To see the other types of publications on this topic, follow the link: Multi chamber cylinder.

Journal articles on the topic 'Multi chamber cylinder'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 47 journal articles for your research on the topic 'Multi chamber cylinder.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ho Cho, Seung, Olli Niemi-Pynttäri, and Matti Linjama. "Friction characteristics of a multi-chamber cylinder for digital hydraulics." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, no. 5 (March 2, 2015): 685–98. http://dx.doi.org/10.1177/0954406215575414.

Full text
Abstract:
This paper deals with the issue of defining friction characteristics of a multi-chamber cylinder for digital hydraulics. Using a multi-chamber cylinder under a set of supply pressures, friction characteristics are experimentally investigated for a range of velocity according to load conditions. A binary digit-based pressure e.g., high pressure or low pressure has been applied to each chamber. The friction force is measured based on the equation of motion using measured values of the pressures in the chambers of the multi-chamber cylinder and the position of the piston. As a mechanism to load the multi-chamber cylinder, a 1-Degree of Freedom (DOF) boom mockup mimicking a medium-sized mobile machine boom has been constructed. Then it has been utilized to test the motion of the cylinder under different mass–load conditions. It is shown that the cylinder states do not dominantly affect the friction force of a multi-chamber cylinder, comparing the effect of other parameter such as mass load and velocity, which is expected to be useful for the secondary control of digital hydraulic systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Tolou, Sedigheh, and Harold Schock. "Experiments and modeling of a dual-mode, turbulent jet ignition engine." International Journal of Engine Research 21, no. 6 (September 30, 2019): 966–86. http://dx.doi.org/10.1177/1468087419875880.

Full text
Abstract:
The dual-mode, turbulent jet ignition system is a promising combustion technology to achieve high diesel-like thermal efficiency at medium to high loads and potentially exceed diesel efficiency at low-load operating conditions. The dual-mode, turbulent jet ignition systems to date proved a high level of improvement in thermal efficiency compared to conventional internal combustion engines. However, some questions were still unanswered. The most frequent question regarded power requirements for delivering air to the pre-chamber of a dual-mode, turbulent jet ignition system. In addition, there was no study available to predict the expected efficiency of a dual-mode, turbulent jet ignition engine in a multi-cylinder configuration. This study, for the first time, predicts the ancillary work requirement to operate the dual-mode, turbulent jet ignition system. It also presents a novel, reduced order, and physics-based model of the dual-mode, turbulent jet ignition engine with a pre-chamber valve assembly. The developed model was calibrated based on experimental data from the Prototype II dual-mode, turbulent jet ignition engine. The simulation results were in good agreement with the experimental data. The validity of the model was observed based on the standard metric of the coefficient of determination as well as comparison plots for in-cylinder pressures. Numerical predictions were compared to experiments for three metrics of main chamber combustion: gross indicated mean effective pressure, main chamber peak pressure, and main chamber phasing for the peak pressure. Predictions were within 5% of experimental data, with one exception of 6%. In addition, the absolute root mean square errors of in-cylinder pressures for both pre- and main-combustion chambers were below 0.35. The calibrated model was further studied to introduce a predictive and generalized model for dual-mode, turbulent jet ignition engines. Such a model can project engine behavior in a multi-cylinder configuration over the entire engine fuel map.
APA, Harvard, Vancouver, ISO, and other styles
3

Xing, Hui, Lei Guo, and Ji Wu. "Multi-Field Coupling Modeling and Analysis for Cylinder Liner of Slow Speed Two Stroke Marine Diesel Engine." Advanced Materials Research 1070-1072 (December 2014): 1856–60. http://dx.doi.org/10.4028/www.scientific.net/amr.1070-1072.1856.

Full text
Abstract:
To predict accurately the stress and deformation of combustion chamber components of large slow speed two stroke marine diesel engines, based on AVL Fire and ANSYS Workbench software, multi-field coupling modeling and analysis technology was employed to carry out the strength analysis for combustion chamber components of crosshead type marine diesel engine. The boundary conditions, i.e., the temperature field distribution, the mean temperature and the mean heat transfer coefficient are obtained firstly. Then the strength analysis for cylinder liner of crosshead type marine diesel engine under the thermal loads, mechanical loads and thermal mechanical coupled loads was conducted. The results show that the strength meets the design requirement and the stress concentration and the deformation of the cylinder liner were mainly dependent on the thermal load.
APA, Harvard, Vancouver, ISO, and other styles
4

Schneider, Bruno, Christian Schürch, Konstantinos Boulouchos, Stefan Herzig, Marc Hangartner, David Humair, Silas Wüthrich, Christoph Gossweiler, and Kai Herrmann. "The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions." Energies 13, no. 7 (April 8, 2020): 1794. http://dx.doi.org/10.3390/en13071794.

Full text
Abstract:
A new test rig has been designed, built and commissioned, and is now jointly pursued to facilitate experimental investigations into advanced combustion processes (i.e., dual fuel, multi-mode) under turbulent conditions at high, engine-like temperature and pressure levels. Based on a standard diesel engine block, it offers much improved optical access to the in-cylinder processes due to its separated and rotated arrangement of the compression volume and combustion chamber, respectively. A fully variable pneumatic valve train and the appropriate preconditioning of the intake air allows it to represent a wide range of engine-like in-cylinder conditions regarding pressures, temperatures and turbulence levels. The modular design of the test rig facilitates easy optimizations of the combustion chamber/cylinder head design regarding different experimental requirements. The name of the new test rig, Flex-OeCoS, denotes its Flexibility regarding Optical engine Combustion diagnostics and/or the development of corresponding Sensing devices and applications. Measurements regarding in-cylinder gas pressures, temperatures and the flow field under typical operating conditions are presented to complete the description and assessment of the new test rig.
APA, Harvard, Vancouver, ISO, and other styles
5

Dong, Yi, Jianmin Liu, Yanbin Liu, Huaying LI, Shaoliang Zhang, Xuesong Hu, and Xiaoming Zhang. "Structure optimization of gasket based on orthogonal experiment and NSGA-II." Science Progress 104, no. 2 (April 2021): 003685042110113. http://dx.doi.org/10.1177/00368504211011347.

Full text
Abstract:
With the aim of enhancing both reliability and fatigue life of gasket, this study combines finite element analysis, orthogonal experimental design, dynamically-guided multi-objective optimization, and the non-dominated sorting genetic algorithm with elitist strategy to optimize the geometric parameters of the cylinder gasket. The finite element method was used to analyze the temperature field, thermal-mechanical coupling stress field, and deformation of cylinder gasket. The calculation results were experimentally validated by measured temperature data, and comparison results show that the maximum error between calculated value and experiment value is 7.1%, which is acceptable in engineering problems. Based on above results and orthogonal experiment design method, the effects of five factors, including diameter of combustion chamber circle, diameter of coolant flow hole, length of the insulation zone between third and fourth cylinders, thickness of gasket, and bolt preload, on three indexes: temperature, stress, and deformation of gasket, were examined in depth. Through the variance analysis of the results, three important factors were identified to proceed later calculation. The dynamically guided multi-objective optimization strategy and the non-dominated sorting genetic algorithm were effectively used and combined to determine the optimal geometric parameters of cylinder gasket. Furthermore, calculation results suggest that temperature, stress, and deformation of the optimized cylinder gasket have been improved by 27.88 K, 16.84 MPa, and 0.0542 mm, respectively when compared with the origin object, which shows the excellent performance of gasket optimization and effectiveness of the proposed optimization strategy.
APA, Harvard, Vancouver, ISO, and other styles
6

Yuan, Ye, Guo Xiu Li, Yu Song Yu, Peng Zhao, and Hong Meng Li. "Multi-Dimensional Simulation on the Matching of Combustion Chamber and Injection Pressure for a Heavy-Duty Diesel Engine." Advanced Materials Research 516-517 (May 2012): 623–27. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.623.

Full text
Abstract:
Multi-dimensional simulation was applied for the investigation of the combustion system of a heavy-duty diesel engine. Firstly, the matching of combustion chamber and injection pressure has been determined by simulation. Then through intermediate characteristic parameters which could quantitatively describe the properties of the mixing and combustion, the influence of the matching of chamber caliber ratios and injection pressure on each sub-process in compression and power stroke was analyzed comprehensively. The results showed that, for the model studied in this article, increasing the combustion chamber caliber ratio and injection pressure could help expanding the distribution range of the mixture in cylinder, making the mixture more uniform, increasing the proportion of the dilute mixture, thus effectively improved the power performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Ghodke, Pundlik, and Jiwak Suryawanshi. "Investigation of diesel engine for low exhaust emissions with different combustion chambers." Thermal Science 19, no. 6 (2015): 2013–24. http://dx.doi.org/10.2298/tsci140904176g.

Full text
Abstract:
Upcoming stringent Euro-6 emission regulations for passenger vehicle better fuel economy, low cost are the key challenges for engine development. In this paper, 2.2L, multi cylinder diesel engine have been tested for four different piston bowls designed for compression ratio of CR 15.5 to improve in cylinder performance and reduce emissions. These combustion chambers were verified in CFD at two full load points. 14 mode points have been derived using vehicle model run in AVL CRUISE software as per NEDC cycle based on time weightage factor. Base engine with compression ratio CR16.5 for full load performance and 14-mode points on Engine test bench was taken as reference for comparison. The bowl with flat face on bottom corner has shown reduction 25% and 12 % NOx emissions at 1500 and 3750 rpm full load points at same level of Soot emissions. Three piston bowls were tested for full load performance and 14 mode points on engine test bench and combustion chamber ?C? has shown improvement in thermal efficiency by 0.8%. Combinations of cooled EGR and combustion chamber ?C? with geometrical changes in engine have reduced exhaust NOx, soot and CO emissions by 22%, 9 % and 64 % as compared to base engine at 14 mode points on engine test bench.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, S., T. L. Chan, C. W. Leung, M. A. Liu, K. Y. Pan, and L. B. Zhou. "Multidimensional numerical simulation of heat radiation in direct injection diesel engines." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 214, no. 4 (April 1, 2000): 453–66. http://dx.doi.org/10.1243/0954407001527754.

