Academic literature on the topic 'Multi-layer perceptron networks (MLPNs)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multi-layer perceptron networks (MLPNs).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multi-layer perceptron networks (MLPNs)"
Przybył, Krzysztof, Krzysztof Koszela, Franciszek Adamski, Katarzyna Samborska, Katarzyna Walkowiak, and Mariusz Polarczyk. "Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders." Sensors 21, no. 17 (August 30, 2021): 5823. http://dx.doi.org/10.3390/s21175823.
Full textRohman, Budiman Putra Asmaur, and Dayat Kurniawan. "Classification of Radar Environment Using Ensemble Neural Network with Variation of Hidden Neuron Number." Jurnal Elektronika dan Telekomunikasi 17, no. 1 (August 31, 2017): 19. http://dx.doi.org/10.14203/jet.v17.19-24.
Full textBologna, Guido. "A Simple Convolutional Neural Network with Rule Extraction." Applied Sciences 9, no. 12 (June 13, 2019): 2411. http://dx.doi.org/10.3390/app9122411.
Full textCAIRNS, GRAHAM, and LIONEL TARASSENKO. "PERTURBATION TECHNIQUES FOR ON-CHIP LEARNING WITH ANALOGUE VLSI MLPs." Journal of Circuits, Systems and Computers 06, no. 02 (April 1996): 93–113. http://dx.doi.org/10.1142/s0218126696000108.
Full textSuprapto, Suprapto, and Edy Riyanto. "Grape Drying Process Using Machine Vision Based on Multilayer Perceptron Networks." Indonesian Journal of Science and Technology 5, no. 3 (December 1, 2020): 382–94. http://dx.doi.org/10.17509/ijost.v5i3.24991.
Full textGeng, Chao, Qingji Sun, and Shigetoshi Nakatake. "Implementation of Analog Perceptron as an Essential Element of Configurable Neural Networks." Sensors 20, no. 15 (July 29, 2020): 4222. http://dx.doi.org/10.3390/s20154222.
Full textBensaoucha, Saddam, Youcef Brik, Sandrine Moreau, Sid Ahmed Bessedik, and Aissa Ameur. "Induction machine stator short-circuit fault detection using support vector machine." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 40, no. 3 (May 21, 2021): 373–89. http://dx.doi.org/10.1108/compel-06-2020-0208.
Full textLoukeris, Nikolaos, and Iordanis Eleftheriadis. "Further Higher Moments in Portfolio Selection andA PrioriDetection of Bankruptcy, Under Multi-layer Perceptron Neural Networks, Hybrid Neuro-genetic MLPs, and the Voted Perceptron." International Journal of Finance & Economics 20, no. 4 (September 1, 2015): 341–61. http://dx.doi.org/10.1002/ijfe.1521.
Full textPrzybył, Krzysztof, Jolanta Wawrzyniak, Krzysztof Koszela, Franciszek Adamski, and Marzena Gawrysiak-Witulska. "Application of Deep and Machine Learning Using Image Analysis to Detect Fungal Contamination of Rapeseed." Sensors 20, no. 24 (December 19, 2020): 7305. http://dx.doi.org/10.3390/s20247305.
Full textHe, Hao, Jiaxiang Zhao, and Guiling Sun. "Prediction of MoRFs in Protein Sequences with MLPs Based on Sequence Properties and Evolution Information." Entropy 21, no. 7 (June 27, 2019): 635. http://dx.doi.org/10.3390/e21070635.
Full textDissertations / Theses on the topic "Multi-layer perceptron networks (MLPNs)"
Tran-Canh, Dung. "Simulating the flow of some non-Newtonian fluids with neural-like networks and stochastic processes." University of Southern Queensland, Faculty of Engineering and Surveying, 2004. http://eprints.usq.edu.au/archive/00001518/.
Full textZheng, Gonghui. "Design and evaluation of a multi-output-layer perceptron." Thesis, University of Ulster, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338195.
Full textVural, Hulya. "Comparison Of Rough Multi Layer Perceptron And Rough Radial Basis Function Networks Using Fuzzy Attributes." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605293/index.pdf.
