Academic literature on the topic 'Multi-class classifiers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Multi-class classifiers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Multi-class classifiers"
Bourke, Chris, Kun Deng, Stephen D. Scott, Robert E. Schapire, and N. V. Vinodchandran. "On reoptimizing multi-class classifiers." Machine Learning 71, no. 2-3 (April 16, 2008): 219–42. http://dx.doi.org/10.1007/s10994-008-5056-8.
Full textLin, Hung-Yi. "Efficient classifiers for multi-class classification problems." Decision Support Systems 53, no. 3 (June 2012): 473–81. http://dx.doi.org/10.1016/j.dss.2012.02.014.
Full textSiedlecki, Wojciech W. "A formula for multi-class distributed classifiers." Pattern Recognition Letters 15, no. 8 (August 1994): 739–42. http://dx.doi.org/10.1016/0167-8655(94)90001-9.
Full textKang, Seokho, Sungzoon Cho, and Pilsung Kang. "Multi-class classification via heterogeneous ensemble of one-class classifiers." Engineering Applications of Artificial Intelligence 43 (August 2015): 35–43. http://dx.doi.org/10.1016/j.engappai.2015.04.003.
Full textBo, Shukui, and Yongju Jing. "Data Distribution Partitioning for One-Class Extraction from Remote Sensing Imagery." International Journal of Pattern Recognition and Artificial Intelligence 31, no. 09 (February 16, 2017): 1754018. http://dx.doi.org/10.1142/s0218001417540180.
Full textLiu, Jinfu, Mingliang Bai, Na Jiang, Ran Cheng, Xianling Li, Yifang Wang, and Daren Yu. "Interclass Interference Suppression in Multi-Class Problems." Applied Sciences 11, no. 1 (January 5, 2021): 450. http://dx.doi.org/10.3390/app11010450.
Full textMaximov, Yu, and D. Reshetova. "Tight risk bounds for multi-class margin classifiers." Pattern Recognition and Image Analysis 26, no. 4 (October 2016): 673–80. http://dx.doi.org/10.1134/s105466181604009x.
Full textD’Andrea, Eleonora, and Beatrice Lazzerini. "A hierarchical approach to multi-class fuzzy classifiers." Expert Systems with Applications 40, no. 9 (July 2013): 3828–40. http://dx.doi.org/10.1016/j.eswa.2012.12.097.
Full textAbdallah, Loai, Murad Badarna, Waleed Khalifa, and Malik Yousef. "MultiKOC: Multi-One-Class Classifier Based K-Means Clustering." Algorithms 14, no. 5 (April 23, 2021): 134. http://dx.doi.org/10.3390/a14050134.
Full textKrawczyk, Bartosz, Mikel Galar, Michał Woźniak, Humberto Bustince, and Francisco Herrera. "Dynamic ensemble selection for multi-class classification with one-class classifiers." Pattern Recognition 83 (November 2018): 34–51. http://dx.doi.org/10.1016/j.patcog.2018.05.015.
Full textDissertations / Theses on the topic "Multi-class classifiers"
Kybartas, Rimantas. "Multi-class recognition using pair-wise classifiers." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20101001_150424-92661.
Full textDaugelio klasių atpažinimo uždaviniams spręsti yra sukurta aibė sprendimų ir ne visada vieningų rekomendacijų. Dauguma jų paremta empiriniais bandymais, retai atsižvelgiama į statistines duomenų savybes. Dėl to sprendžiant daugelio klasių klasifikavimo uždavinį kyla klausimų, kurį metodą ir kada geriausia naudoti, koks vieno ar kito metodo patikimumas. Disertacijoje nagrinėjami dviejų pakopų sprendimo priėmimo metodai, kai pirmame etape sudaromi klasifikatoriai poroms (angl. pair-wise), sugebantys geriau išnaudoti klasių tarpusavio statistines savybes, o kitame etape yra atliekamas klasifikatorių poroms rezultatų apjungimas. Tyrime ypatingas dėmesys yra skiriamas klasifikatorių poroms sudėtingumui, mokymo duomenų kiekiui bei algoritmų kokybės įvertinimo tikslumui. Tikslumas labai priklauso nuo duomenų bei atliktų eksperimentų kiekio (duomenų permaišymo klasėse, juos skirstant į mokymo ir testavimo). Parodyta, jog dėl žemo įvertinimo tikslumo kai kurių publikuotų algoritmų deklaruojamas pranašumas prieš žinomus algoritmus nėra patikimas. Darbe atliktas detalus žinomų metodų palyginimas bei pristatytas naujai sukurtas klasifikatorių poroms apjungimo algoritmas, kuris yra paremtas analogišku algoritmu daugelio klasių klasifikatorių rezultatų apjungimui. Pateiktos bendros rekomendacijos, kaip projektuotojui elgtis daugelio klasių atveju. Pasiūlyti metodai, leidžiantys sumažinti klasifikavimo klaidą atliekant klasifikatorių poroms apjungimo koregavimą, kad algoritmas nebūtų... [toliau žr. visą tekstą]
Abd, Rahman Mohd Amiruddin. "Kernel and multi-class classifiers for multi-floor WLAN localisation." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/13768/.