Full text
Abstract:
A multidimensional theoretical model of radiation heat transfer in the cylinder of a direct injection (DI) diesel engine has been developed, which includes submodels of heat release, geometrical description, radiation temperature, soot formation and oxidation, the absorption coefficient and the Monte Carlo method for total exchange areas. In this code, the cylinder is divided into 10 surface zones and four gas zones. The Monte Carlo method integrated with a smoothing technique considering reciprocity and conservation is used to calculate the radiation total exchange areas directly for both the absorbing—emitting media and the complex structure of the cylinder. Using the multi—dimensional approach, the variation in radiant heat transfer with crank angle can be obtained across the whole combustion chamber. The computed results are analysed and discussed in the present study, and they are found to be in agreement with the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
9

Chiou, J.-S., M.-S. Chiang, and C.-K. Chen. "Numerical Simulation Method Applied to the Multi-Expansion Exhaust System of a Two-Stroke Engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 208, no. 4 (October 1994): 281–88. http://dx.doi.org/10.1243/pime_proc_1994_208_195_02.

Full text
Abstract:
A numerical method is presented to simulate the pressure wave in the multi-expansion exhaust system of a two-stroke engine. In the simulated processes, the inlet pipe, scavenge pipe and exhaust pipe of the two-stroke engine are simplifed by the pipe model, while the engine cylinder, crankcase and the expansion chamber are treated as the vessel model. The cubic-interpolated pseudo-particle (CIP) method combined with the method of characteristics (MOC) is used to solve the hyperbolic equations. The results from simulation compare reasonably well with the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Guo Jin, Zhong Min Liu, Ting Ting Liu, Shao Hui Su, Guang Jie Yuan, and Yi Jiang Cao. "Analysis for Combustion Process in Cylinder of 5S60 Diesel Engine." Advanced Materials Research 430-432 (January 2012): 1742–46. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.1742.

Full text
Abstract:
The optimization and matching question for the low-speed diesel engine’s combustion process determines its power, efficiency and emission. But the optimization and matching of the combustion process is related with the fuel injection rule, the intake swirl control, the valve timing adjustment, the combustion chamber structure, the operating condition parameter and so on. This paper takes the 5S60 marine low-speed diesel engine as the study object. The whole running phase oriented model based on the unified multi-domain has established, and the analysis for the diesel engine’s combustion process in cylinder has carried on. The analysis result provides the technical support for the economical, safe and reliable operation of the diesel engine. Thus the combustion process in cylinder is improved, the diesel engine’s performance is enhanced, and the pollutant discharge is reduced.
APA, Harvard, Vancouver, ISO, and other styles
11

Xv, Yan Fang, Tie Xiong Su, and Jun Jie Cui. "Transient Analysis of Flow Field in Cylinder of an Engine." Advanced Materials Research 311-313 (August 2011): 2169–73. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.2169.

Full text
Abstract:
The study investigates the air flow in the tangent intake system of an engine utilizing the combined dynamic mesh technique. The whole intake system region of an engine is separated into six distinct zones, including inlet port, inlet valve, outlet port, outlet valve, combustion chamber and cylinder piston top, that every zone generates a desirable grid based on the adaptive function. The 3D simulations are carried out and the velocity and pressure fields are obtained inside the intake system. The analysis on the numerical results shows that the combined dynamic mesh can adapt to multi-boundaries in the intake systems, and can add cells where they are needed in the mesh. The simulation by such technique, compared with those by the single mesh, is able to be better resolved the flow features of intake system of an engine
APA, Harvard, Vancouver, ISO, and other styles
12

Rząsa, Mariusz, Ewelina Łukasiewicz, and Dariusz Wójtowicz. "Test of a New Low-Speed Compressed Air Engine for Energy Recovery." Energies 14, no. 4 (February 23, 2021): 1179. http://dx.doi.org/10.3390/en14041179.

Full text
Abstract:
The paper presents a new design solution for the multi-cylinder compressed air engine, described in the PL 216801 patent. A characteristic feature of the engine is its double-piston operation with pistons working in pairs in opposition and a reciprocating movement in toroidal cylinders. The energy of compressed air was used more effectively in the described engine than in the solutions known so far. Comparing the engine built in accordance with the PL 216801 patent with the parameters of the MP165 and MP3000 engines, lower air consumption in relation to the power generated on the shaft is demonstrated. The described engine uses only one crankshaft and one straight complex shaft, which constitutes an innovative combination of pistons, while maintaining the same engine operation as in the case of two crankshafts operating with phase shift and working chamber shift. Such a solution results in a reduction in the harmful space occurring at the beginning of the power stroke to the value close to “zero”—the necessity to maintain the minimum distance between the pistons working in one cylinder when they are at their closest exists only to for the sake of collision-free operation—which is very desirable for the compressed engine operating with a shift of the working chamber. The mechanical efficiency of the engine has also been improved by guiding the pistons on the complex shaft, and the number of kinematic nodes was decreased by applying only three connecting rods supporting six pistons, which also makes it possible to improve the power and mass relation by approximately 25% in comparison with the currently known engines of similar power.
APA, Harvard, Vancouver, ISO, and other styles
13

Morris, Nick, Mahdi Mohammadpour, Ramin Rahmani, and Homer Rahnejat. "Optimisation of the piston compression ring for improved energy efficiency of high performance race engines." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, no. 13 (February 5, 2017): 1806–17. http://dx.doi.org/10.1177/0954407016686249.

Full text
Abstract:
The primary function of the piston compression ring is to seal the combustion chamber from the bottom end of the engine. As a result, its conformance to the cylinder liner surface is of prime importance. This close-contact contiguity results in increased friction, making this contact conjunction responsible for a significant proportion of energy losses. The frictional losses can be as much as 2–6% of the expended fuel energy, which is quite significant for such a diminutive contact. Under these conditions, the geometrical profile, the surface topography and the inertial properties of the ring assume significant importance. The paper presents an integrated mixed-hydrodynamic analysis of the compression ring–cylinder liner contact with multi-parameter optimisation, based on the use of a genetic algorithm. The multi-objective functionality includes minimisation of the parasitic energy loss, reduction in the incidence of asperity level interactions as well as minimisation of the ring mass. Both cold running engine conditions and hot running engine conditions in line with the New European Drive Cycle were considered. Hitherto, such an approach has not been reported in the literature.
APA, Harvard, Vancouver, ISO, and other styles
14

Ye, Ying, Zongyu Yue, Hu Wang, Haifeng Liu, Chaohui Wu, and Mingfa Yao. "A Mapping Approach for Efficient CFD Simulation of Low-Speed Large-Bore Marine Engine with Pre-Chamber and Dual-Fuel Operation." Energies 14, no. 19 (September 26, 2021): 6126. http://dx.doi.org/10.3390/en14196126.

Full text
Abstract:
A natural-gas-diesel dual-fuel marine engine with a pre-chamber is a promising solution for ocean transportation to meet the International Maritime Organization (IMO) emission regulations. This engine system employs a pre-chamber with direct injection of diesel to ignite premixed natural gas due to its higher ignition energy, which can enable lower lean limit and higher thermal efficiency. The dual-fuel pre-chamber marine engine presents complex multi-regime combustion characteristics in- and outside the pre-chamber, thus posing challenges in its numerical simulation in a cost-effective manner. Therefore, this paper presents a three-dimensional modeling study for the multi-regime combustion in a large-bore two-stroke marine dual-fuel engine, proposing a novel mapping approach, which couples the well-stirred reactor (WSR) model with the G-equation model to achieve high computational accuracy and efficiency simultaneously. In-depth analysis is performed using representative exothermic reaction (RXR) analysis and premixed turbulent combustion fundamentals to better understand the combustion process and to provide guidance in the selection of mapping timing. The results show that the use of mapping to switch from the WSR to the G-equation model can effectively reduce the runtime significantly by 71.5%, meanwhile maintaining similar accuracies in predictions of in-cylinder pressure traces, HRR and NOx emissions, compared to using WSR all along. Additionally, the choice of mapping timing based on several parameters is preliminarily discussed.
APA, Harvard, Vancouver, ISO, and other styles
15

Ferrer, Pilar, Juan Rubio-Zuazo, Catherine Heyman, Fatima Esteban-Betegón, and Germán R. Castro. "Multi-use high/low-temperature and pressure compatible portable chamber forin situgrazing-incidence X-ray scattering studies." Journal of Synchrotron Radiation 20, no. 3 (March 1, 2013): 474–81. http://dx.doi.org/10.1107/s0909049513002598.

Full text
Abstract:
The multipurpose portable ultra-high-vacuum-compatible chamber described in detail in this article has been designed to carry out grazing-incidence X-ray scattering techniques on the BM25-SpLine CRG beamline at the ESRF. The chamber has a cylindrical form, built on a 360° beryllium double-ended conflate flange (CF) nipple. The main advantage of this chamber design is the wide sample temperature range, which may be varied between 60 and 1000 K. Other advantages of using a cylinder are that the wall thickness is reduced to a minimum value, keeping maximal solid angle accessibility and keeping wall absorption of the incoming X-ray beam constant. The heat exchanger is a customized compact liquid-nitrogen (LN2) continuous-flow cryostat. LN2 is transferred from a storage Dewar through a vacuum-isolated transfer line to the heat exchanger. The sample is mounted on a molybdenum support on the heat exchanger, which is equipped with a BORALECTRIC heater element. The chamber versatility extends to the operating pressure, ranging from ultra-high vacuum (<10−10 mbar) to high pressure (up to 3 × 103 mbar). In addition, it is equipped with several CF ports to allocate auxiliary components such as capillary gas-inlet, viewports, leak valves, ion gun, turbo pump,etc., responding to a large variety of experiment requirements. A movable slits set-up has been foreseen to reduce the background and diffuse scattering produced at the beryllium wall. Diffraction data can be recorded either with a point detector or with a bi-dimensional CCD detector, or both detectors simultaneously. The system has been designed to carry out a multitude of experiments in a large variety of environments. The system feasibility is demonstrated by showing temperature-dependence grazing-incidence X-ray diffraction and conductivity measurements on a 20 nm-thick La0.7Ca0.3MnO3thin film grown on a SrTiO3(001) substrate.
APA, Harvard, Vancouver, ISO, and other styles
16

Massaro, Silvia, Antonio Costa, Roberto Sulpizio, Diego Coppola, and Lucia Capra. "Cyclic activity of the Fuego de Colima volcano (Mexico): insights from satellite thermal data and nonlinear models." Solid Earth 10, no. 4 (August 29, 2019): 1429–50. http://dx.doi.org/10.5194/se-10-1429-2019.