Full textlow&rdquo
, &ldquo
medium&rdquo
and &ldquo
high&rdquo
. In the rough fuzzy MLP, initial weights and near optimal number of hidden nodes are estimated using rough dependency rules. A rough fuzzy RBF structure similar to the rough fuzzy MLP is proposed. The rough fuzzy RBF was inspected whether dependencies like the ones in rough fuzzy MLP can be concluded.
Dlugosz, Stephan. "Multi-layer perceptron networks for ordinal data analysis : order independent online learning by sequential estimation /." Berlin : Logos, 2008. http://d-nb.info/990567311/04.
Full textMcGarry, Kenneth J. "Rule extraction and knowledge transfer from radial basis function neural networks." Thesis, University of Sunderland, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391744.
Full textValmiki, Geetha Charan, and Akhil Santosh Tirupathi. "Performance Analysis Between Combinations of Optimization Algorithms and Activation Functions used in Multi-Layer Perceptron Neural Networks." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20204.
Full textAndrade, Kléber de Oliveira. "Sistema neural reativo para o estacionamento paralelo com uma única manobra em veículos de passeio." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/18/18149/tde-21112011-131734/.
Full textThanks to technological advances in the fields of computer science, embedded electronics and mechatronics, robotics is increasingly more present in people\'s lives. On the past few decades a great variety of tools and methods were developed in the Mobile Robotics field, e.g. the passenger vehicles with smart embedded systems. Such systems help drivers through sensors that acquire information from the surrounding environment and algorithms which process this data and make decisions to perform a task, like parking a car. This work aims to present the studies performed on the development of a smart controller able to park a simulated vehicle in parallel parking spaces, where a single maneuver is enough to enter. To accomplish this, studies involving the modeling of environments, vehicle kinematics and sensors were conducted, which were implemented in a simulated environment developed in C# with Visual Studio 2008. Next, a study about the three stages of parking was carried out, which consists in looking for a slot, positioning the vehicle and maneuvering it. The \"S\" trajectory was adopted and developed to maneuver the vehicle, since it is well known and highly used in related works found in the literature of this field. The maneuver consists in the correct positioning of two circumferences with the possible steering radius of the vehicle. For this task, a robust controller based on supervised learning using Artificial Neural Networks (ANN) was employed, since this approach has great robustness regarding the presence of noise in the system. This controller receives data from two laser sensors (one attached on the front of the vehicle and the other on the rear), from the odometry and from the inertial orientation sensor. The data acquired from these sensors and the current maneuver stage of the vehicle are the inputs of the controller, which interprets these data and responds to these stimuli in a correct way in approximately 99% of the cases. The results of the training and simulation were satisfactory, allowing the car controlled by the ANN to correctly park in a parallel slot.
Cherif, Aymen. "Réseaux de neurones, SVM et approches locales pour la prévision de séries temporelles." Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4003/document.
Full textTime series forecasting is a widely discussed issue for many years. Researchers from various disciplines have addressed it in several application areas : finance, medical, transportation, etc. In this thesis, we focused on machine learning methods : neural networks and SVM. We have also been interested in the meta-methods to push up the predictor performances, and more specifically the local models. In a divide and conquer strategy, the local models perform a clustering over the data sets before different predictors are affected into each obtained subset. We present in this thesis a new algorithm for recurrent neural networks to use them as local predictors. We also propose two novel clustering techniques suitable for local models. The first is based on Kohonen maps, and the second is based on binary trees
Oliveira, Rogério Campos de. "Aplicação de máquinas de comitê de redes neurais artificiais na solução de um problema inverso em transferência radiativa." Universidade do Estado do Rio de Janeiro, 2010. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1732.
