Journal articles on the topic 'Multi-organ-on-chip'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multi-organ-on-chip.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zuchowska, Agnieszka, and Sandra Skorupska. "Multi-organ-on-chip approach in cancer research." Organs-on-a-Chip 4 (December 2022): 100014. http://dx.doi.org/10.1016/j.ooc.2021.100014.
Full textLungu, Iulia Ioana, and Alexandru Mihai Grumezescu. "Microfluidics – Organ-on-chip." Biomedical Engineering International 1, no. 1 (September 30, 2019): 2–8. http://dx.doi.org/10.33263/biomed11.002008.
Full textPalaninathan, Vivekanandan, Vimal Kumar, Toru Maekawa, Dorian Liepmann, Ramasamy Paulmurugan, Jairam R. Eswara, Pulickel M. Ajayan, et al. "Multi-organ on a chip for personalized precision medicine." MRS Communications 8, no. 03 (August 13, 2018): 652–67. http://dx.doi.org/10.1557/mrc.2018.148.
Full textKim, Jinyoung, Junghoon Kim, Yoonhee Jin, and Seung-Woo Cho. "In situ biosensing technologies for an organ-on-a-chip." Biofabrication 15, no. 4 (August 17, 2023): 042002. http://dx.doi.org/10.1088/1758-5090/aceaae.
Full textVivas, Aisen, Albert van den Berg, Robert Passier, Mathieu Odijk, and Andries D. van der Meer. "Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips." Lab on a Chip 22, no. 6 (2022): 1231–43. http://dx.doi.org/10.1039/d1lc00999k.
Full textSatoh, T., S. Sugiura, K. Shin, R. Onuki-Nagasaki, S. Ishida, K. Kikuchi, M. Kakiki, and T. Kanamori. "A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform." Lab on a Chip 18, no. 1 (2018): 115–25. http://dx.doi.org/10.1039/c7lc00952f.
Full textBoeri, Lucia, Luca Izzo, Lorenzo Sardelli, Marta Tunesi, Diego Albani, and Carmen Giordano. "Advanced Organ-on-a-Chip Devices to Investigate Liver Multi-Organ Communication: Focus on Gut, Microbiota and Brain." Bioengineering 6, no. 4 (September 28, 2019): 91. http://dx.doi.org/10.3390/bioengineering6040091.
Full textLoskill, Peter, Thiagarajan Sezhian, Kevin M. Tharp, Felipe T. Lee-Montiel, Shaheen Jeeawoody, Willie Mae Reese, Peter-James H. Zushin, Andreas Stahl, and Kevin E. Healy. "WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue." Lab on a Chip 17, no. 9 (2017): 1645–54. http://dx.doi.org/10.1039/c6lc01590e.
Full textZhao, Yi, Ranjith Kankala, Shi-Bin Wang, and Ai-Zheng Chen. "Multi-Organs-on-Chips: Towards Long-Term Biomedical Investigations." Molecules 24, no. 4 (February 14, 2019): 675. http://dx.doi.org/10.3390/molecules24040675.
Full textSun, Qiyue, Jianghua Pei, Qinyu Li, Kai Niu, and Xiaolin Wang. "Reusable Standardized Universal Interface Module (RSUIM) for Generic Organ-on-a-Chip Applications." Micromachines 10, no. 12 (December 5, 2019): 849. http://dx.doi.org/10.3390/mi10120849.
Full textHuang, Ngan F., Ovijit Chaudhuri, Patrick Cahan, Aijun Wang, Adam J. Engler, Yingxiao Wang, Sanjay Kumar, Ali Khademhosseini, and Song Li. "Multi-scale cellular engineering: From molecules to organ-on-a-chip." APL Bioengineering 4, no. 1 (March 1, 2020): 010906. http://dx.doi.org/10.1063/1.5129788.
Full textGoldstein, Yoel, Sarah Spitz, Keren Turjeman, Florian Selinger, Yechezkel Barenholz, Peter Ertl, Ofra Benny, and Danny Bavli. "Breaking the Third Wall: Implementing 3D-Printing Techniques to Expand the Complexity and Abilities of Multi-Organ-on-a-Chip Devices." Micromachines 12, no. 6 (May 28, 2021): 627. http://dx.doi.org/10.3390/mi12060627.
Full textSung, Jong Hwan. "Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs." Expert Opinion on Drug Metabolism & Toxicology 17, no. 8 (April 5, 2021): 969–86. http://dx.doi.org/10.1080/17425255.2021.1908996.