Full text
Abstract:
Abstract. The Fuego de Colima volcano (Mexico) shows a complex eruptive behavior, with periods of rapid and slow lava dome growth punctuated by explosive activity. We reconstructed the weekly discharge rate average between 1998 and 2018 by means of satellite thermal data integrated with published discharge rate data. By using spectral and wavelet analysis, we found a multiyear long-term, multi-month intermediate-term, and multi-week short-term cyclic behavior during the period of the investigated eruptive activity like that of many other dome-forming volcanoes. We use numerical modeling in order to investigate the nonlinear cyclic eruptive behavior considering a magma feeding system composed of a dual or a single magma chamber connected to the surface through an elastic dyke developing into a cylinder conduit in the shallowest part. We investigated cases in which the periodicity is controlled by (i) the coupled deep–shallow magma reservoirs, (ii) the single shallow chamber, and (iii) the elastic shallow dyke when it is fed by a fixed influx rate or constant pressure. Due to the limitations of the current modeling approach, there is no single configuration that can reproduce all the periodicities on the three different timescales. The model outputs indicate that the observed multiyear periodicity (1.5–2.5 years) can be described by the fluctuations controlled by a shallow magma chamber with a volume of 20–50 km3 coupled with a deep reservoir of ca. 500 km3, connected through a deep elastic dyke. The multi-month periodicity (ca. 5–10 months) appears to be controlled by the shallow magma chamber for the same range of volumes. The short-term multi-week periodicity (ca. 2.5–5 weeks) can be reproduced considering a fixed influx rate or constant pressure at the base of the shallower dyke. This work provides new insights on the nonlinear cyclic behavior of Fuego de Colima and a general framework for comprehension of the eruptive behavior of andesitic volcanoes.
APA, Harvard, Vancouver, ISO, and other styles
17

Jeon, Joonho, Noah Bock, David B. Kittelson, and William F. Northrop. "Correlation of nanoparticle size distribution features to spatiotemporal flame luminosity in gasoline direct injection engines." International Journal of Engine Research 21, no. 7 (September 12, 2018): 1107–17. http://dx.doi.org/10.1177/1468087418798468.

Full text
Abstract:
Particle size distribution measured by mobility instruments is a common diagnostic used to characterize ultrafine and nanoparticle emissions in engine exhaust; however, some features of particle size distribution data are poorly correlated to in-cylinder combustion phenomena. In this work, in-cylinder spatiotemporal flame luminosity is quantitatively correlated to features in the solid particle size distribution measured in the exhaust of a gasoline direct injection engine operating in lean and stoichiometric combustion modes. A multi-channel optical sensor was used to measure diffusion flame light intensity in different areas of the combustion chamber. Total solid particle number and particle size distribution in the exhaust were measured using a scanning mobility particle sizer after a catalytic stripper that removed semi-volatile compounds. Results of the experiments showed that different flame phenomenon resulted in distinct particle size distribution characteristics. A large accumulation mode (particles with diameter of 50–100 nm) in the particle size distribution from stoichiometric engine operation with early injection resulted from anomalous diffusion flames like piston-top pool fires. In lean operation incorporating a secondary fuel injection, particle emissions were dominated by flame propagation through fuel-rich regions of the combustion chamber resulting in a comparatively broad particle size distribution. More generally, this work illustrates how particle size distribution data can be more accurately used to diagnose soot formation in gasoline direct injection engines.
APA, Harvard, Vancouver, ISO, and other styles
18

Tornatore, Cinzia, Luca Marchitto, Simona Silvia Merola, and Gerardo Valentino. "UV-Visible Emission Spectroscopy of the Combustion Process in a Common Rail Cl Engine Fulled with N-Butanol - Diesel Blends." Applied Mechanics and Materials 390 (August 2013): 286–90. http://dx.doi.org/10.4028/www.scientific.net/amm.390.286.

Full text
Abstract:
This paper is focused on the study of the effects of the injection strategy and fuel blends on spray combustion and soot formation in compression ignition engines. UV-visible natural emission spectroscopy was applied in the combustion chamber of a single cylinder high swirl compression ignition engine equipped with a common rail multi-jet injection system. The engine was fuelled with low-sulphur neat diesel and blended with 20 and 40% by volume of n-butanol. For all the fuels, the evolution of radical species, such like OH and soot was followed during the spray combustion processes examining different pilot-main dwell timings. Optical data were correlated to engine parameters and exhaust emissions.
APA, Harvard, Vancouver, ISO, and other styles
19

Shozu, Kanto, Masaaki Komatsu, Akira Sakai, Reina Komatsu, Ai Dozen, Hidenori Machino, Suguru Yasutomi, et al. "Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos." Biomolecules 10, no. 12 (December 17, 2020): 1691. http://dx.doi.org/10.3390/biom10121691.

Full text
Abstract:
The application of segmentation methods to medical imaging has the potential to create novel diagnostic support models. With respect to fetal ultrasound, the thoracic wall is a key structure on the assessment of the chest region for examiners to recognize the relative orientation and size of structures inside the thorax, which are critical components in neonatal prognosis. In this study, to improve the segmentation performance of the thoracic wall in fetal ultrasound videos, we proposed a novel model-agnostic method using deep learning techniques: the Multi-Frame + Cylinder method (MFCY). The Multi-frame method (MF) uses time-series information of ultrasound videos, and the Cylinder method (CY) utilizes the shape of the thoracic wall. To evaluate the achieved improvement, we performed segmentation using five-fold cross-validation on 538 ultrasound frames in the four-chamber view (4CV) of 256 normal cases using U-net and DeepLabv3+. MFCY increased the mean values of the intersection over union (IoU) of thoracic wall segmentation from 0.448 to 0.493 for U-net and from 0.417 to 0.470 for DeepLabv3+. These results demonstrated that MFCY improved the segmentation performance of the thoracic wall in fetal ultrasound videos without altering the network structure. MFCY is expected to facilitate the development of diagnostic support models in fetal ultrasound by providing further accurate segmentation of the thoracic wall.
APA, Harvard, Vancouver, ISO, and other styles
20

Soontornchainacksaeng, Thanakom, and Paramust Juntarakod. "The Nonlinear Multi-Fuel Combustion Equation: Comparison between the Model of Heat in SIE for Ethanol-Gasoline Blended and High Order Iteration Method." Applied Mechanics and Materials 789-790 (September 2015): 448–56. http://dx.doi.org/10.4028/www.scientific.net/amm.789-790.448.

Full text
Abstract:
A quasi one-dimensional engine cycle, the simulation program was developed to predict the simple heat transfer during combustion stroke in a spark ignition engine (SIE) of ethanol-gasoline blended fuels. A two-zone heat release model was utilized to model the combustion process inside the combustion cylinder by using high order iteration method (HIM) in combustion equation. The fuel, air and burned gas properties throughout the engine cycle were calculated by using variable specific heats. The transient heat flux inside the combustion chamber due to the change in the cylinder gas temperature and pressure during combustion was determined by using the constant of heat rate from enthalpy heat rate coefficient. The program was written in MATLAB. The results of this paper such as the average heat flux cycles of the burned gas during the combustion and showing the emissions of at during the combustion process by high iteration method. Based on these results, it was concluded that the fundamental thermodynamic properties of the fuel, air, and combustion product species were in agreement with previously published results to within the scatter of those results typically less than 1% form references 1%. The combustion products were calculated by the high order iteration methods by around 1% from the old methods.
APA, Harvard, Vancouver, ISO, and other styles
21

Yadollahi, Bijan, and Masoud Boroomand. "Numerical investigation of natural gas direct injection properties and mixture formation in a spark ignition engine." Thermal Science 18, no. 1 (2014): 39–52. http://dx.doi.org/10.2298/tsci120605222y.

Full text
Abstract:
In this study, a numerical model has been developed in AVL FIRE software to perform investigation of Direct Natural Gas Injection into the cylinder of Spark Ignition Internal Combustion Engines. In this regard two main parts have been taken into consideration, aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multi-dimensional numerical simulation of transient injection process, mixing and flow field have been performed via three different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability the validated model has been applied to methane Injection into the cylinder of a Direct Injection engine. Five different piston head shapes along with two injector types have been taken into consideration in investigations. A centrally mounted injector location has been adapted to all cases. The effects of injection parameters, combustion chamber geometry, injector type and engine RPM have been studied on mixing of air-fuel inside cylinder. Based on the results, suitable geometrical configuration for a NG DI Engine has been discussed.
APA, Harvard, Vancouver, ISO, and other styles
22

Kaiser, E. W., J. Yang, T. Culp, N. Xu, and M. M. Maricq. "Homogeneous charge compression ignition engine-out emission-does flame propagation occur in homogeneous charge compression ignition?" International Journal of Engine Research 3, no. 4 (August 1, 2002): 185–95. http://dx.doi.org/10.1243/146808702762230897.

Full text
Abstract:
Engine-out emissions data [CO, CO2, speciated hydrocarbons (HC), and particulate matter (size and number density)] were obtained from a single-cylinder, 660 cm3, homogeneous charge compression ignition (HCCI) engine operated on gasoline fuel using direct in-cylinder injection. Data were taken as functions of the air-fuel ratio (A/F) (30–270), r/min, inlet air temperature and fuel injection timing. Three important observations were made A sharp break occurs in the CO and CO2 emissions indices beginning near A/F = 75. Above A/F ∼ 100, CO is the primary carbon oxide while for A/F < 70, CO2 is the major carbon oxide. The HC emissions index increases linearly, beginning near A/F ∼ 30:1. Below this A/F, the HC index is characteristic of crevice emissions (∼ 3.5 per cent). These results do not prove this unequivocally, but can be explained by a mechanism in which, for A/F < 75, flame propagation occurs over relatively short distances between the multiple autoignition sites within the combustion chamber. Adiabatic compression calculations indicate that for A/F < 75, the compression temperature (∼ 1150 K) is sufficiently high to support flame propagation. The linear increase in HC emissions above that expected from crevice storage can be explained by noting that autoignition becomes more difficult as the A/F becomes leaner and fewer ignition sites are likely to exist within the combustion chamber, reducing the amount of fuel combusted. Conventional models of HCCI combustion involving multi-zone autoignition may also explain the data, but the above concept is an alternative combustion mechanism for HCCI, which should be considered. Particulate emissions at moderate load from this HCCI engine, while much lower than from a diesel, are similar to those from early-injection DISI (direct injection spark ignition) engines and should not be assumed to be negligible.
APA, Harvard, Vancouver, ISO, and other styles
23

YANG, WENMING, HUI AN, MAGHBOULI AMIN, and JING LI. "3-DIMENSIONAL NUMERICAL MODELING ON THE COMBUSTION AND EMISSION CHARACTERISTICS OF BIODIESEL IN DIESEL ENGINES." International Journal of Modern Physics: Conference Series 34 (January 2014): 1460371. http://dx.doi.org/10.1142/s2010194514603718.

Full text
Abstract:
A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.
APA, Harvard, Vancouver, ISO, and other styles
24

PIELECHA, Ireneusz. "Analysis of the repeatability of fuel spray indexes in a spray-guided direct-injection spark-ignition engine." Combustion Engines 164, no. 1 (February 1, 2016): 49–55. http://dx.doi.org/10.19206/ce-116489.