Full textBeneš, Jiří. "Unární klasifikátor obrazových dat." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442432.
Full textOdabai, Fard Seyed Hamidreza. "Efficient multi-class objet detection with a hierarchy of classes." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22623/document.
Full textRecent years have witnessed a competition in autonomous navigation for vehicles boosted by the advances in computer vision. The on-board cameras are capable of understanding the semantic content of the environment. A core component of this system is to localize and classify objects in urban scenes. There is a need to have multi-class object detection systems. Designing such an efficient system is a challenging and active research area. The algorithms can be found for applications in autonomous driving, object searches in images or video surveillance. The scale of object classes varies depending on the tasks. The datasets for object detection started with containing one class only e.g. the popular INRIA Person dataset. Nowadays, we witness an expansion of the datasets consisting of more training data or number of object classes. This thesis proposes a solution to efficiently learn a multi-class object detector. The task of such a system is to localize all instances of target object classes in an input image. We distinguish between three major efficiency criteria. First, the detection performance measures the accuracy of detection. Second, we strive low execution times during run-time. Third, we address the scalability of our novel detection framework. The two previous criteria should scale suitably with the number of input classes and the training algorithm has to take a reasonable amount of time when learning with these larger datasets. Although single-class object detection has seen a considerable improvement over the years, it still remains a challenge to create algorithms that work well with any number of classes. Most works on this subject extent these single-class detectors to work accordingly with multiple classes but remain hardly flexible to new object descriptors. Moreover, they do not consider all these three criteria at the same time. Others use a more traditional approach by iteratively executing a single-class detector for each target class which scales linearly in training time and run-time. To tackle the challenges, we present a novel framework where for an input patch during detection the closest class is ranked highest. Background labels are rejected as negative samples. The detection goal is to find the highest scoring class. To this end, we derive a convex problem formulation that combines ranking and classification constraints. The accuracy of the system is improved by hierarchically arranging the classes into a tree of classifiers. The leaf nodes represent the individual classes and the intermediate nodes called super-classes group recursively these classes together. The super-classes benefit from the shared knowledge of their descending classes. All these classifiers are learned in a joint optimization problem along with the previouslymentioned constraints. The increased number of classifiers are prohibitive to rapid execution times. The formulation of the detection goal naturally allows to use an adapted tree traversal algorithm to progressively search for the best class but reject early in the detection process the background samples and consequently reduce the system’s run-time. Our system balances between detection performance and speed-up. We further experimented with feature reduction to decrease the overhead of applying the high-level classifiers in the tree. The framework is transparent to the used object descriptor where we implemented the histogram of orientated gradients and deformable part model both introduced in [Felzenszwalb et al., 2010a]. The capabilities of our system are demonstrated on two challenging datasets containing different object categories not necessarily semantically related. We evaluate both the detection performance with different number of classes and the scalability with respect to run-time. Our experiments show that this framework fulfills the requirements of a multi-class object detector and highlights the advantages of structuring class-level knowledge
Verschae, Tannenbaum Rodrigo. "Object Detection Using Nested Cascades of Boosted Classifiers. A Learning Framework and Its Extension to The Multi-Class Case." Tesis, Universidad de Chile, 2010. http://www.repositorio.uchile.cl/handle/2250/102398.
Full textMauricio-Sanchez, David, Andrade Lopes Alneu de, and higuihara Juarez Pedro Nelson. "Approaches based on tree-structures classifiers to protein fold prediction." Institute of Electrical and Electronics Engineers Inc, 2017. http://hdl.handle.net/10757/622536.
