Journal articles on the topic 'Multi-fidelity models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multi-fidelity models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Razi, Mani, Robert M. Kirby, and Akil Narayan. "Fast predictive multi-fidelity prediction with models of quantized fidelity levels." Journal of Computational Physics 376 (January 2019): 992–1008. http://dx.doi.org/10.1016/j.jcp.2018.10.025.
Full textPerdikaris, P., M. Raissi, A. Damianou, N. D. Lawrence, and G. E. Karniadakis. "Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2198 (February 2017): 20160751. http://dx.doi.org/10.1098/rspa.2016.0751.
Full textRumpfkeil, Markus P., Dean Bryson, and Phil Beran. "Multi-Fidelity Sparse Polynomial Chaos and Kriging Surrogate Models Applied to Analytical Benchmark Problems." Algorithms 15, no. 3 (March 21, 2022): 101. http://dx.doi.org/10.3390/a15030101.
Full textDiazDelaO, F. A., and S. Adhikari. "Bayesian assimilation of multi-fidelity finite element models." Computers & Structures 92-93 (February 2012): 206–15. http://dx.doi.org/10.1016/j.compstruc.2011.11.002.
Full textRumpfkeil, Markus P., and Philip Beran. "Multi-fidelity surrogate models for flutter database generation." Computers & Fluids 197 (January 2020): 104372. http://dx.doi.org/10.1016/j.compfluid.2019.104372.
Full textBonomo, Anthony L. "Multi-fidelity surrogate modeling for structural acoustics applications." Journal of the Acoustical Society of America 153, no. 3_supplement (March 1, 2023): A287. http://dx.doi.org/10.1121/10.0018869.
Full textPeart, Tanya, Nicolas Aubin, Stefano Nava, John Cater, and Stuart Norris. "Selection of Existing Sail Designs for Multi-Fidelity Surrogate Models." Journal of Sailing Technology 7, no. 01 (January 5, 2022): 31–51. http://dx.doi.org/10.5957/jst/2022.7.2.31.
Full textPeart, Tanya, Nicolas Aubin, Stefano Nava, John Cater, and Stuart Norris. "Multi-Fidelity Surrogate Models for VPP Aerodynamic Input Data." Journal of Sailing Technology 6, no. 01 (February 9, 2021): 21–43. http://dx.doi.org/10.5957/jst/2021.6.1.21.
Full textFarcaș, Ionuț-Gabriel, Benjamin Peherstorfer, Tobias Neckel, Frank Jenko, and Hans-Joachim Bungartz. "Context-aware learning of hierarchies of low-fidelity models for multi-fidelity uncertainty quantification." Computer Methods in Applied Mechanics and Engineering 406 (March 2023): 115908. http://dx.doi.org/10.1016/j.cma.2023.115908.
Full textStyler, Breelyn, and Reid Simmons. "Plan-Time Multi-Model Switching for Motion Planning." Proceedings of the International Conference on Automated Planning and Scheduling 27 (June 5, 2017): 558–66. http://dx.doi.org/10.1609/icaps.v27i1.13858.
Full textYi, Jin, Yichi Shen, and Christine A. Shoemaker. "A multi-fidelity RBF surrogate-based optimization framework for computationally expensive multi-modal problems with application to capacity planning of manufacturing systems." Structural and Multidisciplinary Optimization 62, no. 4 (May 17, 2020): 1787–807. http://dx.doi.org/10.1007/s00158-020-02575-7.
Full textSun, Qi, Tinghuan Chen, Siting Liu, Jianli Chen, Hao Yu, and Bei Yu. "Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design." ACM Transactions on Design Automation of Electronic Systems 27, no. 4 (July 31, 2022): 1–27. http://dx.doi.org/10.1145/3503540.
Full textYoo, Kwangkyu, Omar Bacarreza, and M. H. Ferri Aliabadi. "Multi-fidelity robust design optimisation for composite structures based on low-fidelity models using successive high-fidelity corrections." Composite Structures 259 (March 2021): 113477. http://dx.doi.org/10.1016/j.compstruct.2020.113477.
