proposed procedure involves a new type of initiator for controlled/living radical polymerization, based on multiple iniferter moieties attached to a dendritic core. This allows for the generation of a higher local radical density, and thus for the synthesis of denser nanogels. By using this strategy, MIP Nanogels of 17 nm size with an appreciable molecular imprinting effect, a good affinity for the target molecule, the chiral drug propranolol, and a good selectivity were obtained. In addition, these multiiniferters were also used for the bottom-up synthesis of thin MIP patterns on silicon wafers, by surface-initiated polymerization. The multi-iniferter was printed on to the surface by soft lithography and chemically attached through its carboxyl-functionalized core, followed by the in-situ synthesis of the MIP. Well defined MIP patterns were obtained, which were characterized by optical emission spectroscopy, Raman spectroscopy, atomic force microscopy, and the specific binding of the target molecule was visualized by fluorescence microscopy. We believe that the synthesis, in solution and at surfaces, of protein-size MIP nanogels with specific recognition properties will provide new opportunities for biosensors and biochips technologies in biomedical applications
Houssat, Mohammed. "Nanocomposite electrical insulation : multiscale characterization and local phenomena comprehension." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30211.
Full textIn the electrical insulation field, it was demonstrated that nanocomposite (NC) organic/inorganic hybrid materials assure a distinct improvement of their high temperature/high voltage functioning and allow the electrical insulation to strengthen its dielectric properties. Recently, it was shown that some modifications of the electrical properties such as permittivity, dielectric breakdown, partial discharges resistance or lifetime are often awarded to the nanoparticle/matrix interphase, a region where the presence of the nanoparticle changes the matrix properties. Moreover, recent studies show that the nanoparticle surface functionalization allows a better dispersion of the particles within the host matrix. This better dispersion affects the interphase zone and plays a major role in the nanocomposite properties improvement as well. However, the role of the interphase remains theoretical and few experimental results exist to describe this phenomenon. Accordingly, because of its nanometer scale, the interphase properties characterization remains a challenge. Two main studies are carried out, during this thesis work, that can provide a better understanding of structure-properties relationships in polymer nanocomposite. First, Atomic Force Microscopy (AFM) is employed to make at the same time qualitative and quantitative measurements of these interaction zones within Polyimide/Silicon Nitride (PI/Si3N4) nanocomposite. The Peak Force Quantitative Nano Mechanical (PF QNM) AFM mode reveals the presence of the interphase by measuring mechanical properties (Young modulus, deformation or adhesion). Electrostatic force microscope (EFM) mode is used in order to detect and measure the matrix and interphase local permittivity. Moreover, the aim of this work is to present the effect of the surface functionalization of silicon nitride (Si3N4) nanoparticles on the interphase regions. Mechanical and electrical quantitative results permit comparing the interphase dimension and properties between treated and untreated Si3N4 nanoparticles. As a result, this new approach to characterize the nanocomposite interphase zone using local measurements confronts experimental results with theoretical models. A new model based on the obtained experimental results is proposed. In addition, the second part of this study presents a macroscopic investigation on the dielectric properties and breakdown strength of neat polyimide, untreated and treated nanocomposite films. Results reveal the interphase role on the reduction of the electrode polarization (EP) phenomenon due to ionic movements especially at high temperatures. For untreated nanoparticles, these effects are less important due to the aggregate formation. In contrast, an EP drastic decrease is obtained by functionalizing the nanofiller surface with a silane coupling agent. Finally, the high temperature breakdown strength for all samples is investigated and shows a considerable increase of nanocomposites dielectric performance at high temperature compared to neat PI
Koepf, Matthieu. "Agrégats multi-porphyriniques pour la conduite photonique." Université Louis Pasteur (Strasbourg) (1971-2008), 2007. http://www.theses.fr/2007STR13030.
Full textWilleman, Héloïse. "Multi-scale characterization of deformation mechanisms of poly-ether-ether-ketone (PEEK) under tensile stretching." Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0006.
