Academic literature on the topic 'Multi-functional Polymers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multi-functional Polymers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multi-functional Polymers"
Figovsky, Oleg. "New Methods of Preparing Multi-Functional Nanocomposite Coatings." Advanced Materials Research 79-82 (August 2009): 1979–82. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1979.
Full textHanumantharao and Rao. "Multi-Functional Electrospun Nanofibers from Polymer Blends for Scaffold Tissue Engineering." Fibers 7, no. 7 (July 19, 2019): 66. http://dx.doi.org/10.3390/fib7070066.
Full textLeng, Jin Song. "Multi-Functional Soft Smart Materials and their Applications." Advanced Materials Research 410 (November 2011): 25. http://dx.doi.org/10.4028/www.scientific.net/amr.410.25.
Full textNagarajan, M. K. "Multi-functional polyacrylate polymers in detergents." Journal of the American Oil Chemists’ Society 62, no. 5 (May 1985): 949–55. http://dx.doi.org/10.1007/bf02541766.
Full textZafeiropoulou, Konstantina, Christina Kostagiannakopoulou, Anna Geitona, Xenia Tsilimigkra, George Sotiriadis, and Vassilis Kostopoulos. "On the Multi-Functional Behavior of Graphene-Based Nano-Reinforced Polymers." Materials 14, no. 19 (October 5, 2021): 5828. http://dx.doi.org/10.3390/ma14195828.
Full textEndo, Takeshi, and Toshikazu Takata. "Design and synthesis of multi-functional polymers." Kobunshi 37, no. 9 (1988): 662–65. http://dx.doi.org/10.1295/kobunshi.37.662.
Full textPouyan, Paria, Mariam Cherri, and Rainer Haag. "Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications." Polymers 14, no. 13 (June 30, 2022): 2684. http://dx.doi.org/10.3390/polym14132684.
Full textSheikhi, Mohammad Rauf, and Selim Gürgen. "Intelligent Polymers for Multi-Functional Applications: Mechanical and Electrical Aspects." Polymers 15, no. 12 (June 8, 2023): 2620. http://dx.doi.org/10.3390/polym15122620.
Full textWen, WANG, LIN Mei-juan, LING Qi-dan, and ZHANG Wen-gong. "Properties of Multi-functional Polymers Containing Terbium Complex." Acta Physico-Chimica Sinica 21, no. 08 (2005): 857–61. http://dx.doi.org/10.3866/pku.whxb20050807.
Full textWang, Huei-Hsiung, and Mei-Show Lin. "Poly(urea-urethane) polymers with multi-functional properties." Journal of Polymer Research 7, no. 2 (June 2000): 81–90. http://dx.doi.org/10.1007/s10965-006-0107-y.
Full textDissertations / Theses on the topic "Multi-functional Polymers"
Michal, Brian. "Multi-Functional Stimuli-Responsive Polymers." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459440396.
Full textAlexander, Shirin. "Multi functional polymers for drug delivery." Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566691.
Full textNair, Kamlesh Prabhakaran. "Multi-functionalized side-chain supramolecular polymers a methodology towards tunable functional materials /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26505.
Full textCommittee Chair: Weck, Marcus; Committee Member: Breedveld, Victor; Committee Member: Bunz, Uwe; Committee Member: Liotta, Charles; Committee Member: Marder, Seth; Committee Member: Srinivasarao, Mohan. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Chen, Hong. "Development of multi-functional polymeric biomaterials." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1490706379312092.
Full textYu, Zitian. "The Preparation of Gold Nanoparticles for Multi-Functional Surface." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1428063689.
Full textYuan, Xuegang. "Cartilage Repair by Tissue Engineering: Multi-Functional Polymers as Scaffold Materials." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1366820218.
Full textLiu, Qian. "Rational molecular design for multi-functional organic semiconducting materials." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/208254/1/Qian_Liu_Thesis.pdf.
Full textPark, Soo Jeoung. "Photopolymerization-Induced Crystallization in Relation to Solid-Liquid Phase Diagrams of Blends of Blends of Poly(ethylene oxide)/Multi-functional Acrylate Monomers." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1218131827.
Full textZhang, Jiawei. "Multi-functional nanocomposites for the mechanical actuation and magnetoelectric conversion." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00765011.
Full textSantese, Francesca. "Molecular modeling of multi-functional nanostructured materials and coatings." Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/9974.