Full textDehne, Eva-Maria, Tobias Hasenberg, Reyk Horland, and Uwe Marx. "Multi-organ on a chip: Human physiology-based assessment of liver toxicity." Toxicology Letters 280 (October 2017): S75. http://dx.doi.org/10.1016/j.toxlet.2017.07.192.
Full textMorais, Ana Sofia, Maria Mendes, Marta Agostinho Cordeiro, João J. Sousa, Alberto Canelas Pais, Silvia M. Mihăilă, and Carla Vitorino. "Organ-on-a-Chip: Ubi sumus? Fundamentals and Design Aspects." Pharmaceutics 16, no. 5 (May 2, 2024): 615. http://dx.doi.org/10.3390/pharmaceutics16050615.
Full textBaert, Y., I. Ruetschle, W. Cools, A. Oehme, A. Lorenz, U. Marx, E. Goossens, and I. Maschmeyer. "A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model." Human Reproduction 35, no. 5 (May 1, 2020): 1029–44. http://dx.doi.org/10.1093/humrep/deaa057.
Full textAn, Fan, Yueyang Qu, Xianming Liu, Runtao Zhong, and Yong Luo. "Organ-on-a-Chip: New Platform for Biological Analysis." Analytical Chemistry Insights 10 (January 2015): ACI.S28905. http://dx.doi.org/10.4137/aci.s28905.
Full textGiampetruzzi, Lucia, Amilcare Barca, Flavio Casino, Simonetta Capone, Tiziano Verri, Pietro Siciliano, and Luca Francioso. "Multi-Sensors Integration in a Human Gut-On-Chip Platform." Proceedings 2, no. 13 (November 13, 2018): 1022. http://dx.doi.org/10.3390/proceedings2131022.
Full textCecen, Berivan, Christina Karavasili, Mubashir Nazir, Anant Bhusal, Elvan Dogan, Fatemeh Shahriyari, Sedef Tamburaci, Melda Buyukoz, Leyla Didem Kozaci, and Amir K. Miri. "Multi-Organs-on-Chips for Testing Small-Molecule Drugs: Challenges and Perspectives." Pharmaceutics 13, no. 10 (October 11, 2021): 1657. http://dx.doi.org/10.3390/pharmaceutics13101657.
Full textBasak, Sayan. "Unlocking the future: converging multi-organ-on-a-chip on the current biomedical sciences." Emergent Materials 3, no. 5 (September 22, 2020): 693–709. http://dx.doi.org/10.1007/s42247-020-00124-y.
Full textKim, Gyeong-Ji, Kwon-Jai Lee, Jeong-Woo Choi, and Jeung Hee An. "Drug Evaluation Based on a Multi-Channel Cell Chip with a Horizontal Co-Culture." International Journal of Molecular Sciences 22, no. 13 (June 29, 2021): 6997. http://dx.doi.org/10.3390/ijms22136997.
Full textPalama, E., M. Aiello, and S. Scaglione. "200P A novel multi-organ on chip model for metastatic tumor biology understanding." Immuno-Oncology and Technology 20 (December 2023): 100676. http://dx.doi.org/10.1016/j.iotech.2023.100676.
Full textBovard, David, Anita Iskandar, Karsta Luettich, Julia Hoeng, and Manuel C. Peitsch. "Organs-on-a-chip." Toxicology Research and Application 1 (January 1, 2017): 239784731772635. http://dx.doi.org/10.1177/2397847317726351.
Full textDornhof, Johannes, Jochen Kieninger, Harshini Muralidharan, Jochen Maurer, Gerald A. Urban, and Andreas Weltin. "Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures." Lab on a Chip 22, no. 2 (2022): 225–39. http://dx.doi.org/10.1039/d1lc00689d.
Full textFanizza, Francesca, Marzia Campanile, Gianluigi Forloni, Carmen Giordano, and Diego Albani. "Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders." Journal of Tissue Engineering 13 (January 2022): 204173142210953. http://dx.doi.org/10.1177/20417314221095339.
Full textSoragni, Camilla, Gwenaëlle Rabussier, Leon J. de Windt, Sebastian J. Trietsch, Henriëtte L. Lanz, and Chee P. Ng. "High throughput assay to quantify oxidative stress in organ-on-a-chip placenta models in a multi-chip platform." Placenta 112 (September 2021): e26. http://dx.doi.org/10.1016/j.placenta.2021.07.087.
Full textImparato, Giorgia, Francesco Urciuolo, and Paolo Antonio Netti. "Organ on Chip Technology to Model Cancer Growth and Metastasis." Bioengineering 9, no. 1 (January 11, 2022): 28. http://dx.doi.org/10.3390/bioengineering9010028.