Full textSong, Xueguan, Liye Lv, Wei Sun, and Jie Zhang. "A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models." Structural and Multidisciplinary Optimization 60, no. 3 (April 1, 2019): 965–81. http://dx.doi.org/10.1007/s00158-019-02248-0.
Full textLiu, Bo, Slawomir Koziel, and Nazar Ali. "SADEA-II: A generalized method for efficient global optimization of antenna design." Journal of Computational Design and Engineering 4, no. 2 (November 20, 2016): 86–97. http://dx.doi.org/10.1016/j.jcde.2016.11.002.
Full textGalindo, José, Roberto Navarro, Francisco Moya, and Andrea Conchado. "Comprehensive Method for Obtaining Multi-Fidelity Surrogate Models for Design Space Approximation: Application to Multi-Dimensional Simulations of Condensation Due to Mixing Streams." Applied Sciences 13, no. 11 (May 23, 2023): 6361. http://dx.doi.org/10.3390/app13116361.
Full textYounis, Adel, and Zuomin Dong. "High-Fidelity Surrogate Based Multi-Objective Optimization Algorithm." Algorithms 15, no. 8 (August 7, 2022): 279. http://dx.doi.org/10.3390/a15080279.
Full textBaldan, Marco, Alexander Nikanorov, and Bernard Nacke. "A parallel multi-fidelity optimization approach in induction hardening." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 39, no. 1 (November 27, 2019): 133–43. http://dx.doi.org/10.1108/compel-05-2019-0221.
Full textGurbuz, Caglar, Martin Eser, Johannes Schaffner, and Steffen Marburg. "A multi-fidelity Gaussian process for efficient frequency sweeps in the acoustic design of a vehicle cabin." Journal of the Acoustical Society of America 153, no. 4 (April 2023): 2006–18. http://dx.doi.org/10.1121/10.0017725.
Full textLeguizamo, David Felipe, Hsin-Jung Yang, Xian Yeow Lee, and Soumik Sarkar. "Deep Reinforcement Learning for Robotic Control with Multi-Fidelity Models." IFAC-PapersOnLine 55, no. 37 (2022): 193–98. http://dx.doi.org/10.1016/j.ifacol.2022.11.183.
Full textPerron, Christian, Dushhyanth Rajaram, and Dimitri N. Mavris. "Multi-fidelity non-intrusive reduced-order modelling based on manifold alignment." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2253 (September 2021): 20210495. http://dx.doi.org/10.1098/rspa.2021.0495.
Full textLi, Yang, Yu Shen, Jiawei Jiang, Jinyang Gao, Ce Zhang, and Bin Cui. "MFES-HB: Efficient Hyperband with Multi-Fidelity Quality Measurements." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (May 18, 2021): 8491–500. http://dx.doi.org/10.1609/aaai.v35i10.17031.
Full textBonfiglio, Luca, Paris Perdikaris, and Stefano Brizzolara. "Multi-fidelity Bayesian Optimization of SWATH Hull Forms." Journal of Ship Research 64, no. 02 (June 1, 2020): 154–70. http://dx.doi.org/10.5957/jsr.2020.64.2.154.
Full textLeifsson, Leifur, and Slawomir Koziel. "Adaptive response prediction for aerodynamic shape optimization." Engineering Computations 34, no. 5 (July 3, 2017): 1485–500. http://dx.doi.org/10.1108/ec-02-2016-0070.
Full textKonrad, Julia, Ionuţ-Gabriel Farcaş, Benjamin Peherstorfer, Alessandro Di Siena, Frank Jenko, Tobias Neckel, and Hans-Joachim Bungartz. "Data-driven low-fidelity models for multi-fidelity Monte Carlo sampling in plasma micro-turbulence analysis." Journal of Computational Physics 451 (February 2022): 110898. http://dx.doi.org/10.1016/j.jcp.2021.110898.
Full textBaldo, Leonardo, Pier Carlo Berri, Matteo D. L. Dalla Vedova, and Paolo Maggiore. "Experimental Validation of Multi-fidelity Models for Prognostics of Electromechanical Actuators." PHM Society European Conference 7, no. 1 (June 29, 2022): 32–42. http://dx.doi.org/10.36001/phme.2022.v7i1.3347.