Full textMateriali e rivestimenti nanostrutturati possono potenzialmente apportare significativi cambiante nel campo della nanoscienze, nonché offrire una nuova generazione di materiali con caratteristiche e performance migliori. A questo proposito le tecniche computazionali diventano uno strumento fondamentale, in grado di ridurre notevolmente i tempi che vanno dall’idea iniziale al prodotto finito. La simulazione molecolare permette infatti la previsione delle proprietà macroscopiche prima che i materiali vengano preparati e caratterizzati sperimentalmente; consente inoltre una migliore comprensione dei fenomeni fisici su scala nanometrica. In questo lavoro di tesi sono presentati alcuni casi studio in cui vengono proposte diverse procedure computazionali per affrontare importanti aspetti come la bagnabilità della superficie, l’effetto della dimensione e della forma delle nanoparticelle e i loro meccanismi di aggregazione/dispersione. In questo contesto, si è dimostrata la vasta applicabilità della modellazione molecolare evidenziando quindi come questa rappresenti un potente strumento per comprendere e controllare le proprietà finali di materiali nanostrutturati, aprendo così la strada ad una progettazione in silico di nuovi materiali.
Nanostructured materials and coatings have the potential to change materials science significantly, as well as to provide a new generation of materials with a quantum improvement in properties. In this regard computational materials science becomes a powerful tool. It is able to rapidly reduce the time from concept to end product. Molecular simulation enables the prediction of properties of these new materials before preparation, processing, and experimental characterization, as well as a better understanding of the physical phenomena at the nanoscale level. In this thesis we present several study cases in which we propose different computational recipes to deal with different important topics such as surface wettability, effect of nanoparticles size and shape and nanoparticles aggregation/dispersion. In this context, we demonstrate the broad applicability of the molecular modelling and we ascertain that molecular simulation represent a powerful tool to understand and control the nanomaterials properties thus opening avenues for the in silico design of new materials.
XXVI Ciclo
1985
Books on the topic "Multi-functional Polymers"
Shahinpoor, Mohsen. Ionic Polymer Metal Composites Set: Smart Multi-Functional Materials and Artificial Muscles, Complete Set. Royal Society of Chemistry, The, 2015.
Find full textShahinpoor, Mohsen. Ionic Polymer Metal Composites: Smart Multi-Functional Materials and Artificial Muscles, Volume 1. Royal Society of Chemistry, The, 2015.
Find full textShahinpoor, Mohsen. Ionic Polymer Metal Composites Vol. 2: Smart Multi-Functional Materials and Artificial Muscles, Volume 2. Royal Society of Chemistry, The, 2015.
Find full textBook chapters on the topic "Multi-functional Polymers"
Argenal, Andres, David Matthews, Connor Murrell, Andrew H. Cannon, Mark Pankow, and Garrett J. Pataky. "Carbon Fiber Reinforced Polymers with Carbon Nanotubes: Investigation of Interlaminar Strength." In Mechanics of Composite, Hybrid & Multi-functional Materials, Volume 5, 1–6. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17445-2_1.
Full textMerzkirch, Matthias, and Tim Foecke. "10° Off-Axis Tensile Testing of Carbon Fiber Reinforced Polymers Using Digital Image Correlation." In Mechanics of Composite and Multi-functional Materials, Volume 5, 55–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30028-9_8.
Full textHosur, Mahesh V., Merlin Theodore, and Shaik Jeelani. "Effects of Functionalization on the Morphology, Cure Kinetics and Mechanical Behavior of Thermosetting Polymers." In IUTAM Symposium on Multi-Functional Material Structures and Systems, 143–52. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3771-8_15.
Full textSadasivuni, Kishor Kumar, Abdullahil Kafy, Lingdong Zhai, Hyun-U. Ko, Seong Cheol Mun, and Jaehwan Kim. "Multi Functional and Smart Graphene Filled Polymers as Piezoelectrics and Actuators." In Graphene-Based Polymer Nanocomposites in Electronics, 67–90. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13875-6_4.
Full textZarras, P., A. Guenthner, D. J. Irvin, J. D. Stenger-Smith, S. Hawkins, L. Baldwin, R. Quintana, et al. "Multi-Functional Electroactive Polymers (EAPs) as Alternatives for Cadmium Based Coatings." In ACS Symposium Series, 133–49. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1050.ch010.