Full textThis work is based on the concept of neural networks committee machine and has the objective to solve the inverse radiative transfer problem in one-dimensional, homogeneous, absorbing and isotropic scattering media. The artificial neural networks committee machine adds and combines the knowledge acquired by an exact number of specialists which are represented, individually, by each one of the artificial neural networks (ANN) that composes the artificial neural network committee machine. The aim is to reach a final result better than the one obtained by any of the artificial neural network separately, selecting only those artificial neural networks that presents the best results during the generalization phase and discarding the others, what was done in this present work. Here are used two static models of committee machines, using the ensemble arithmetic average, that differ between themselves only by the composition of the output combinator by each one of the committee machine. Are obtained, using artificial neural networks committee machines, estimates for the radiative transfer parameters, that is, medium optical thickness, single scattering albedo and diffuse reflectivities. Finally, the results obtained with both models of committee machine are compared between themselves and with those found using artificial neural networks type multi-layer perceptrons (MLP), isolated. Here that artificial neural networks are named as specialists neural networks, showing that the technique employed brings performance and results improvements with relatively low computational cost.
Börthas, Lovisa, and Sjölander Jessica Krange. "Machine Learning Based Prediction and Classification for Uplift Modeling." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266379.
Full textBehovet av att kunna modellera den verkliga vinsten av riktad marknadsföring har lett till den idag vanligt förekommande metoden inkrementell responsanalys. För att kunna utföra denna typ av metod krävs förekomsten av en existerande testgrupp samt kontrollgrupp och målet är således att beräkna differensen mellan de positiva utfallen i de två grupperna. Sannolikheten för de positiva utfallen för de två grupperna kan effektivt estimeras med statistiska maskininlärningsmetoder. De inkrementella responsanalysmetoderna som undersöks i detta projekt är subtraktion av två modeller, att modellera den inkrementella responsen direkt samt en klassvariabeltransformation. De statistiska maskininlärningsmetoderna som tillämpas är random forests och neurala nätverk samt standardmetoden logistisk regression. Datan är samlad från ett väletablerat detaljhandelsföretag och målet är därmed att undersöka vilken inkrementell responsanalysmetod och maskininlärningsmetod som presterar bäst givet datan i detta projekt. De mest avgörande aspekterna för att få ett bra resultat visade sig vara variabelselektionen och mängden kontrolldata i varje dataset. För att få ett lyckat resultat bör valet av maskininlärningsmetod vara random forests vilken används för att modellera den inkrementella responsen direkt, eller logistisk regression tillsammans med en klassvariabeltransformation. Neurala nätverksmetoder är känsliga för ojämna klassfördelningar och klarar därmed inte av att erhålla stabila modeller med den givna datan. Vidare presterade subtraktion av två modeller dåligt på grund av att var modell tenderade att fokusera för mycket på att modellera klassen i båda dataseten separat, istället för att modellera differensen mellan dem. Slutsatsen är således att en metod som modellerar den inkrementella responsen direkt samt en relativt stor kontrollgrupp är att föredra för att få ett stabilt resultat.
Books on the topic "Multi-layer perceptron networks (MLPNs)"
Dissertation: Autonomous Construction of Multi Layer Perceptron Neural Networks. Storming Media, 1997.
Find full textBook chapters on the topic "Multi-layer perceptron networks (MLPNs)"
Shepherd, Adrian J. "Multi-Layer Perceptron Training." In Second-Order Methods for Neural Networks, 1–22. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0953-2_1.
Full textSuresh, Sundaram, Narasimhan Sundararajan, and Ramasamy Savitha. "Fully Complex-valued Multi Layer Perceptron Networks." In Supervised Learning with Complex-valued Neural Networks, 31–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29491-4_2.
Full textPérez-Miñana, Elena, Peter Ross, and John Hallam. "Multi-layer perceptron design using Delaunay triangulations." In Fuzzy Logic, Neural Networks, and Evolutionary Computation, 188–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61988-7_22.
Full textKhoi, Duong Dang, and Yuji Murayama. "Multi-layer Perceptron Neural Networks in Geospatial Analysis." In Progress in Geospatial Analysis, 125–41. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54000-7_9.
Full textLang, Bernhard. "Monotonic Multi-layer Perceptron Networks as Universal Approximators." In Lecture Notes in Computer Science, 31–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11550907_6.