Full text
Abstract:
The development and research works on liquid fuel injection in spark-ignited direct injection (SIDI) engines, apart from so common in recent years simulation methods, still have a significant cognitive substrate. This is related to experimental research on repeatability of combustion process using multi- and mono-cylinder test engines and Rapid Compression Machines. The repeatability of preparation and delivery processes has immediate impact on repeatability of combustion process. Except for the necessity of obtaining the repeatability of fuel amounts, the repeatability of injected fuel spray is required. The penetration range and spray area in combustion chamber have direct impact on mixture creation and formation. The optical research on fuel injection has been made in order to determinate its repeatability. The research on unrepeatability of fuel spray propagation has been conducted using piezoelectric injectors of outward-opening type, being primary elements of the spray-guided combustion systems. The results of research were presented in the form of index of variation of the selected parameters. The evaluation of the results of the optical research concerns radial spray penetration and fuel spray velocity. Unrepeatability has been presented with coefficient of variation of radial penetration in relation to the time of injection duration. It has been observed that the coefficients of various parameters are lower with longer times of fuel injection.
APA, Harvard, Vancouver, ISO, and other styles
25

Xue, Yong, JunHong Yang, JianZhong Shang, and HuiXiang Xie. "Design and optimization of a new kind of hydraulic cylinder for mobile robots." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229, no. 18 (February 23, 2015): 3459–72. http://dx.doi.org/10.1177/0954406215570106.

Full text
Abstract:
In order to improve the efficiency of multi-actuator mobile robots hydraulic system, this paper proposes a new kind of cylinder whose effective area is variable. The new cylinder has multi chambers which can be connected with each other or to a main system circuit by controlling switching valves. On the one hand, the new cylinder can make sure that the load pressure of all actuators is almost equal through varying effective area. On the other hand, the new cylinder can realize the flow recovery through that return chambers are connected with feeding chambers. Therefore, the new cylinder can reduce overall machine energy consumption by reducing throttling losses and allowing energy recovery. The performance of the new cylinder is analyzed through building the mathematical model. Based on the evaluated results, in order to further improve the performance of the load match of the cylinder and avoid the deflection of the main piston, the structure of the cylinder is optimized. Finally, an optimized cylinder is shown in this paper which has well performance of the load match.
APA, Harvard, Vancouver, ISO, and other styles
26

Hansen, Rico H., Anders Hansen, and Torben O. Andersen. "Influence and Utilisation of Pressure Propagation in Pipelines for Secondary Controlled Discrete Displacement Cylinders." Applied Mechanics and Materials 233 (November 2012): 72–75. http://dx.doi.org/10.4028/www.scientific.net/amm.233.72.

Full text
Abstract:
Efficient discrete force control of cylinders may be realised by having multi-chambered cylinders, where the pressure of the chambers are shifted between fixed pressure levels of a secondary controlled system. However, the pressure shifting on a volume where the dynamics of pressure propagation is negligible have been be proven to have an unavoidable minimum loss due to the compressibility of the fluid. This paper investigates the effect of the pressure propagation in the connection and concludes that except more complex shifting schemes are introduced, the minimum loss remains unchanged. The paper analysis however also demonstrates and suggests, that with a clever valve control and shifting scheme, increased efficiency of a shift is obtainable by utilising the pipeline inductance.
APA, Harvard, Vancouver, ISO, and other styles
27

Dare, A. A., Olanrewaju Olatunde, O. S. Ismail, A. S. Shote, O. J. Alamu, and M. A. Sulaiman. "INVESTIGATION OF MULTI-ZONE MODELS FOR SPARK IGNITION ENGINE FUELED WITH ETHANOL." IIUM Engineering Journal 22, no. 2 (July 4, 2021): 339–51. http://dx.doi.org/10.31436/iiumej.v22i2.1550.

Full text
Abstract:
This research is aimed at investigating the effect of using ethanol (E100) in multi-zone model analysis consisting of multi-combustion chamber zoning cases. The first case considered is a three-zone model that has an unburned zone, burned zone, and transitory zone. The second case model is also three-zone, consisting of an unburned zone and two partitioned burned zones. The burned zone was imagined partitioned into burned zone-1 and burned zone-2 under uneven fuel distribution having different equivalent ratios. The third case is a four-zone model including two regions of burned zone, an unburned zone and a transitory zone, which is unburned burned zone containing a mixture of unburned and burned gases. Arbitrary constants for each of the unburned (CC1) and burned (CC2) Zone leakages in the unburned burned Zone are 0.00025, 0.0005, 0.001, 0.002, 0.005, 0.1 and 0.5. The Mass Fraction Burned (MFB) for zone-1, x1 and burned zone-2, x2 are computed using Partitioned Burnt Zones Ratios (PBZR) of 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 and 8:2. Two equivalent ratios, one for each fuel MFB (?1, ?2), (0.8, 0.6) and (0.6, 0.8) are analyzed using fuel blends of varying percentage. A comparison of values of the three zoning cases is done using peak values from the three-zone models to evaluate the four-zone model. The model was compared with a spark ignition engine (SIE) operating with a premium motor spirit (PMS) serving as baseline. The engine operating conditions were set at an engine speed of 2000 rpm, -35bTDC ignition time, and burn duration at 60 oC. The indicated mean effective pressure (IMEP), thermal efficiency (?), cylinder pressure and emission fraction from the developed models and those of two-zone analysis obtained agreed with literature values. The result showed it is undesirable to have a high volume of burned charge as infiltrate. The three-zone segmented model predicted the highest engine thermal efficiency and peak pressure at mass burn ratio of 7:3. A general reduction in N2 emission was observed for the three-zone transitional and four-zone models. ABSTRAK: Kajian ini menilai kesan etanol (E100) dalam analisis model zon-berbilang yang terdapat pada masalah pengezonan kebuk pembakaran-berbilang. Kes pertama yang diambil kira adalah model tiga-zon yang mempunyai zon tidak terbakar, zon terbakar dan zon peralihan. Model kedua merupakan juga tiga-zon yang terdiri daripada zon tidak-terbakar dan dua zon bahagian yang terbakar. Zon yang terbakar dibahagikan kepada zon-1 terbakar dan zon-2 terbakar di bawah kebakaran tidak sekata yang mempunyai nisbah berlainan. Kes ketiga adalah model zon-keempat termasuk dua kawasan zon terbakar, zon tidak-terbakar dan zon peralihan iaitu zon terbakar tidak-terbakar di mana ia adalah campuran gas terbakar dan tidak-terbakar. Tetapan sebarangan bagi setiap zon kebocoran tidak-terbakar (CC1) dan terbakar (CC2) dalam zon terbakar tidak-terbakar adalah 0.00025, 0.0005, 0.001, 0.002, 0.005, 0.1 dan 0.5. Pecahan Jisim Terbakar (MFB) bagi zon-1, x1 dan zon-2 terbakar, x2 dikira menggunakan Nisbah Zon Bahagian Terbakar (PBZR) sebanyak 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 dan 8:2. Nisbah dua persamaan, setiap satu bahan api MFB adalah (?1, ?2), (0.8, 0.6) dan (0.6, 0.8) dan diuji menggunakan pelbagai peratus bahan api campuran. Nilai perbandingan bagi tiga kes zon dibuat menggunakan nilai puncak dari model tiga-zon bagi menilai model empat-zon. Model ini dibandingkan dengan enjin cucuhan bunga api (SIE) beroperasi dengan motor alkohol premium (PMS) sebagai garis asas. Keadaan operasi enjin adalah dihadkan pada 2000 rpm kelajuan enjin, masa pencucuhan -35bTDC dan tempoh pembakaran pada 60 oC. Tekanan berkesan min tertunjuk (IMEP), kecekapan haba tertunjuk (?), tekanan silinder dan pecahan pengeluaran dari model yang dibangunkan dan analisis dua-zon yang terhasil adalah sama dengan nilai literatur. Dapatan kajian menunjukkan cas terbakar pada isipadu yang banyak adalah tidak diingini sebagai penyerap. Model tiga bahagian zon menunjukkan kecekapan haba enjin tertinggi dan tekanan puncak pada jisim bakar dengan nisbah 7:3. Manakala, pengurangan umum telah diperhatikan pada pengeluaran N2 di peralihan tiga-zon dan model empat zon.
APA, Harvard, Vancouver, ISO, and other styles
28

Heybroek, Kim, and Mika Sahlman. "A hydraulic hybrid excavator based on multi-chamber cylinders and secondary control – design and experimental validation." International Journal of Fluid Power 19, no. 2 (March 23, 2018): 91–105. http://dx.doi.org/10.1080/14399776.2018.1447065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

DWYER, L. M., and D. W. STEWART. "WATER EXTRACTION PATTERNS AND DEVELOPMENT OF PLANT WATER DEFICITS IN CORN." Canadian Journal of Plant Science 65, no. 4 (October 1, 1985): 921–33. http://dx.doi.org/10.4141/cjps85-118.

Full text
Abstract:
Water extraction patterns and plant water deficits for corn (Zea mays L.) were measured and related to development of aboveground biomass, leaf area and root density under different irrigation schedules in controlled chambers. A multi-layer transpiration model, based on an Ohm’s Law analogy, simulated the water uptake processes and predicted leaf water potential and soil water content through time. Comparison of measurements and model predictions of plant and soil water status tested our understanding of the principles involved in plant water use which resulted in growth differences. The experiment involved 48 planted cylinders plus controls; half were well-watered and maintained at or above field capacity and half were allowed to dry to near the wilting point. Over 6 wk, water stress reduced above-ground biomass and leaf area, but enhanced root growth over that of well-watered plants. This reflected the preferential allocation of photosynthate to the root when soil water became limiting. Measured leaf water potentials fell below the level for stomatal closure of the chamber population. The model also predicted a degree of water stress (midday leaf water potential of −1.48 MPa) that would increase stomatal resistance and restrict transpiration and photosynthesis. Measurements and predictions of soil water content over time were generally in good agreement. The model is therefore considered useful in describing water use patterns under controlled conditions.Key words: Zea mays L., transpiration, water use modelling, plant water stress, dry matter partitioning
APA, Harvard, Vancouver, ISO, and other styles
30

Brecher, C., S. Bäumler, and B. Brockmann. "Design of a Highly Dynamic Hydraulic Actuator?for Active Damping Systems in Machine Tools." International Journal of Intelligent Mechatronics and Robotics 2, no. 4 (October 2012): 15–26. http://dx.doi.org/10.4018/ijimr.2012100102.