Full textThe aim of this PhD work is accessing the microscopic deformation mechanisms of bulk poly-ether-ether-ketone (PEEK) under tensile stretching. Beforehand, the thermal and mechanical properties of two commercial grades of PEEK were characterized. Tensile specimens were then compression-molded to obtain morphologies as isotropic as possible and characterized below and above the glass transition temperature. Deformations at the scales of lamellar stacks and of the crystalline unit cell have been characterized by small and wide-angle X-ray scattering (SAXS and WAXS) performed in-situ during tensile tests. Simultaneously, the strain field within the samples was followed by digital image correlation (DIC) in order to compare microscopic and macroscopic strains. At both temperatures, lamellae tend to orient perpendicular to the tensile direction (TD). This orientation mechanism (which we denote as ‘Chain Network model’) is driven by the amorphous chains which transmit the stress between adjacent lamellae. The tensile strain in lamellar stacks perpendicular to TD is lower than the macroscopic tensile strain, which must be compensated by increased shear in inclined stacks. Some differences of behavior have been observed depending on the test temperature, especially at high deformation. A highly oriented morphology is ultimately obtained in all cases. However, the central scattering profiles changes with testing temperatures. Below Tg, the presence of small entities randomly oriented is indicated. Above Tg, the material is fibrillar and contains cavities
Nguyen, van Thien an. "Sur la modélisation et la simulation du couplage thermo-chimio-mécanique au sein des élastomères chargés." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4787/document.
Full textIn this prospective study, we propose a new thermo-chemo-mechanical coupled model for dissipative filled rubber. This work is based on experimental observations and results from the literature. In this context, we have developed three phenomenological constitutive laws within a generic thermodynamical framework. The models enters the category of the thermodynamics of irreversible processes. Intermediate states are taken into account in the model which is build within the generalized standard materials framework. The degree of cure is introduced as an internal variable. The evolution of this variable takes into account the thermal influence and the mechanical influence via the hydrostatic pressure. This is one of the features making this model original. A finite strains approach is considered. A finite element model is applied to the global problem. A monolithic solution scheme is built based on an implicit Euler scheme associated to a of Newton-Raphson linearization technique. This scheme takes into account the weak compressibility of the material condition through, first, a judicious choice of weak relations between unknowns, and second, an adequate choice of approximations for the unknowns of problem to enforce the stability of the numerical scheme. An object-oriented model for the constitutive equations of the thermo-chemo-mechanical model is proposed and is implemented in Java into the FEMJava code. Some simulations illustrate the high potential of these models in qualitatively reproducing these experimental observations
Diego, Bénédicte. "Gélification du PVC en relation avec sa microstrucuture multi échelles : application à la mise en oeuvre." Lyon, INSA, 2001. http://www.theses.fr/2001ISAL0050.
Full textThe aim of this study is to gain a better understanding of gelation of PVC and of its influence on mechanical and physical properties of final products, as well as finding a way to enlarge the window of processability acting only on the processing conditions of PVC pellets. PVC is an original and complex thermoplastic compared to other semi-crystalline polymers. After polymerization, the resulting structure of the grain of PVC is particular and strongly dependent on the way of synthesis. Bulk and suspension polymerizations lead to a grain with a hierarchised porous structure whereas emulsion polymerization leads to smaller compact spherical particles. This structure will have major influence on the rheological behavior of PVC during its subsequent processing. Despite a low crystallinity rate (ca. 5-10% for a commercial PVC resin), part of the crystallites remain at usual processing temperatures. The phenomenon of gelation of rigid formulations of PVC has been studied for various kinds of resins, relying upon litterature models and our own results. The several ways to measure and control gelation, which plays a major role in ensuring good processability and high quality of final products, have been studied and criticized. Thanks to microstructural ; physical and rheological characterizations, the term of « degelation » is now defined, its influence on the microstructure of PVC and on the flow of PVC during the final processing. « Degelated » rigid pellets have been produced at pilot scale and their advantages in terms of processability, compared with « standard pellets », have been evidenced. Other industrial ways to produce « degelated » pellets have been tested and further extended to plasticized formulations
Castro, Lopez William Camilo. "Modélisation du comportement diffuso-mécanique d'un polymère semi-cristallin sous pression d'eau." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2015. http://www.theses.fr/2015ESMA0010.