Full textProtein fold recognition is an important task in the biological area. Different machine learning methods such as multiclass classifiers, one-vs-all and ensemble nested dichotomies were applied to this task and, in most of the cases, multiclass approaches were used. In this paper, we compare classifiers organized in tree structures to classify folds. We used a benchmark dataset containing 125 features to predict folds, comparing different supervised methods and achieving 54% of accuracy. An approach related to tree-structure of classifiers obtained better results in comparison with a hierarchical approach.
Revisión por pares
Abdelhamid, Neda. "Deriving classifiers with single and multi-label rules using new Associative Classification methods." Thesis, De Montfort University, 2013. http://hdl.handle.net/2086/10120.
Full textSon, Kyung-Im. "A multi-class, multi-dimensional classifier as a topology selector for analog circuit design / by Kyung-Im Son." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5919.
Full textBautista, Martín Miguel Ángel. "Learning error-correcting representations for multi-class problems." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396124.
Full textEn la vida cotidiana las tareas de decisión multi-clase surgen constantemente. En el campo de Reconocimiento de Patrones muchos métodos de clasificación binaria han sido propuestos obteniendo resultados altamente satisfactorios en términos de rendimiento. Sin embargo, la extensión de estos sofisticados clasificadores binarios al contexto multi-clase es una tarea compleja. En este ámbito, las estrategias de Códigos Correctores de Errores (CCEs) han demostrado ser una herramienta muy potente para tratar la combinación de clasificadores binarios. No obstante, la mayoría de arquitecturas de combinación de clasificadores binarios negligen la estructura del problema multi-clase. Sin embargo, el análisis de la distribución de corrección de errores entre clases es aún un problema abierto. En esta tesis doctoral, nos centramos en tratar problemas críticos de los códigos correctores de errores; la definición del número de clasificadores necesarios para tratar un problema multi-clase arbitrario; la adaptación de los problemas binarios al problema multi-clase y cómo distribuir la corrección de errores entre clases. Para dar respuesta a estas cuestiones, en esta tesis doctoral describimos varias propuestas. 1) Definimos una nueva representación para CCEs que expresa la separabilidad entre pares de códigos y nos permite una mejor comprensión de cómo se distribuye la corrección de errores entre distintas clases. 2) Estudiamos el efecto de usar un número logarítmico de clasificadores binarios para tratar el problema multi-clase con el objetivo de obtener modelos muy eficientes. 3) Con el objetivo de encontrar modelos muy eficientes que tienen en cuenta la estructura del problema multi-clase utilizamos algoritmos genéticos que tienen en cuenta las restricciones de los ECCs. 4) Pro- ponemos un algoritmo de factorización de matrices discreta que encuentra ECCs con una configuración que distribuye corrección de error a aquellas categorías que son más propensas a tener errores. Las metodologías propuestas son evaluadas en distintos problemas reales y sintéticos como por ejemplo: Repositorio UCI de Aprendizaje Automático, reconocimiento de símbolos escritos, clasificación de señales de tráfico y reconocimiento de la pose humana. Los resultados obtenidos en esta tesis muestran mejoras significativas en rendimiento comparados con los diseños tradiciones de ECCs cuando las distintas propuestas se tienen en cuenta.
Rocha, Anderson de Rezende 1980. "Classificadores e aprendizado em processamento de imagens e visão computacional." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276019.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto da Computação
Made available in DSpace on 2018-08-12T17:37:15Z (GMT). No. of bitstreams: 1 Rocha_AndersondeRezende_D.pdf: 10303487 bytes, checksum: 243dccfe5255c828ce7ead27c27eb1cd (MD5) Previous issue date: 2009
Resumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação.
Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques.
Doutorado
Engenharia de Computação
Doutor em Ciência da Computação
Book chapters on the topic "Multi-class classifiers"
Xiao, Han, Thomas Stibor, and Claudia Eckert. "Evasion Attack of Multi-class Linear Classifiers." In Advances in Knowledge Discovery and Data Mining, 207–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30217-6_18.
Full textRoth, Volker. "Probabilistic Discriminative Kernel Classifiers for Multi-Class Problems." In Lecture Notes in Computer Science, 246–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45404-7_33.
Full textHadjadji, Bilal, Youcef Chibani, and Hassiba Nemmour. "Fuzzy Integral Combination of One-Class Classifiers Designed for Multi-class Classification." In Lecture Notes in Computer Science, 320–28. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11758-4_35.