Full text
Abstract:
The positioning accuracy of conventional servo hydraulic cylinders is limited by oil compressibility, leak oil, nonlinearities, hysteresis effects, etc. This affects the control quality of the actuator, which is essential for a use in high dynamic positioning tasks, such as applications in active damping systems for machine tools. The presented hydraulic actuator design is a new approach to extend those limitations by using membrane based piston guidance and casing of pressure chambers. The actuator design is based on a linear mathematical model and FE-Simulations. The developed linear actuator model is integrated into a coupled multi body simulation of an existing active damping system. As the results of the coupled multi body simulation were promising, the actuator was manufactured and put into operation. A first insight into the behavior of the actuator and the verification of the linear actuator model is provided.
APA, Harvard, Vancouver, ISO, and other styles
31

Zinchenko, A. V., B. V. Barichko, V. D. Nikolenko, T. N. Zharkaya, and V. L. Neroznikov. "Metal resistance to deformation of drill pipes steels." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 76, no. 8 (September 3, 2020): 826–29. http://dx.doi.org/10.32339/0135-5910-2020-8-826-829.

Full text
Abstract:
To define the energy and force parameters of metal forming processes, it is needful to know the value of the strain resistance. Evaluation of influence of hot deformation technological parameters of steels on the value of metal resistance to plastic deformation was done. For the study samples of 25ХГФМА and 32Г2У steels were used in the form of cylinders of 8.0 mm diameter and 12.0 mm height. The hot upsetting of the samples was accomplished at the Gleeble-3800 simulator of thermo-mechanical processes. Heating of the samples, placed in a vacuum chamber, was done directly by passing electric current through them. The samples were heated to deformation temperature with rate of 5 °C/sec, followed by an isothermal exposure within 3 min to make the temperature even in the sample volume. The deformation was accomplished at the temperatures 1000, 1050, 1100, 1150, 1200, 1250°C and deformation rate 1.0 and 0.1 sec–1. To prevent welding of the samples to the surface of the working instrument (hardmetal striker), a 0.1 mm thick molybdenum foil was placed between a sample and strikers. In the process of the experiment, the sample temperature, deformation force and current variation of a sample height were recorded. It was determined, that parameters of resistance to deformation, obtained in the process of the experiment by using Gleeble-3800, were higher by 25–30%, than those cited in literature, which were obtained by using a multi-cam plastometer. The specified data on the resistance to deformation were intended for application at PJSC “Tagmet” when designing technological modes of ends upsetting of drill pipes made of steels 32Г2У and 25ХГМФА to define the upsetting force.
APA, Harvard, Vancouver, ISO, and other styles
32

Dorokhov, Alexander Fedorovich, and Pavel Aleksandrovitch Dorokhov. "IMPROVING FUEL EFFICIENCY OF MARINE SWIRL-CHAMBER DIESEL ENGINE BY INCREASED THERMAL RESISTANCE OF HEAT TRANSFER." Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies, August 25, 2019, 80–87. http://dx.doi.org/10.24143/2073-1574-2019-3-80-87.

Full text
Abstract:
The article considers ship swirl-chamber diesel engines used in shipbuilding as the main and auxiliary engines. Two reasons for low profitability of the swirl chamber diesel engines are highlighted: large heat losses of the cooling working fluid due to the extended heat transfer surface of the chamber, and significant aerodynamic energy losses of compressed air during its passage through a relatively narrow channel connecting the piston chamber with the combustion chamber and the flow of gases from the swirl chamber on top the piston space. There have been proposed the methods for improving the operational performance of swirl-chamber diesels in production, in particular, their fuel efficiency. The scheme of the swirl-chamber and a section of the swirl-chamber cylinder head are presented. It has been stated that the total coefficient of thermal conductivity can be reduced if the wall of the swirl- chamber is made multi-layer. The layouts of a multi-layer cylinder-spherical wall of a swirl combustion chamber with a titanium cylinder-spherical insertion and thermal insulation of a vortex combustion chamber are given. The total thermal resistance of the spherical wall was calculated, heat loss through the multilayer spherical wall was determined, gas temperature in the vortex chamber was calculated, according to the average cycle temperature diagram. It was inferred that the amount of heat removed from the working fluid to cooling through the thermally insulated wall of the swirl-chamber will be 40% less than the amount of heat released to the cooling through the wall of the swirl-chamber of a commercial diesel engine. The difference in heat will be used to increase the indicator gas operation, which, with the same cyclic fuel supply, will lead to a decrease in the specific indicator fuel consumption, and at a constant level of internal engine losses - to a decrease in the specific effective fuel consumption.
APA, Harvard, Vancouver, ISO, and other styles
33

Huova, Mikko, and Matti Linjama. "Energy efficient throttling control of a multi-pressure system using a genetic algorithm and model predictive control." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, July 5, 2021, 095965182110277. http://dx.doi.org/10.1177/09596518211027713.

Full text
Abstract:
The energy efficiency of hydraulic cylinder drives can be increased by replacing the actuator with a multi-chamber cylinder, utilising multiple supply lines with unique pressures or a combination of the concepts. Previous studies have demonstrated significant energy savings using a cascaded control system, which requires velocity feedback to stabilise the system. To avoid the need of position or velocity sensors in harsh conditions of mobile machines, this article presents a throttling control scheme, which achieves good energy efficiency on multi-pressure systems without velocity feedback. A simulation study was performed to determine the efficiency of the system, robustness against load variations and the effect of valve response time on performance.
APA, Harvard, Vancouver, ISO, and other styles
34

Fach, Christian, Nico Rödel, Jürgen Schorr, Christian Krüger, Andreas Dreizler, and Benjamin Böhm. "Multi-parameter imaging of in-cylinder processes during transient engine operation for the investigation of soot formation." International Journal of Engine Research, May 25, 2021, 146808742110199. http://dx.doi.org/10.1177/14680874211019976.

Full text
Abstract:
Transient engine operation of direct-injection spark ignition engines can result in high particulate number emissions. To investigate the causes of soot formation, an engine test rig was developed to perform detailed measurements of real transient operation. For this purpose, a single-cylinder full-metal engine with a real combustion chamber geometry was equipped with minimally invasive optical accesses. Simultaneous high-speed endoscopic PIV, spray visualization, and combustion imaging were applied to investigate the in-cylinder processes in detail. Endoscopic PIV was first compared in the central symmetry plane with classical PIV performed at the equivalent optical engine at steady-state operation for verification. Then the engine parameters of a tip-in performed by the corresponding four-cylinder engine, which led to high particle number emissions, were applied to the single-cylinder engine. The engine parameters were in a good agreement and particle number emissions due to the maneuver were within the same range of several 106 #/cm3. In total, 19 repetitions of the tip-in maneuver were analyzed with respect to the in-cylinder processes and repeatability of engine parameters. Furthermore, the in-cylinder flow field during the late compression stroke, flame propagation, and soot luminosity of single cycles during the tip-in indicated cause-and-effect chains for the formation of pool fire and soot at the injector tip. The direction of the flow below the spark plug influenced the direction of flame propagation. An early arrival of the flame enhanced the formation of soot from fuel films formed on the piston surface or at the injector. In engine applications, counter measures can be applied to reduce the particle number emissions when accounting for these indicated cause-and-effect chains.
APA, Harvard, Vancouver, ISO, and other styles
35

Kim, Joohan, Riccardo Scarcelli, Sibendu Som, Ashish Shah, Munidhar S. Biruduganti, and Douglas E. Longman. "Numerical investigation of a fueled pre-chamber spark-ignition natural gas engine." International Journal of Engine Research, May 21, 2021, 146808742110201. http://dx.doi.org/10.1177/14680874211020180.

Full text
Abstract:
Pre-chamber spark-ignition (PCSI) is a leading advanced ignition concept for internal combustion engines with the potential to enable diesel-like efficiency in medium-duty/heavy-duty (MD/HD) natural gas (NG) engines. By leveraging distributed ignition sources from multiple turbulent jets, the PCSI technology can deliver extremely short combustion duration in ultra-lean mixtures and significantly improve the engine thermal efficiency. However, in the automotive industry there is a lack of adequate science base and predictive simulation tools required for commercial development of PCSI engines. In this study, Reynolds-Average Navier-Stokes simulations are carried out to describe the combustion process in lean-burn NG engines, focusing on the combustion modeling approach. Two combustion models, multi-zone well-stirred reactor (MZ-WSR) and G-equation, are used to simulate the combustion process in an MD NG engine equipped with a fueled-PCSI system for four operating conditions close to the lean operating limit. A skeletal chemical mechanism and a laminar flame speed tabulation are used to compute the combustion accurately. Simulation results are compared with experimental data regarding measured cylinder pressure, heat release rate, and combustion duration. By dividing the PCSI combustion process into four distinct phases, the difference between the two models’ results for each phase is analyzed in detail. The MZ-WSR model overestimates the combustion duration for early flame kernel growth in the pre-chamber due to the lack of a specific formulation to take turbulence-chemistry interaction into account. Despite the prolonged combustion duration and low pressure built-up inside the pre-chamber, the model matches the combustion rate in the main-chamber. In contrast, the G-equation model delivers good agreements for the pre-chamber combustion and turbulent jet-driven combustion processes. However, the model starts to underestimate the combustion rate in the main-chamber, especially under ultra-lean mixture conditions. Finally, improvements are needed for both models to simulate the later combustion stage that occurred in the near-wall regions.
APA, Harvard, Vancouver, ISO, and other styles
36

Liu, Jinlong, and Cosmin Emil Dumitrescu. "Improved Thermodynamic Model for Lean Natural Gas Spark Ignition in a Diesel Engine Using a Triple Wiebe Function." Journal of Energy Resources Technology 142, no. 6 (December 26, 2019). http://dx.doi.org/10.1115/1.4045534.

Full text
Abstract:
Abstract The use of natural gas (NG) in heavy-duty internal combustion engines can reduce the dependence on petroleum fuels and greenhouse gas emissions. Diesel engines can convert to NG spark ignition (SI) by installing a high-energy ignition system and a gas injector. The diesel combustion chamber affects the flow inside the cylinder, so some existing SI combustion models will not accurately describe the operation of converted diesels. For example, the single Wiebe function has difficulties in correctly describing the mass fraction burn (MFB) throughout the combustion process. This study used experiments from a 2L single-cylinder research engine converted to port fuel injection NG SI and operated with methane at 1300 rpm and equivalence ratio 0.8 (6.2 bars IMEP) to compare the standard Wiebe function with a triple Wiebe function. Results indicated that lean-burn engine operation at an advanced spark timing produced three peaks in the heat release rate, suggesting a multi-stage combustion process. A “best goodness-of-fit” approach determined the values of the key parameters in the zero-dimensional Wiebe function model. The triple Wiebe function described the mass fraction burn and combustion phasing more accurately compared with the single Wiebe function. Moreover, it provided the duration and phasing of each individual burning stage that can then characterize the combustion in such converted diesel engines. This suggests that a multiple Wiebe function combustion model would effectively assist in analyzing such a multi-stage combustion process, which is important for engine optimization and development.
APA, Harvard, Vancouver, ISO, and other styles
37

Pati, Andrea, Davide Paredi, Cooper Welch, Marius Schmidt, Christopher Geschwindner, Benjamin Böhm, Tommaso Lucchini, Gianluca D’Errico, and Christian Hasse. "Numerical and experimental investigations of the early injection process of Spray G in a constant volume chamber and an optically accessible DISI engine." International Journal of Engine Research, August 21, 2021, 146808742110394. http://dx.doi.org/10.1177/14680874211039422.