Full textWang, Ying I., Carlota Oleaga, Christopher J. Long, Mandy B. Esch, Christopher W. McAleer, Paula G. Miller, James J. Hickman, and Michael L. Shuler. "Self-contained, low-cost Body-on-a-Chip systems for drug development." Experimental Biology and Medicine 242, no. 17 (February 17, 2017): 1701–13. http://dx.doi.org/10.1177/1535370217694101.
Full textZommiti, Mohamed, Nathalie Connil, Ali Tahrioui, Anne Groboillot, Corinne Barbey, Yoan Konto-Ghiorghi, Olivier Lesouhaitier, Sylvie Chevalier, and Marc G. J. Feuilloley. "Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation." Bioengineering 9, no. 11 (November 3, 2022): 646. http://dx.doi.org/10.3390/bioengineering9110646.
Full textRibeiro, Mafalda, Pamela Ali, Benjamin Metcalfe, Despina Moschou, and Paulo R. F. Rocha. "Microfluidics Integration into Low-Noise Multi-Electrode Arrays." Micromachines 12, no. 6 (June 20, 2021): 727. http://dx.doi.org/10.3390/mi12060727.
Full textShinha, Kenta, Wataru Nihei, Tatsuto Ono, Ryota Nakazato, and Hiroshi Kimura. "A pharmacokinetic–pharmacodynamic model based on multi-organ-on-a-chip for drug–drug interaction studies." Biomicrofluidics 14, no. 4 (July 2020): 044108. http://dx.doi.org/10.1063/5.0011545.
Full textYen, Daniel P., Yuta Ando, and Keyue Shen. "A cost-effective micromilling platform for rapid prototyping of microdevices." TECHNOLOGY 04, no. 04 (December 2016): 234–39. http://dx.doi.org/10.1142/s2339547816200041.
Full textCameron, Tiffany C., Avineet Randhawa, Samantha M. Grist, Tanya Bennet, Jessica Hua, Luis G. Alde, Tara M. Caffrey, Cheryl L. Wellington, and Karen C. Cheung. "PDMS Organ-On-Chip Design and Fabrication: Strategies for Improving Fluidic Integration and Chip Robustness of Rapidly Prototyped Microfluidic In Vitro Models." Micromachines 13, no. 10 (September 22, 2022): 1573. http://dx.doi.org/10.3390/mi13101573.
Full textShanti, Aya, Bisan Samara, Amal Abdullah, Nicholas Hallfors, Dino Accoto, Jiranuwat Sapudom, Aseel Alatoom, Jeremy Teo, Serena Danti, and Cesare Stefanini. "Multi-Compartment 3D-Cultured Organ-on-a-Chip: Towards a Biomimetic Lymph Node for Drug Development." Pharmaceutics 12, no. 5 (May 19, 2020): 464. http://dx.doi.org/10.3390/pharmaceutics12050464.
Full textAbu-Dawas, Sadeq, Hawra Alawami, Mohammed Zourob, and Qasem Ramadan. "Design and Fabrication of Low-Cost Microfluidic Chips and Microfluidic Routing System for Reconfigurable Multi-(Organ-on-a-Chip) Assembly." Micromachines 12, no. 12 (December 11, 2021): 1542. http://dx.doi.org/10.3390/mi12121542.
Full textLee, Hyuna, Dae Shik Kim, Sang Keun Ha, Inwook Choi, Jong Min Lee, and Jong Hwan Sung. "A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model." Biotechnology and Bioengineering 114, no. 2 (September 14, 2016): 432–43. http://dx.doi.org/10.1002/bit.26087.
Full textGrigorev, Georgii V., Alexander V. Lebedev, Xiaohao Wang, Xiang Qian, George V. Maksimov, and Liwei Lin. "Advances in Microfluidics for Single Red Blood Cell Analysis." Biosensors 13, no. 1 (January 9, 2023): 117. http://dx.doi.org/10.3390/bios13010117.
Full textSafarzadeh, Melody, Lauren S. Richardson, Ananth Kumar Kammala, Angela Mosebarger, Mohamed Bettayeb, Sungjin Kim, Po Yi Lam, Enkhtuya Radnaa, Arum Han, and Ramkumar Menon. "A multi-organ, feto-maternal interface organ-on-chip, models pregnancy pathology and is a useful preclinical extracellular vesicle drug trial platform." Extracellular Vesicle 3 (June 2024): 100035. http://dx.doi.org/10.1016/j.vesic.2024.100035.