Full textSureddy, Sneha, and Jeena Jacob. "Multi-features Based Multi-layer Perceptron for Facial Expression Recognition System." In Lecture Notes in Networks and Systems, 206–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84760-9_19.
Full textSuksmono, Andriyan Bayu, and Akira Hirose. "Adaptive Beamforming by Using Complex-Valued Multi Layer Perceptron." In Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003, 959–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44989-2_114.
Full textTrunfio, Giuseppe A. "Enhancing Cellular Automata by an Embedded Generalized Multi-layer Perceptron." In Artificial Neural Networks: Biological Inspirations – ICANN 2005, 343–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11550822_54.
Full textEleuteri, Antonio, Roberto Tagliaferri, and Leopoldo Milano. "Divergence Projections for Variable Selection in Multi–layer Perceptron Networks." In Neural Nets, 287–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45216-4_32.
Full textMahesh, Vijayalakshmi G. V., Alex Noel Joseph Raj, and P. Arulmozhivarman. "Thermal IR Face Recognition Using Zernike Moments and Multi Layer Perceptron Neural Network (MLPNN) Classifier." In Advances in Intelligent Systems and Computing, 213–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60618-7_21.
Full textConference papers on the topic "Multi-layer perceptron networks (MLPNs)"
Motato, Eliot, and Clark Radcliffe. "Recursive Assembly of Multi-Layer Perceptron Neural Networks." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-5997.
Full textMirjalili, Seyedali, and Ali Safa Sadiq. "Magnetic Optimization Algorithm for training Multi Layer Perceptron." In 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN). IEEE, 2011. http://dx.doi.org/10.1109/iccsn.2011.6014845.
Full textKarami, A. R., M. Ahmadian Attari, and H. Tavakoli. "Multi Layer Perceptron Neural Networks Decoder for LDPC Codes." In 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2009. http://dx.doi.org/10.1109/wicom.2009.5303382.
Full textIkuta, Chihiro, Yoko Uwate, and Yoshifumi Nishio. "Investigation of four-layer multi-layer perceptron with glia connections of hidden-layer neurons." In 2013 International Joint Conference on Neural Networks (IJCNN 2013 - Dallas). IEEE, 2013. http://dx.doi.org/10.1109/ijcnn.2013.6706921.
Full textWang, Zihan, Zhaochun Ren, Chunyu He, Peng Zhang, and Yue Hu. "Robust Embedding with Multi-Level Structures for Link Prediction." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/728.
Full textVan Efferen, Lennart, and Amr M. T. Ali-Eldin. "A multi-layer perceptron approach for flow-based anomaly detection." In 2017 International Symposium on Networks, Computers and Communications (ISNCC). IEEE, 2017. http://dx.doi.org/10.1109/isncc.2017.8072036.
Full textMsiza, Ishmael S., Fulufhelo V. Nelwamondo, and Tshilidzi Marwala. "Water Demand Forecasting Using Multi-layer Perceptron and Radial Basis Functions." In 2007 International Joint Conference on Neural Networks. IEEE, 2007. http://dx.doi.org/10.1109/ijcnn.2007.4370923.
Full textNgwar, Melin, and Jim Wight. "A fully integrated analog neuron for dynamic multi-layer perceptron networks." In 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015. http://dx.doi.org/10.1109/ijcnn.2015.7280448.
Full textToderean, Roxana. "Classification of Sensorimotor Rhythms Based on Multi-layer Perceptron Neural Networks." In 2020 International Conference on Development and Application Systems (DAS). IEEE, 2020. http://dx.doi.org/10.1109/das49615.2020.9108910.
Full textAlsmadi, Mutasem khalil, Khairuddin Bin Omar, Shahrul Azman Noah, and Ibrahim Almarashdah. "Performance Comparison of Multi-layer Perceptron (Back Propagation, Delta Rule and Perceptron) algorithms in Neural Networks." In 2009 IEEE International Advance Computing Conference (IACC 2009). IEEE, 2009. http://dx.doi.org/10.1109/iadcc.2009.4809024.
Full text