Full text
Abstract:
In this work, the Engine Combustion Network Spray G injector was mounted in the Darmstadt optical-accessible engine to study phenomena typical of multi-hole, early direct-injection events in spark-ignition engines characterized by tumble flow charge motion. Dedicated experimental measurements of both in-cylinder spray morphology and flow velocities before and after the injection process were carried out to assess the adopted numerical setup under real engine conditions. A dynamic secondary breakup model from the literature was coupled with an atomization multi-motion regime model. The model was validated against state-of-the-art ECN Spray G experiments for a constant-volume chamber under low evaporating condition. Then, the simulation of the spray injection in the engine was carried out and the achieved results were compared against the experimental data. Overall, good agreement between experiments and simulations was observed for the spray morphology and velocity fields in both cases. With reference to engine calculations the intake flow was seen to induce spray asymmetry. A partial vortex generated during the intake phase on the tumble plane interacts with the spray, developing into a full vortex which induces an upward flow that stabilizes the spray. The upward flows below the intake valve increase the dilution of the plume outside the tumble plane, which therefore exhibits reduced penetration. Moreover, the intake valves protect from the energetic intake flow the recirculation vortex generated at the tip of the plumes that lie outside the tumble plane. The intake flow helps fuse the vapor fuel clouds of the individual plumes near the injector tip, obtaining a vapor fuel with a shape like that generated by a horseshoe multi-hole injector. Finally, a phenomenological model of the interaction between the multi-hole injector jets and the engine intake flow was introduced to describe the spray evolution in a typical DISI engine.
APA, Harvard, Vancouver, ISO, and other styles
38

Van Roekel, Chris A., David T. Montgomery, Jaswinder Singh, and Daniel B. Olsen. "Evaluating dedicated exhaust gas recirculation on a stoichiometric industrial natural gas engine." International Journal of Engine Research, July 24, 2019, 146808741986473. http://dx.doi.org/10.1177/1468087419864733.

Full text
Abstract:
Due to the market presence that natural gas has and is expected to have in the future energy sector, research and development of novel natural gas combustion strategies to increase power density, lower total emissions, and increase overall efficiency is warranted. Dilution whether by excess air or by exhaust gas recirculation has historically been implemented on diesel, natural gas, and gasoline engines to mitigate various regulated emissions. In the large industrial natural gas engine industry, excess air dilution or ultra-lean-burn operation has afforded lean-burn engines increased power density and reduced NO x emissions. This advance in technology has allowed lean-burn engines to compete in markets such as electrical power generation which previously they had not been able. However, natural gas engines utilizing a non-selective catalytic reduction system or three-way catalyst must operate under stoichiometric conditions and thus are limited in power density by exhaust gas temperatures. In previous gasoline small engine research, a novel exhaust gas recirculation technique called dedicated exhaust gas recirculation was shown to have a positive impact on engine-out emissions of NO x and unburned hydrocarbons while also lowering exhaust component temperatures. This work seeks to understand the consequences of implementing a dedicated exhaust gas recirculation system on a multi-cylinder stoichiometric industrial natural gas engine. The results of this initial evaluation demonstrate reductions in engine-out NO x and CO emissions and improvements in engine-out exhaust gas temperatures with the dedicated exhaust gas recirculation technique. However, in a low-turbulence combustion chamber, dedicated exhaust gas recirculation significantly lowers the overall rate of combustion and results in significant differences in cylinder-to-cylinder combustion.
APA, Harvard, Vancouver, ISO, and other styles
39

Уханов, А. П., М. Д. Дубин, and М. В. Рыблов. "TWO-PHASE MIXING IN A TRACTOR DIESEL: THE CONCEPT OF TECHNICAL SOLUTION." Niva Povolzh`ia, no. 2(55) (May 18, 2020). http://dx.doi.org/10.36461/np.2020.2.55.018.

Full text
Abstract:
Статья посвящена проблеме улучшения эффективных и экологических показателей автотракторной техники путем двухфазного смесеобразования в дизелях, оснащенных системой питания с непосредственным впрыском топлива в камеру сгорания. При данном способе смесеобразования первая фаза осуществляется путем впрыска определенной дозы (10-20 %) жидкого активатора (бензина, керосина, дизельного топлива и др.) в такте впуска во впускной тракт дизеля с образованием активаторно-воздушной смеси в цилиндре дизеля. Во второй фазе смесеобразования впрыск основной дозы топлива в цилиндр дизеля осуществляется штатной топливной аппаратурой в конце такта сжатия в сжатую активаторно-воздушную смесь с образованием рабочей смеси, подготовленной для активного воспламенения по всему объему камеры сгорания. Для практической реализации первой фазы двухфазного смесеобразования дизель необходимо дополнительно оснастить системой многоточечного впрыска активатора электромагнитными форсунками, управляемыми электронным блоком. Данная система должна обеспечивать высокую точность дозирования активатора, его своевременную подачу в такте впуска и равномерное распределение по цилиндрам дизеля. Выполненные НИОКР включали разработку функциональной модели системы, а также методик по обоснованию длительности и алгоритма управляющих импульсов, подаваемых на электромагнитные форсунки. Система содержит бак для активатора, фильтр, электронасос, модернизированный впускной трубопровод, электромагнитные форсунки, датчики и электронный блок управления, выполненный на базе программируемого микроконтроллера. The article is devoted to the problem of improving the effective and environmental indicators of automotive equipment by two-phase mixing in diesels equipped with a power system with direct fuel injection into the combustion chamber. In this method of mixing, the first phase is carried out by injecting a certain dose (10-20 %) of a liquid activator (gasoline, kerosene, diesel fuel, etc.) in the instroke into the diesel intake tract to form an activator-air mixture in the diesel cylinder. In the second phase of mixing, the injection of the main fuel dose into the diesel cylinder is carried out by normal fuel equipment at the end of the instroke into a compressed activator-air mixture with the formation of a working mixture prepared for active ignition throughout the entire volume of the combustion chamber. For the practical implementation of the first phase of two-phase mixing, the diesel engine must be additionally equipped with a multi-point activator injection system with electromagnetic nozzles controlled by an electronic unit. This system should ensure high accuracy of activator dosing, its timely delivery in the instroke and equable distribution across the diesel cylinders. The performed research and development works included the development of a functional model of the system, as well as methods to justify the duration and algorithm of control pulses applied to electromagnetic nozzles. The system contains an activator tank, filter, electric pump, upgraded intake pipeline, electromagnetic nozzles, sensors and an electronic control unit based on a programmable microcontroller.
APA, Harvard, Vancouver, ISO, and other styles
40

Dempsey, Adam B., Bishwadipa Das Adhikary, Sandeep Viswanathan, and Rolf D. Reitz. "Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel." Journal of Engineering for Gas Turbines and Power 134, no. 8 (June 21, 2012). http://dx.doi.org/10.1115/1.4006703.

Full text
Abstract:
The present study uses numerical simulations to explore the use of hydrated (wet) ethanol for reactivity controlled compression ignition (RCCI) operation in a heavy duty diesel engine. RCCI uses in-cylinder blending of a low reactivity fuel with a high reactivity fuel and has demonstrated significant fuel efficiency and emissions benefits using a variety of fuels, including gasoline and diesel. Combustion timing is controlled by the local blended fuel reactivity (i.e., octane number), and the combustion duration can be controlled by establishing optimized gradients in fuel reactivity in the combustion chamber. In the present study, the low reactivity fuel was hydrated ethanol while the higher reactivity fuel was diesel. First, the effect of water on ethanol/water/diesel mixtures in completely premixed HCCI combustion was investigated using GT-Power and single-zone CHEMKIN simulations. The results showed that the main impact of the water in the ethanol is to reduce the initial in-cylinder temperature due to vaporization cooling. Next, multi-dimensional engine modeling was performed using the KIVA code at engine loads from 5 to 17 bars IMEP at 1300 rev/min with various grades of hydrated ethanol and a fixed diesel fraction of the total fuel. The results show that hydrated ethanol can be used in RCCI combustion with gross indicated thermal efficiencies up to 55% and very low emissions. A 70/30 ethanol/water mixture (by mass) was found to yield the best results across the entire load range without the need for EGR.
APA, Harvard, Vancouver, ISO, and other styles
41

Yun, Hanho, Cherian Idicheria, and Paul Najt. "The effect of advanced ignition system on gasoline low temperature combustion." International Journal of Engine Research, August 6, 2019, 146808741986754. http://dx.doi.org/10.1177/1468087419867543.

Full text
Abstract:
Engines operating in low temperature combustion during positive valve overlap operation offer significant benefits of high fuel economy over the low temperature combustion during negative valve overlap operation. Significant efficiency improvement was achieved by the increased gamma and lower pumping loss. However, NOx emissions were increased due to reliance on the flame-induced combustion. In this study, the corona ignition system was evaluated to reduce NOx emissions during positive valve overlap operation while maintaining the benefit of efficiency gain. The tests were performed in a 2.2-L multi-cylinder engine. The results show that the ignition delay is always shorter with the corona ignition system than with the spark plug. The corona ignition system is able to support stable combustion (coefficient of variation of indicated mean effective pressure <3%) in a lower load during positive valve overlap operation than the spark plug, which gives us additional efficiency benefit. Since the corona ignition system promotes simultaneous ignition of the mixture at multiple locations in the combustion chamber as opposed to ignition being limited to the spark gap channel, the dependence of the flame burn for stable combustion during positive valve overlap operation minimizes, which leads to lower NOx emissions over the spark plug.
APA, Harvard, Vancouver, ISO, and other styles
42

Saini, Radhe Shyam Tak, Sujatha Chandramohan, S. Sujatha, and Hemantha Kumar. "Design of bypass rotary vane magnetorheological damper for prosthetic knee application." Journal of Intelligent Material Systems and Structures, July 25, 2020, 1045389X2094257. http://dx.doi.org/10.1177/1045389x20942577.