Full textRaudys, Sarunas, Vitalij Denisov, and Antanas Andrius Bielskis. "A Pool of Classifiers by SLP: A Multi-class Case." In Lecture Notes in Computer Science, 47–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11867661_5.
Full textSan, Cho Cho, Mie Mie Su Thwin, and Naing Linn Htun. "Malicious Software Family Classification using Machine Learning Multi-class Classifiers." In Lecture Notes in Electrical Engineering, 423–33. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2622-6_41.
Full textSchirra, Lyn-Rouven, Florian Schmid, Hans A. Kestler, and Ludwig Lausser. "Interpretable Classifiers in Precision Medicine: Feature Selection and Multi-class Categorization." In Artificial Neural Networks in Pattern Recognition, 105–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46182-3_9.
Full textTakenouchi, Takashi, and Shin Ishii. "A Unified Framework of Binary Classifiers Ensemble for Multi-class Classification." In Neural Information Processing, 375–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34481-7_46.
Full textHirasawa, Shigeichi, Gendo Kumoi, Manabu Kobayashi, Masayuki Goto, and Hiroshige Inazumi. "System Evaluation of Construction Methods for Multi-class Problems Using Binary Classifiers." In Advances in Intelligent Systems and Computing, 909–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77712-2_86.
Full textYukinawa, Naoto, Shigeyuki Oba, Kikuya Kato, and Shin Ishii. "Multi-class Pattern Classification Based on a Probabilistic Model of Combining Binary Classifiers." In Lecture Notes in Computer Science, 337–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11550907_54.
Full textTheissler, Andreas, Simon Vollert, Patrick Benz, Laurentius A. Meerhoff, and Marc Fernandes. "ML-ModelExplorer: An Explorative Model-Agnostic Approach to Evaluate and Compare Multi-class Classifiers." In Lecture Notes in Computer Science, 281–300. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57321-8_16.
Full textConference papers on the topic "Multi-class classifiers"
Xu, Jie, Xianglong Liu, Zhouyuan Huo, Cheng Deng, Feiping Nie, and Heng Huang. "Multi-Class Support Vector Machine via Maximizing Multi-Class Margins." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/440.
Full textGautam, Chandan, Aruna Tiwari, and Sriram Ravindran. "Construction of multi-class classifiers by Extreme Learning Machine based one-class classifiers." In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727445.
Full textTao Ban and S. Abe. "Implementing Multi-class Classifiers by One-class Classification Methods." In The 2006 IEEE International Joint Conference on Neural Network Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/ijcnn.2006.246699.
Full textDanielsson, Oscar, and Stefan Carlsson. "Projectable classifiers for multi-view object class recognition." In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE, 2011. http://dx.doi.org/10.1109/iccvw.2011.6130295.
Full textMai, Tien-Dung, Thanh Duc Ngo, Duy-Dinh Le, Duc Anh Duong, Kiem Hoang, and Shin'ichi Satoh. "Large scale multi-class classification using latent classifiers." In 2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2015. http://dx.doi.org/10.1109/mmsp.2015.7340800.
Full textKumar, Himanshu, and P. S. Sastry. "Robust Loss Functions for Learning Multi-class Classifiers." In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2018. http://dx.doi.org/10.1109/smc.2018.00125.
Full textTraganitis, Panagiotis A., and Georgios B. Giannakis. "Blind Multi-class Ensemble Learning with Dependent Classifiers." In 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018. http://dx.doi.org/10.23919/eusipco.2018.8553113.
Full textMangalkar, Priyanka, and Vaishali Barkade. "Efficient Categorization of Document with J48 Multi-Class Classifiers." In 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA). IEEE, 2019. http://dx.doi.org/10.1109/iccubea47591.2019.9128665.
Full textDe-Qiang Han, Chong-Zhao Han, and Yi Yang. "Multi-class SVM classifiers fusion based on evidence combination." In International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR '07. IEEE, 2007. http://dx.doi.org/10.1109/icwapr.2007.4420736.
Full textBeekhof, Fokko, Sviatoslav Voloshynovskiy, Oleksiy Koval, and Taras Holotyak. "Multi-class classifiers based on binary classifiers: Performance, efficiency, and minimum coding matrix distances." In 2009 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2009. http://dx.doi.org/10.1109/mlsp.2009.5306199.
Full text