Full textComprehension of the hydro-mechanical coupling affecting the mechanical behavior of a semicrystalline polymer (SCP) under high water pressure was the motivation of this research work.In order to describe the water diffusion phenomenon and its impact on the mechanical behavior of the SCP when multiaxial stresses are applied, the effect of the microstructure on the diffuso-mechanical behavior of the polymer was considered for modeling. A constitutive model including void nucleation and growth induced by large strains, and a dependence of the macroscopic mechanical behavior on hydrostatic pressure, is then coupled with a sorption model depending on the microstructure of the polymer.A multiphase representation at two scales is considered: at a ‘macroscopic’ scale, the cavitated SCP under water pressure is considered to be a saturated porous medium with the SCP as the solid phase, and the water saturating the voids as the fluid phase.At a lower scale, the viscoplastic behavior of the SCP has been modeled from the thermodynamics of porous media based on a meso-scale representation of its microstructure with the crystalline lamellae interacting with the free amorphous.The coupled model was implemented into a finite elements code. The simulation results demonstrate the potential of the proposed model, in particular its capability to take into account coupling phenomena between the microstructure of the material, species diffusion and the local state of stresses and strains which contributes to the comprehension of experimental observations
Tanguy, Francois. "Debonding mechanisms of soft adhesives : toward adhesives with a gradient in viscoelasticity." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-01021169.
Full textTriconnet, Karen. "Identification des propriétés mécaniques à partir de mesures de champs dans un matériau multi-phasé." Paris, ENSAM, 2007. https://pastel.archives-ouvertes.fr/tel-00351691.
Full textIn fiber reinforced polymeric matrix, stresses are transferred from the matrix to the reinforcement through a 3D zone called interphase. Its properties result from the physicochemical interactions of components. Two difficulties arise: first, the need to study the interphase once the composite is manufactured and second, its size that varies from a nanometer to few micrometers. The study aims at developing a mechanical properties characterization technique of a microcomposite interphase. Strain fields, given by a numerical derivation from displacement fields, are computed by the virtual fields method in order to identify the rigidities of the interphase material. Two experimental techniques have been developed to measure the displacement field in the interphase during a tensile test: the adaptation of the moiré interferometry with a phase stepping method (micrometer spatial resolution) and the digital image correlation with a far-field microscope (subpixel analysis). A comparison is made between these two techniques applied on this study. The strain field is analyzed through the virtual fields method to determine the parameters governing the interphase constitutive law
FOUCAULT, FREDERIC. "Developpement des techniques de multi-detection : caracterisation de polymeres en chromatographie d'exclusion sterique." Le Mans, 1998. http://www.theses.fr/1998LEMA1012.
Full textLu, Bo. "Rheology and dynamics at the interface of multi micro-/nanolayered polymers." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI133.