Full text
Abstract:
Semi-active systems using magnetorheological fluids have been realized in many novel devices such as linear dampers, rotary dampers, brakes, and so on. Rotary vane-type magnetorheological damper is one such device that uses magnetorheological fluid as a hydraulic medium and a controllable magnetorheological valve to generate variable resistance. This device, due to its limited angle motion, lends itself to a natural application for prosthetic knee joint. In this article, a bypass rotary vane-type magnetorheological damper suitable for prosthetic knee device is designed. In the proposed design, the rotary vane chamber and the bypass magnetorheological valve are connected using hydraulic cables and ports. The design of rotary cylinder is implemented based on the largest possible dimensions within the envelope of a healthy human knee, while the magnetorheological valve is designed optimally using a multi-objective genetic algorithm optimization. Off-state braking torque, induced on-state braking torque and mass of the valve are selected as three objectives. The torque and angular velocity requirements of the normal human knee are used as design limits. The optimal solution is chosen from the obtained Pareto fronts by prioritizing the objective of weight reduction of magnetorheological valve. The optimal solution is capable of producing a damping torque of 73 Nm at a design speed of 8.4 rpm and current supply of 1.9 A. Potential benefits offered by this design when compared with multi-plate magnetorheological brake are flow mode operation, large clearance gap, and fewer design components, thus reducing the manufacturing complexity.
APA, Harvard, Vancouver, ISO, and other styles
43

Iacovano, Clara, Alessandro d’Adamo, Stefano Fontanesi, Giovanni Di Ilio, and Vesselin Krassimirov Krastev. "Application of a zonal hybrid URANS/LES turbulence model to high and low-resolution grids for engine simulation." International Journal of Engine Research, July 1, 2020, 146808742093171. http://dx.doi.org/10.1177/1468087420931712.

Full text
Abstract:
A zonal hybrid unsteady Reynolds-averaged Navier–Stokes/large eddy simulation (URANS-LES) Zonal detached-eddy simulation (ZDES) model is applied to internal combustion engine (ICE) simulation and comparisons of predicted flow morphology and variability are carried out against on the transparent combustion chamber (TCC-III) particle image velocimetry (PIV) data set for motored conditions. To this aim, a previously developed model derived from a standard seamless-detached eddy simulation (DES) formulation is adopted for two different grid resolutions. In particular, two zonalization choices are evaluated based on previous single-grid results, in order to assess the model outcomes based on the joint turbulence treatment/grid density: the seamless-DES mode is applied (1) only to the cylinder (TCC-Z1) and (2) to the cylinder and intake port (TCC-Z2). Multi-cycle simulations (50 samples) are carried out and the results are compared to experimental data in terms of PIV images using multiple quality indices on multiple planes ( Y = 0 and X = 0). Finally, comparison of predicted mean flow fields is extended to standard URANS mode. Results show that the use of a cylinder-only seamless-DES treatment on a relatively coarse grid results in a quantitative agreement between simulated and measured (PIV) flow fields, both in terms of average morphology and flow variability, whereas the extension of the DES mode to the intake port does not introduce relevant variations. Quality indicators seem to be moderately sensitive to the grid resolution, thus confirming the adaptive potential of a ZDES–like model and promoting the use of DES–type turbulence modelling even on relatively low-resolution grids. The analysis of average fields compared to URANS simulations highlights the benefit for both grids of a scale-resolving ZDES modelling when the same underlying turbulence model ( k-ε RNG) is used. This study reinforces the recommendation in the use of hybrid URANS-LES models to simulate ICE flows. The adopted ZDES formulation based on the two-equation k-ε RNG model shows that high-quality results can be obtained even on engineering-grade grids, both in terms of average and cycle-to-cycle variation. The numerical results obtained using the two grids with variable resolution are consistent, and this further promotes a wider adoption of this class of models to simulate engine flows in industrial applications.
APA, Harvard, Vancouver, ISO, and other styles
44

Donkov, Viktor Hristov, Torben Andersen, Matti Linjama, and Morten Ebbesen. "Digital Hydraulic Technology for Linear Actuation: A State of the Art Review." International Journal of Fluid Power, December 4, 2020. http://dx.doi.org/10.13052/ijfp1439-9776.2125.

Full text
Abstract:
This paper analyses the current state of the art in linear actuation with digital hydraulics. Based on the differences in their aims the paper partitions the area into four actuation concepts – parallel valve solutions, single switching valve solutions, multi-chamber cylinders, and multi-pressure cylinders. The concepts are evaluated based on accuracy and smoothness of motion, switching load, reliability, efficiency and the number of components required.
APA, Harvard, Vancouver, ISO, and other styles
45

Huang, De-Lin, Shi-Chang Du, Gui-Long Li, and Zhuo-Qi Wu. "A Systematic Approach for Online Minimizing Volume Difference of Multiple Chambers in Machining Processes Based on High-Definition Metrology." Journal of Manufacturing Science and Engineering 139, no. 8 (May 8, 2017). http://dx.doi.org/10.1115/1.4035897.

Full text
Abstract:
The volume variation of multiple chambers of a workpiece is one of the most important factors that can directly influence the performance of the final product. This paper presents a novel systematic approach for online minimizing the volume difference of multiple chambers of a workpiece based on high-definition metrology (HDM). First, the datum of high-density points is transformed by a random sample consensus (RANSAC) algorithm due to its good robustness in fitting. Second, a procedure containing reconstruction of interior curved surfaces of chambers, boundary extraction, and projection is developed to calculate the accurate volumes of the multiple chambers. Third, a model for obtaining an optimized machining parameter for depth of chambers is explored to minimize the volume difference of any two ones of all the chambers. The model is formulated as a multi-objective optimization (MOO) problem, and a new procedure of multi-objective particle swarm optimization (MOPSO) algorithm is developed to solve this problem. Finally, a milling depth is output as the optimal milling parameter for controlling the volume variation of multiple chambers. The results of a case study show that the proposed approach can minimize the volume difference of four combustion chambers of a cylinder head and it can be well applied online in volume variation control of multiple chambers in machining processes.
APA, Harvard, Vancouver, ISO, and other styles
46

Luo, Ren, Changdong Liu, and Huailong Shi. "Dynamic simulation of a high-speed train with interconnected hydro-pneumatic secondary suspension." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, July 14, 2021, 095440972110313. http://dx.doi.org/10.1177/09544097211031334.

Full text
Abstract:
A secondary suspension configuration that integrates the Interconnected Hydro-Pneumatic Struts (IHPS) to the air spring system is proposed in this investigation for railway vehicles. Using the dynamic performance of IHPS, this suspension aims to provide smaller vertical supporting stiffness and larger anti-roll resistance compared to the traditional configuration, the air spring is connected to an emergency rubber spring in series with quite large stiffness. By replacing the rubber spring with IHPS, the proposed suspension configuration contributes to vibration absorption as well as anti-roll stiffness of the vehicle. The IHPS has two hydraulic cylinders installed in parallel to support the suspended mass. Each hydraulic cylinder has three oil chambers, and the oil chambers between the left and right struts are cross-connected through pipelines. Considering the oil compressibility and the vibration of liquid in the interconnected pipes, the mathematical model of IHPS is formulated and established in MATLAB. A multi-body dynamic railway vehicle model is built in SIMPACK, into which the IHPS is integrated through a co-simulation technique. Model validations on the IHPS are performed and its static and dynamic stiffness is examined. Numerical simulations show that the IHPS suspension reduces the vertical acceleration on the car body floor at a frequency between 1 and 3 Hz than the traditional air spring system with/without an anti-roll bar configuration. The vertical Sperling index of the vehicle using the IHPS suspension is smaller than that of the traditional suspensions, and it is more significant when the air spring deflates. However, the vertical acceleration with IHPS is larger than the traditional suspensions at 13∼55 Hz when the air spring deflates.
APA, Harvard, Vancouver, ISO, and other styles
47