Full textMorse, Llewellyn, Zahra Sharif Khodaei, and M. H. Aliabadi. "Multi-Fidelity Modeling-Based Structural Reliability Analysis with the Boundary Element Method." Journal of Multiscale Modelling 08, no. 03n04 (September 2017): 1740001. http://dx.doi.org/10.1142/s1756973717400017.
Full textAmrit, Anand, and Leifur Leifsson. "Applications of surrogate-assisted and multi-fidelity multi-objective optimization algorithms to simulation-based aerodynamic design." Engineering Computations 37, no. 2 (August 9, 2019): 430–57. http://dx.doi.org/10.1108/ec-12-2018-0553.
Full textLin, James T., Chun-Chih Chiu, Edward Huang, and Hung-Ming Chen. "A Multi-Fidelity Model Approach for Simultaneous Scheduling of Machines and Vehicles in Flexible Manufacturing Systems." Asia-Pacific Journal of Operational Research 35, no. 01 (February 2018): 1850005. http://dx.doi.org/10.1142/s0217595918500057.
Full textFu, Wenbo, Qiushi Li, Yongshun Song, Yaogen Shu, Zhongcan Ouyang, and Ming Li. "Theoretical analysis of RNA polymerase fidelity: a steady-state copolymerization approach." Communications in Theoretical Physics 74, no. 1 (December 10, 2021): 015601. http://dx.doi.org/10.1088/1572-9494/ac3993.
Full textKoziel, Slawomir, Yonatan Tesfahunegn, and Leifur Leifsson. "Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization." Engineering Computations 33, no. 8 (November 7, 2016): 2320–38. http://dx.doi.org/10.1108/ec-09-2015-0277.
Full textEllison, M., F. A. DiazDelaO, N. Z. Ince, and M. Willetts. "Robust optimisation of computationally expensive models using adaptive multi-fidelity emulation." Applied Mathematical Modelling 100 (December 2021): 92–106. http://dx.doi.org/10.1016/j.apm.2021.07.020.
Full textSONG, Chao, Xudong YANG, and Wenping SONG. "Multi-infill strategy for kriging models used in variable fidelity optimization." Chinese Journal of Aeronautics 31, no. 3 (March 2018): 448–56. http://dx.doi.org/10.1016/j.cja.2018.01.011.
Full textPilania, G., J. E. Gubernatis, and T. Lookman. "Multi-fidelity machine learning models for accurate bandgap predictions of solids." Computational Materials Science 129 (March 2017): 156–63. http://dx.doi.org/10.1016/j.commatsci.2016.12.004.
Full textDu, Wenting, and Jin Su. "Uncertainty Quantification for Numerical Solutions of the Nonlinear Partial Differential Equations by Using the Multi-Fidelity Monte Carlo Method." Applied Sciences 12, no. 14 (July 12, 2022): 7045. http://dx.doi.org/10.3390/app12147045.
Full textXu, Jie, Si Zhang, Edward Huang, Chun-Hung Chen, Loo Hay Lee, and Nurcin Celik. "MO2TOS: Multi-Fidelity Optimization with Ordinal Transformation and Optimal Sampling." Asia-Pacific Journal of Operational Research 33, no. 03 (June 2016): 1650017. http://dx.doi.org/10.1142/s0217595916500172.
Full textAvramova, Maria, Agustin Abarca, Jason Hou, and Kostadin Ivanov. "Innovations in Multi-Physics Methods Development, Validation, and Uncertainty Quantification." Journal of Nuclear Engineering 2, no. 1 (March 7, 2021): 44–56. http://dx.doi.org/10.3390/jne2010005.
Full textKlimczyk, Witold Artur, and Zdobyslaw Jan Goraj. "Analysis and optimization of morphing wing aerodynamics." Aircraft Engineering and Aerospace Technology 91, no. 3 (March 4, 2019): 538–46. http://dx.doi.org/10.1108/aeat-12-2017-0289.