Full textBhattacharyya, D., and R. J. Shields. "Modeling of Fibre Formation and Oxygen Permeability in Micro-fibrillar Polymer-Polymer Composites." In IUTAM Symposium on Multi-Functional Material Structures and Systems, 111–19. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3771-8_12.
Full textDeshmukh, Sujay, and Zoubeida Ounaies. "Active Single Walled Carbon Nanotube–Polymer Composites." In IUTAM Symposium on Multi-Functional Material Structures and Systems, 103–10. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3771-8_11.
Full textHu, Ning, Yoshifumi Karube, and Hisao Fukunaga. "A Strain Sensor from a Polymer/Carbon Nanotube Nanocomposite." In IUTAM Symposium on Multi-Functional Material Structures and Systems, 77–86. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3771-8_8.
Full textWaldman, Laura J., Peter J. Hawrylak, and Michael W. Keller. "Electromagnetic and Mechanical Behavior of Conductive Polymer Materials for Antennas." In Mechanics of Composite and Multi-functional Materials, Volume 5, 69–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30028-9_10.
Full textMoses, Daniel, Siamack Shirazi, and Michael W. Keller. "Reversal of Scratches in Polymer Seals via Laminated Vascular Networks." In Mechanics of Composite and Multi-functional Materials, Volume 5, 81–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30028-9_12.
Full textConference papers on the topic "Multi-functional Polymers"
Lee, Jae Gyeong, Sukyoung Won, Jeong Eun Park, and Jeong Jae Wie. "Multi-Functional 3D Curvilinear Self-Folding of Glassy Polymers." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8407.
Full textMenaBrito, Rodrigo. "Multi-Functional Bio-Based Polymers in Laundry Detergents Prevent Staining and Graying." In Virtual 2020 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2020. http://dx.doi.org/10.21748/am20.121.
Full textWang, Shu. "Design of Multi-Functional Conjugated Polymers for Sensing, Imaging and Biomedical Applications." In Nanophotonics, Nanoelectronics and Nanosensor. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/n3.2013.nsa4c.1.
Full textKelland, Malcolm A., and Janronel Pomicpic. "Multi-Functional Flow Assurance Inhibitors : Three Birds With One Stone?" In SPE International Conference on Oilfield Chemistry. SPE, 2023. http://dx.doi.org/10.2118/213817-ms.
Full textBejgerowski, Wojciech, Satyandra K. Gupta, and Hugh A. Bruck. "A Modeling Approach for Simulating Heat Dissipation From Actuators and Electronic Components Embedded in Thermally Conducting Polymers." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87300.
Full textKawabe, Masanao, Hiroko Kitajima, Hiroyuki Yano, Takahiro Imamura, Masahiro Shimoda, Yasuji Shichijo, and Isamu Akiba. "Syntheses of multi-functional aromatic copolymers (PDVs) with controlled molecular architectures and development of novel low dielectric loss materials from PDVs." In 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics. Polytronic 2007. IEEE, 2007. http://dx.doi.org/10.1109/polytr.2007.4339138.
Full textMcCutcheon, Jeff W. "Ultra-Pure Viscoelastic Damping Polymers and Associated Low Outgassing Materials." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1636.
Full textKalia, Karun, and Amir Ameli. "Interfacial Bond Strength of Various Rigid/Soft Multi-Materials Printed via Fused Filament Fabrication Process." In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2298.
Full textGiaquinto, M., F. Gambino, P. Cicatiello, A. Micco, A. Aliberti, A. M. Cusano, A. Ricciardi, and A. Cusano. "Multiresponsive smart cavity based lab-on-fiber optrode." In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.th1.2.
Full textOkolo, Chinyere, Ahmed Elmarakbi, and Martin Birkett. "Investigating the Thermal and Mechanical Properties of Polyurethane Urea Nanocomposites for Subsea Applications." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95623.
Full textReports on the topic "Multi-functional Polymers"
Perahia, Dvora, and Gary S. Grest. From Interfaces to Bulk: Experimental-Computational Studies Across Time and Length Scales of Multi-Functional Ionic Polymers. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1340575.
Full textAdam J. Moule. Final Closeout report for grant FG36-08GO18018, titled: Functional Multi-Layer Solution Processable Polymer Solar Cells. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1047857.
Full text