Full textTunesi, Marta, Luca Izzo, Ilaria Raimondi, Diego Albani, and Carmen Giordano. "A miniaturized hydrogel-based in vitro model for dynamic culturing of human cells overexpressing beta-amyloid precursor protein." Journal of Tissue Engineering 11 (January 2020): 204173142094563. http://dx.doi.org/10.1177/2041731420945633.
Full textSticker, Drago, Mario Rothbauer, Sarah Lechner, Marie-Therese Hehenberger, and Peter Ertl. "Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol–ene epoxy thermoset for organ-on-a-chip applications." Lab on a Chip 15, no. 24 (2015): 4542–54. http://dx.doi.org/10.1039/c5lc01028d.
Full textPrete, Alessandro, Antonio Matrone, and Roberto Plebani. "State of the Art in 3D Culture Models Applied to Thyroid Cancer." Medicina 60, no. 4 (March 22, 2024): 520. http://dx.doi.org/10.3390/medicina60040520.
Full textvan Berlo, Damiën, Evita van de Steeg, Hossein Eslami Amirabadi, and Rosalinde Masereeuw. "The potential of multi-organ-on-chip models for assessment of drug disposition as alternative to animal testing." Current Opinion in Toxicology 27 (September 2021): 8–17. http://dx.doi.org/10.1016/j.cotox.2021.05.001.
Full textRajan, Shiny Amala Priya, Julio Aleman, MeiMei Wan, Nima Pourhabibi Zarandi, Goodwell Nzou, Sean Murphy, Colin E. Bishop, et al. "Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform." Acta Biomaterialia 106 (April 2020): 124–35. http://dx.doi.org/10.1016/j.actbio.2020.02.015.
Full textKonopka, Joanna, Dominik Kołodziejek, Magdalena Flont, Agnieszka Żuchowska, Elżbieta Jastrzębska, and Zbigniew Brzózka. "Exploring Endothelial Expansion on a Chip." Sensors 22, no. 23 (December 2, 2022): 9414. http://dx.doi.org/10.3390/s22239414.
Full textOleaga, Carlota, Anne Riu, Sandra Rothemund, Andrea Lavado, Christopher W. McAleer, Christopher J. Long, Keisha Persaud, et al. "Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system." Biomaterials 182 (November 2018): 176–90. http://dx.doi.org/10.1016/j.biomaterials.2018.07.062.
Full textPoloznikov, A. A. "MicroRNA Pattern of Culture Medium as a Substrate for the Analysis of Lysis of Cell Subpopulations in Multiorgan Cell Models." Biotekhnologiya 37, no. 2 (2021): 76–80. http://dx.doi.org/10.21519/0234-2758-2021-37-2-76-80.
Full textFedi, Arianna, Chiara Vitale, Marco Fato, and Silvia Scaglione. "A Human Ovarian Tumor & Liver Organ-on-Chip for Simultaneous and More Predictive Toxo-Efficacy Assays." Bioengineering 10, no. 2 (February 18, 2023): 270. http://dx.doi.org/10.3390/bioengineering10020270.
Full textSafarzadeh, Melody, Lauren Richardson, Ananth Kumar Kammala, Angela Mosebarger, Mohamed Bettayeb, Enkhtuya Radnaa, Sungjin Kim, Po Yi Lam, Arum Han, and RamKumar Menon. "306 A multi-organ-on-chip model to study the efficacy of exosomal therapeutics in treating inflammation-associated adverse pregnancies." American Journal of Obstetrics and Gynecology 230, no. 1 (January 2024): S175. http://dx.doi.org/10.1016/j.ajog.2023.11.328.
Full textSafarzadeh, Melody, Lauren Richardson, Ananth Kumar Kammala, Enkhtuya Radnaa, Sungjin Kim, Po Yi Lam, Arum Han, and RamKumar Menon. "305 A multi-organ fetal membrane-placenta-on-chip platform to study the transmission of infection and inflammation during pregnancy." American Journal of Obstetrics and Gynecology 230, no. 1 (January 2024): S174—S175. http://dx.doi.org/10.1016/j.ajog.2023.11.327.
Full textDíaz Lantada, Andrés, Wilhelm Pfleging, Heino Besser, Markus Guttmann, Markus Wissmann, Klaus Plewa, Peter Smyrek, Volker Piotter, and Josefa García-Ruíz. "Research on the Methods for the Mass Production of Multi-Scale Organs-On-Chips." Polymers 10, no. 11 (November 7, 2018): 1238. http://dx.doi.org/10.3390/polym10111238.
Full text