Full textDeng, Xinjian, Enying Li, and Hu Wang. "A Variable-Fidelity Multi-Objective Evolutionary Method for Polygonal Pin Fin Heat Sink Design." Sustainability 15, no. 2 (January 6, 2023): 1104. http://dx.doi.org/10.3390/su15021104.
Full textHe, Lei, Weiqi Qian, Tun Zhao, and Qing Wang. "Multi-Fidelity Aerodynamic Data Fusion with a Deep Neural Network Modeling Method." Entropy 22, no. 9 (September 12, 2020): 1022. http://dx.doi.org/10.3390/e22091022.
Full textYang, Chih-Hsuan, Balaji Sesha Sarath Pokuri, Xian Yeow Lee, Sangeeth Balakrishnan, Chinmay Hegde, Soumik Sarkar, and Baskar Ganapathysubramanian. "Multi-fidelity machine learning models for structure–property mapping of organic electronics." Computational Materials Science 213 (October 2022): 111599. http://dx.doi.org/10.1016/j.commatsci.2022.111599.
Full textZhang, Chi, Chaolin Song, and Abdollah Shafieezadeh. "Adaptive reliability analysis for multi-fidelity models using a collective learning strategy." Structural Safety 94 (January 2022): 102141. http://dx.doi.org/10.1016/j.strusafe.2021.102141.
Full textKoziel, Slawomir, and Stanislav Ogurtsov. "Multi-Objective Design of Antennas Using Variable-Fidelity Simulations and Surrogate Models." IEEE Transactions on Antennas and Propagation 61, no. 12 (December 2013): 5931–39. http://dx.doi.org/10.1109/tap.2013.2283599.
Full textThandayutham, Karthikeyan, and Abdus Samad. "Hydrostructural Optimization of a Marine Current Turbine Through Multi-fidelity Numerical Models." Arabian Journal for Science and Engineering 45, no. 2 (October 8, 2019): 935–52. http://dx.doi.org/10.1007/s13369-019-04185-y.
Full textYang, Yibo, and Paris Perdikaris. "Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems." Computational Mechanics 64, no. 2 (May 21, 2019): 417–34. http://dx.doi.org/10.1007/s00466-019-01718-y.
Full textEaton, Ammon N., Logan D. R. Beal, Samuel D. Thorpe, Casey B. Hubbell, John D. Hedengren, Roar Nybø, and Manuel Aghito. "Real time model identification using multi-fidelity models in managed pressure drilling." Computers & Chemical Engineering 97 (February 2017): 76–84. http://dx.doi.org/10.1016/j.compchemeng.2016.11.008.
Full textGuo, Qi, Jiutao Hang, Suian Wang, Wenzhi Hui, and Zonghong Xie. "Design optimization of variable stiffness composites by using multi-fidelity surrogate models." Structural and Multidisciplinary Optimization 63, no. 1 (July 23, 2020): 439–61. http://dx.doi.org/10.1007/s00158-020-02684-3.
Full textBabaee, H., P. Perdikaris, C. Chryssostomidis, and G. E. Karniadakis. "Multi-fidelity modelling of mixed convection based on experimental correlations and numerical simulations." Journal of Fluid Mechanics 809 (November 21, 2016): 895–917. http://dx.doi.org/10.1017/jfm.2016.718.
Full textQuattrocchi, Gaetano, Matteo D. L. Dalla Vedova, and Pier Carlo Berri. "Lumped parameters multi-fidelity digital twins for prognostics of electromechanical actuators." Journal of Physics: Conference Series 2526, no. 1 (June 1, 2023): 012076. http://dx.doi.org/10.1088/1742-6596/2526/1/012076.
Full textLiu, H., M. Hou, A. Li, and L. Xie. "AN AUTOMATIC EXTRACTION METHOD FOR THE PARAMETERS OF MULTI-LOD BIM MODELS FOR TYPICAL COMPONENTS OF WOODEN ARCHITECTURAL HERITAGE." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W15 (August 23, 2019): 679–85. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w15-679-2019.
Full text