Full textInterphase developed at the polymer–polymer interface crucially determines the overall macroscopic properties of multilayered polymers from coextrusion. A better understanding of the interfacial properties involving rheology and dynamics is essential for establishing the processing-structure-property relationship. Therefore, this thesis is focused on a fundamental study of the role of interphase in rheology and dynamics of multicomponent polymers, towards tailoring the interface/interphase in multilayered structures from coexrusion process. The work proceeded from the diffuse interphase in compatible multilayered systems to the reactive interphase in reactive counterparts. Starting with a preliminary study on a model compatible system of PVDF/PMMA blends, we firstly revealed their blending phenomena and physics, involving dynamic heterogeneity in segmental and terminal scales, and locally structural heterogeneity due to the nanoscale interphase. Particularly, the local heterogeneity significantly altered the thermorheological and dynamic behaviours. Based on the findings with blends, we were able to further clarify the effects of interdiffusion and diffuse interphase formation on the structure, rheology and dynamics in compatible multilayered PVDF/PMMA systems fabricated by forced-assembly multilayer coextrusion. The remarkable changes in the rheological and dynamic behaviors of these compatible multilayers were explained in terms of the physical picture for interdiffusion mechanism and physics of diffuse interphase occurring in coextrusion process. Secondly, we incorporated in situ interfacial chemical reaction to multilayered systems based on PVDF-g-MAH/PA6 in comparison to PVDF/PA6 pair, thereby allowing us to probe the generated reactive interphase with graft copolymers from bilayer to multi nanolayers. Influence of interfacial reaction and formed interphase on the resulting macroscopic rheological behaviors and microscopic dynamics were preliminarily elaborated using a stacked model bilayer of PVDF-g-MAH/PA6, by taking into account the factors involving interfacial morphology development, copolymer architecture and reaction extent/time, etc. Based on this preliminary investigation, we further probed the role of interfacial reaction and reactive intephase formation in the coextruded multilayered structures alternating of PVDF-g-MAH/PA6 with the layer thickness varying from micro- to nanoscale. Therein, we investigated systematically the layer architecture/structure, morphology, dielectric properties, charge transport dynamics, and especially the uniaxial extensional rheology of the reactive multilayered polymers in the presence of reactive interphase. Findings obtained in this thesis are aimed at a better understanding of the interfacial properties including rheology, dynamics and dielectric properties, towards controlling the interface/interphase and confinement in multilayered polymers from coextrusion and for their advanced applications
Lemoine, Michael. "Synthèse et caractérisation de copolymères multi-blocs à base de polybutadiene hydroxytelechelique et de polycaprolactone ou de poly (L-acide lactique) : application à la formulation d’adhésifs." Dijon, 2008. http://www.theses.fr/2008DIJOS058.
Full textBardash, Liubov. "Synthesis and investigation of nanostructured polymer composites based on heterocyclic esters and carbon nanotubes." Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10174/document.
Full textThe thesis relates to synthesis and investigation of nanostructured polymer composites based on oligomers of cyanate esters of bisphenol a (DCBA) or cyclic butylene terephthalate (CBT) and multiwalled carbon nanotubes (MWCNTS). Catalytic effect of mwcnts in process of DCBA polycyclotrimerization as well as in cbt polymerization has been observed. Significant increase in crystallization temperature of nanocomposites based on polybutylene terephthalate (cPBT) with adding of MWCNTS is observed. The effect of processing method of cpbt/mwcnts nanocomposites on its electrical properties has been found. It has been established that the additional heating of the samples (annealing) at temperatures above melting of cPBT leads to reagglomeration of MWCNTS in the system. It is established that reagglomeration of MWCNTS results in increase of conductivity values of nanocomposites due to formation of percolation pathways of MWCNTS through polymer matrix. In the case of polycyanurate matrix (PCN), it is found that addition of small mwcnts contents (0.03-0.06 weight percents) provides increasing tensile strength by 62-94 percents. It has been found that addition of even 0.01 weight percents of MWCNTS provides significant increase in storage modulus of cPBT matrix. This is explained by effective dispersing of small amount of the nanofiller during in situ synthesis of pcn or cpbt matrix that is confirmed by microscopy techniques. It has been established that the properties of the nanocomposites based on heterocyclic esters and MWCNTS can be varied from isolator to conductor and has low percolation thresholds (0.22 and 0.38 weight percents for cPBT and PCN nanocomposites respectively). The conductivity of samples is particularly stable on a very large range of temperature from 300 to 10 degrees Kelvin that make these materials perspective for practical applications in microelectronics, as parts of aircraft and space constructions
Yin, Fang. "Copolymères multi-stimulables : effet de la composition et de la structure sur leurs propriétés en solution aqueuse." Thesis, Toulouse 3, 2021. http://www.theses.fr/2021TOU30230.
Full textStimulable polymers have attracted a lot of interest in recent years due to their ability to respond macroscopically, rapidly and reversibly to changes in their local environment, opening the way to multiple promising applications (controlled drug release, modifiable interfaces...). The objective of this thesis is to study the effect of composition, molar mass, architecture, concentration of copolymers on their transformations in aqueous solution triggered by a change of temperature and/or pH (modified by addition of base/acid or by bubbling CO2/N2). In this thesis, we are interested in three families of block or random copolymers carrying functions whose states are modulated by temperature or pH changes: (1) thermosensitive poly((N-vinyl caprolactam)-stat-(N-vinylpyrrolidone)) (P(VCL-stat-VP)) copolymers, (2) thermosensitive poly((n-butylacrylate)-co-(N-isopropylacrylamide)) (P(BA-co-NIPAM)) copolymers with different structures and compositions (diblock, triblock and random) and (3) copolymers sensitive to both stimuli (temperature and pH/CO2): poly((N-isopropylacrylamide)-block-(N-,N-diethylamino ethyl acrylamide)) (PNIPAM-b-PDEAEAM). Their syntheses, carried out by RAFT polymerization, are presented in the manuscript. In addition, we studied the response induced by stimuli on macromolecular parameters of these (co)polymers in water such as the conformation of the chains in solution, the modification of hydrophilicity and/or the ionic charge distributed along the (co)polymer chain. These modifications resulted in the modulations of solubility and influenced the formation of self-assemblies or hydrogels. Thus, after an introduction on the state of the art on stimulable polymers under stimuli of temperature, pH and CO2, the stabilization of colloidal solutions of gold nanoparticles by P(VCL-stat-VP) copolymers with different compositions was the subject of chapter II. The catalytic properties of nanohybrids on the reduction by sodium borohydride of p-nitrophenol to p-aminophenol was studied. The behavior of P(BA-co-NIPAM) with different morphologies (statistical, diblock and triblock) in dilute and concentrated solution under temperature changes was studied and compared in chapter III. This enables to highlight the modification of molecular interactions near critical temperatures. The densities of the formed hydrogels were also compared and a higher density in the case of triblock structures was evidenced. The behavior of PNIPAM-b-PDEAEAM with different compositions in water under change of pH by addition of acid or base and by bubbling CO2/N2 was detailed presented in chapters IV and V respectively. The modifications of the cloud points induced by pH changes as well as the different characteristics of the objects formed were studied. These changes are related to the modifications of the conformations of the (co)polymer chains and the interactions between polymer chains and water at the molecular level
Laggoune, Nérimel. "Assemblages macromoléculaires (multi)stimulables à base de pillar[n]arènes." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10137.
Full textThe pillar[n]arene are an aromatic macrocycles whose one of characteristics is to present a hydrophobic cavity rich in electrons allowing them to form inclusion complexes with molecules deficient in electrons. Self-assembly of macromolecules from building blocks having molecular recognition properties is a way of choosing to form modular materials to order via the application of stimuli (temperature, pH, ...). Compared with cyclodextrin derivatives or calixarenes, few articles discuss the use of pillar[n]arene to design stimulable macromolecular systems. Therefore, we developed a general strategy which, from a derivative pillar[5]arene carrier of trithiocarbonate function to synthesize a controlled manner various macromolecular bricks endowed with molecular recognition properties and therefore able to form various supramolecular architectures with (macro)molecules complementary
Obeid, Hassan. "Durabilité de composites à matrice thermoplastique sous chargement hygro-mécanique : étude multi-physique et multi-échelle des relations microstructure-propriétés-états mécaniques." Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4044/document.
Full textDue to their excellent specific properties, composite materials with organic matrix are increasingly used in transport industry. During their lifetime, these materials can be subjected to aggressive hygroscopic environments. The moisture especially induces the plasticization of the polymer network, which affects its mechanical behavior, as well as dimensional changes occurring during the diffusion process. The purpose of this work is to experimentally characterize the hygro-mechanical behavior of the studied materials during aging under relative humidity conditions. Numerical analysis methods are implemented in order to identify the evolution of material properties during the transient stage of the process. Among these quantities, the present work consists in characterizing the hygroscopic expansion coefficient and the tensile modulus. It will be established that, in order to appropriately reproduce the experimental, it is necessary to develop a multi-physics and multi-scale approach accounting for the local swelling experienced by the polymer during the transient stage of the moisture diffusion process, as well as the decreasing of the elastic modulus. Moreover, some of the proposed hygromechanical models have been extended to the stochastic framework in order to take into account the experimental uncertainties. The proposed models are implemented in the finite element software Abaqus® enabling to perform numerical simulations leading to predictions of the moisture fields and the internal mechanical states. The proposed approach has been validated with the experimental data and several numerical studies involving neat polyamide resin and composites are proposed
Al, Takash Ahmad. "Development of Numerical Methods to Accelerate the Prediction of the Behavior of Multiphysics under Cyclic Loading." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2018. http://www.theses.fr/2018ESMA0014/document.
Full textIn the framework of structural calculation, the reduction of computation time plays an important rolein the proposition of failure criteria in the aeronautic and automobile domains. Particularly, the prediction of the stabilized cycle of polymer under cyclic loading requires solving of a thermo-viscoelastic problem with a high number of cycles. The presence of different time scales, such as relaxation time (viscosity), thermal characteristic time (thermal), and the cycle time (loading) lead to a huge computation time when an incremental scheme is used such as with the Finite Element Method (FEM).In addition, an allocation of memory will be used for data storage. The objective of this thesis isto propose new techniques and to extend existent ones. A transient thermal problem with different time scales is considered in the aim of computation time reduction. The proposed methods are called model reduction methods. First, the Proper Generalized Decomposition method (PGD) was extended to a nonlinear transient cyclic 3D problems. The non-linearity was considered by combining the PGD method with the Discrete Empirical Interpolation Method (DEIM), a numerical strategy used in the literature. Results showed the efficiency of the PGD in generating accurate results compared to the FEM solution with a relative error less than 1%. Then, a second approach was developed in order to reduce the computation time. It was based on the collection of the significant modes calculated from the PGD method for different time scales. A dictionary assembling these modes is then used to calculate the solution for different characteristic times and different boundary conditions. This approach was adapted in the case of a weak coupled diffusion thermal problem. The novelty of this method is to consider a dictionary composed of spatio-temporal bases and not spatial only as usedin the POD. The results showed again an exact reproduction of the solution in addition to a huge time reduction. However, when different cycle times are considered, the number of modes increases which limits the usage of the approach. To overcome this limitation, a third numerical strategy is proposed in this thesis. It consists in considering a priori known time bases and is called the mixed strategy. The originality in this approach lies in the construction of a priori time basis based on the Fourier analysis of different simulations for different time scales and different values of parameters.Once this study is done, an analytical expression of time bases based on parameters such as the characteristic time and the cycle time is proposed. The related spatial bases are calculated using the PGD algorithm. This method is then tested for the resolution of 3D thermal problems under cyclic loading linear and nonlinear and a weak coupled diffusion thermal problem
Azri, Aziz. "Mise en évidence de liaisons hydrogène multi-échelle dans le système PEG-Eau." Lorient, 2011. http://www.theses.fr/2011LORIS250.
Full textThis dissertation deals with the physico-chemical properties in aqueous solutions of short polyethylene-glycol chains. The aggregation ability of PEG600 has been studied with comparison with PEG400 : these oligomers exhibit a critical aggregation constant apparently resulting from the helical configuration of the PEG chain. The constant value which depends on temperature and appears in dilute solutions, has been determined by tensiometry and confirmed by measurements of fluorescence intensity. The rheological properties of concentrated solutions (more than 50 weight percents) have been studied with a cone and plate rheometer with respect to concentration and temperature. The dynamic viscosity increases with concentration and decreases when temperature increases, with an activation energy of 37 kJ mol-1. Characteristic times decrease when concentration increases and temperature decreases. The corresponding activation energy is between -45 and -17,5 kJ mol-1. The order of magnitude of all the activation energies can be compared with the weak bond energy. The existence of helical structures able to aggregate would be worth to be studied and probably to be better used to realise better stimuli-dependent systems