Sk, Farooq. "Journal Vol – 15 No -7, July 2020 Journal > Journal > Journal Vol – 15 No -7, July 2020 > Page 6 PERFORMANCE AND EMISSION CHARACTERISTICS OF GASOLINE-ETHANOL BLENDS ON PFI-SI ENGINE Authors: D.Vinay Kumar ,G.Samhita Priyadarsini,V.Jagadeesh Babu,Y.Sai Varun Teja, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00051 admin July 26, 2020 Abstract: Alcohol based fuels can be produced from renewable energy sources and has the potential to reduce pollutant emissions due to their oxygenated nature. Lighter alcohols like ethanol and methanol are easily miscible with gasoline and by blending alcohols with gasoline; a part of conventional fuel can be replaced while contributing to fuel economy. Several researchers tested various ethanol blends on different engine test rigs and identified ethanol as one of the most promising ecofriendly fuels for spark ignition engine. Its properties high octane number, high latent heat of vaporization give better performance characteristics and reduces exhaust emissions compared to gasoline. This paper focuses on studying the effects of blending 50 of ethanol by volume with gasoline as it hardly needs engine modifications. Gasoline (E0) and E50 fuels were investigated experimentally on single-cylinder, four-stroke port fuel injection spark ignition engine by varying engine speed from 1500 rpm to 3500 rpm. Performance Characteristics like torque, brake power, specific fuel consumption, and volumetric efficiency and exhaust emissions such as HC, CO, CO2, NOx were studied.. Keywords: Ethanol,Emissions,Gasoline,Port fuel Injection, Refference: I Badrawada, I. G. G., and A. A. P. Susastriawan. “Influence of ethanol–gasoline blend on performance and emission of four-stroke spark ignition motorcycle.” Clean Technologies and Environmental Policy (2019): 1-6. II Doğan, Battal, et al. “The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis.” Applied Thermal Engineering 120 (2017): 433-443. III Efemwenkiekie, U. Ka, et al. “Comparative Analysis of a Four Stroke Spark Ignition Engine Performance Using Local Ethanol and Gasoline Blends.” Procedia Manufacturing 35 (2019): 1079-1086. IV Galloni, E., F. Scala, and G. Fontana. “Influence of fuel bio-alcohol content on the performance of a turbo-charged, PFI, spark-ignition engine.” Energy 170 (2019): 85-92. V Hasan, Ahmad O., et al. “Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends.” Fuel 231 (2018): 197-203. VI Mourad, M., and K. Mahmoud. “Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends.” Renewable Energy 143 (2019): 762-771. VII Singh, Ripudaman, et al. “Influence of fuel injection strategies on efficiency and particulate emissions of gasoline and ethanol blends in a turbocharged multi-cylinder direct injection engine.” International Journal of Engine Research (2019): 1468087419838393. VIII Thakur, Amit Kumar, et al. “Progress in performance analysis of ethanol-gasoline blends on SI engine.” Renewable and Sustainable Energy Reviews 69 (2017): 324-340. View Download Journal Vol – 15 No -7, July 2020 CHARACTERIZATION OF MATERIALS FOR CUSTOMIZED AFO USING ADDITIVE MANUFACTURING Authors: Gamini Suresh,Nagarjuna Maguluri,Kunchala Balakrishna, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00052 admin July 26, 2020 Abstract: Neurodegenerative conditions and compressed nerves often cause an abnormal foot drop that affects an individual gait and make it difficult to walk normally. Ankle Foot Orthosis (AFO) is the medical device which is recommended for the patients to improve the walking ability and decrease the risk of falls. Custom AFOs provide better fit, comfort and performance than pre-manufactured ones. The technique of 3D-printing is suitable for making custom AFOs. Fused deposition modelling (FDM) is a 3D-printing method for custom AFO applications with the desired resistance and material deposition rate. Generally, FDM is a thermal process; therefore materials thermal behaviour plays an important role in optimizing the performance of the printed parts. The objective of this study is to evaluate the thermal behaviour of PLA, ABS, nylon and WF-PLA filaments before manufacturing the AFO components using the FDM method. In the study, the sequence of testing materials provides a basic measuring method to investigate AFO device parts thermal stability. Thermal analysis (TG/DTG and DSC) was carried out before 3D printing is to characterize the thermal stability of each material. Keywords: Additive Manufacturing,Ankle Foot Orthosis (AFO),FusedDeposition Modelling,ThermalAnalysis, Refference: I. J. Pritchett, “Foot drop: Background, Anatomy, Pathophysiology,” Medscape Drugs, Dis. Proced., vol. 350, no. apr27_6, p. h1736, 2014. II. J. Graham, “Foot drop: Explaining the causes, characteristics and treatment,” Br. J. Neurosci. Nurs., vol. 6, no. 4, pp. 168–172, 2010. III. Y. Feng and Y. Song, “The Categories of AFO and Its Effect on Patients With Foot Impair: A Systemic Review,” Phys. Act. Heal., vol. 1, no. 1, pp. 8–16, 2017. IV. J. H. P. Pallari, K. W. Dalgarno, J. Munguia, L. Muraru, L. Peeraer, S. Telfer, and J. Woodburn” Design and additive fabrication of foot and ankle-foot orthoses”21st Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, SFF 2010 (2010) 834-845 V. Y. Jin, Y. He, and A. Shih, “Process Planning for the Fuse Deposition Modeling of Ankle-Foot-Othoses,” Procedia CIRP, vol. 42, no. Isem Xviii, pp. 760–765, 2016. VI. R. K. Chen, Y. an Jin, J. Wensman, and A. Shih, “Additive manufacturing of custom orthoses and prostheses-A review,” Addit. Manuf., vol. 12, pp. 77–89, 2016. VII. A. D. Maso and F. Cosmi, “ScienceDirect 3D-printed ankle-foot orthosis : a design method,” Mater. Today Proc., vol. 12, pp. 252–261, 2019. VIII. B. Yuan et al., “Designing of a passive knee-assisting exoskeleton for weight-bearing,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10463 LNAI, pp. 273–285. IX. R. Spina, B. Cavalcante, and F. Lavecchia, “Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: a systematic review.,” AIP Conf. Proc., vol. 1960, 2018. X. M. Srivastava, S. Maheshwari, T. K. Kundra, and S. Rathee, “ScienceDirect Multi-Response Optimization of Fused Deposition Modelling Process Parameters of ABS Using Response Surface Methodology ( RSM ) -Based Desirability Analysis,” Mater. Today Proc., vol. 4, no. 2, pp. 1972–1977, 2017. XI. E. Malekipour, S. Attoye, and H. El-Mounayri, “Investigation of Layer Based Thermal Behavior in Fused Deposition Modeling Process by Infrared Thermography,” Procedia Manuf., vol. 26, pp. 1014–1022, 2018. XII. A. Patar, N. Jamlus, K. Makhtar, J. Mahmud, and T. Komeda, “Development of dynamic ankle foot orthosis for therapeutic application,” Procedia Eng., vol. 41, no. Iris, pp. 1432–1440, 2012. XIII. Y. A. Jin, H. Li, Y. He, and J. Z. Fu, “Quantitative analysis of surface profile in fused deposition modelling,” Addit. Manuf., vol. 8, pp. 142–148, 2015. XIV. M. Walbran, K. Turner, and A. J. McDaid, “Customized 3D printed ankle-foot orthosis with adaptable carbon fibre composite spring joint,” Cogent Eng., vol. 3, no. 1, pp. 1–11, 2016. XV. N. Wierzbicka, F. Górski, R. Wichniarek, and W. Kuczko, “The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties,” Adv. Sci. Technol. Res. J., vol. 11, no. 3, pp. 283–288, 2017. XVI. S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review,” Adv. Drug Deliv. Rev., vol. 107, pp. 367–392, 2016. XVII. S. Wojtyła, P. Klama, and T. Baran, “Is 3D printing safe ? Analysis of the thermal treatment of thermoplastics : ABS , PLA , PET , and,” vol. 9624, no. April, 2017. XVIII. G. Cicala et al., “Polylactide / lignin blends,” J. Therm. Anal. Calorim., 2017. XIX. S. Y. Lee, I. A. Kang, G. H. Doh, H. G. Yoon, B. D. Park, and Q. Wu, “Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: Effect of filler content and coupling treatment,” J. Thermoplast. Compos. Mater., vol. 21, no. 3, pp. 209–223, 2008. XX. Y. Tao, H. Wang, Z. Li, P. Li, and S. Q. Shi, “Development and application ofwood flour-filled polylactic acid composite filament for 3d printing,” Materials (Basel)., vol. 10, no. 4, pp. 1–6, 2017. XXI. D. Lewitus, S. McCarthy, A. Ophir, and S. Kenig, “The effect of nanoclays on the properties of PLLA-modified polymers Part 1: Mechanical and thermal properties,” J. Polym. Environ., vol. 14, no. 2, pp. 171–177, 2006. XXII. H. J. Chung, E. J. Lee, and S. T. Lim, “Comparison in glass transition and enthalpy relaxation between native and gelatinized rice starches,” Carbohydr. Polym., vol. 48, no. 3, pp. 287–298, 2002. View Download Journal Vol – 15 No -7, July 2020 CFD STUDIES OF MIXING BEHAVIOR OF INERT SAND WITH BIOMASS IN FLUIDIZED BED Authors: B.J.M.Rao,K.V.N.S.Rao, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00053 admin July 26, 2020 Abstract: Agriculture deposits, which remains unused and often causes ecological problems, could play an important role as an energy source to meet energy needs in developing countries ‘ rural areas. Moreover, energy levels in these deposits are low and need to be elevated by introducing efficient operative conversion technologies to utilize these residues as fuels. In this context, the utilization of a fluidized bed innovation enables a wide range of non-uniform-sized low-grade fuels to be effectively converted into other forms of energy.This study was undertaken to evaluate the effectiveness of fluidized conversion method for transformation of agricultural by-products such as rice husk, sawdust, and groundnut shells into useful energy. The present investigation was conducted to know the mixing characteristics of sand and fuel have been found by conducting experiments with mixing ratio of rice husk (1:13), saw dust(1:5) and groundnut shells (1:12), the variation of particle movement in the bed and mixing characteristics are analyzed. The impact of sand molecule size on the fluidization speed of two biofuel and sand components is studied and recommended for groundnut shells using a sand molecule of 0.6 mm size and for rice husk, sawdust 0.4 mm sand particle size. Also, establish that the particle size of sand has a significant effect on mingling features in case of sawdust. In the next part of the investigation, the CFD simulations of the fluidized bed are done to investigate the mixing behavior of sand and biomass particles. A set of simulations are conducted by ANSYS FLUENT16; the state of the bed is the same as that of the test. The findings were presented with the volume fraction of sand and biomass particles in the form of contour plots. Keywords: Biomass,sand,mixing behavior,Volume Fraction,CFD model, Refference: I Anil Tekale, Swapna God, Balaji Bedre, Pankaj Vaghela, Ganesh Madake, Suvarna Labade (2017), Energy Production from Biomass: Review, International Journal of Innovative Science and Research Technology, Volume 2, Issue 10, ISSN No: – 2456 – 2165. II Anil Kumar, Nitin Kumar , Prashant Baredar , Ashish Shukla (2015), A review on biomass energy resources, potential, conversion and policy in India, Renewable and Sustainable Energy, Reviews 45-530-539. III Zhenglan Li, ZhenhuaXue (2015), Review of Biomass Energy utilization technology, 3rd International Conference on Material, Mechanical and Manufacturing Engineering. IV Abdeen Mustafa Omer (2011), Biomass energy resources utilisation and waste management, Journal of Agricultural Biotechnology and Sustainable Development Vol. 3(8), pp. 149 -170 V Rijul Dhingra, Abhinav Jain, Abhishek Pandey, and Srishti Mahajan (2014), Assessment of Renewable Energy in India, International Journal of Environmental Science and Development, Vol. 5, No. 5. VI Paulina Drożyner, Wojciech Rejmer, Piotr Starowicz,AndrzejKlasa, Krystyna A. Skibniewska (2013), Biomass as a Renewable Source of Energy, Technical Sciences 16(3), 211–220. VII Souvik Das, Swati Sikdar (2016), A Review on the Non-conventional Energy Sources in Indian Perspective, International Research Journal of Engineering and Technology (IRJET), Volume: 03 Issue: 02. VIII Maninder, Rupinderjit Singh Kathuria, Sonia Grover, Using Agricultural Residues as a Biomass Briquetting: An Alternative Source of Energy, IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE), ISSN: 2278-1676 Volume 1, Issue 5 (July-Aug. 2012), PP 11-15. IX H.B.Goyal, DiptenduldDeal, R.C.Saxena (2006) Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, Volume 12, Issue 2Pages 504-517. X Digambar H. Patil, J. K. Shinde(2017) A Review Paper on Study of Bubbling Fluidized Bed Gasifier, International Journal for Innovative Research in Science & Technology, Volume 4, Issue 4 XI Neil T.M. Duffy, John A. Eaton (2013) Investigation of factors affecting channelling in fixed-bed solid fuel combustion using CFD, Combustion and Flame 160, 2204–2220. XII Xing Wu, Kai Li, Feiyue and Xifeng Zhu (2017), Fluidization Behavior of Biomass Particles and its Improvement in a Cold Visualized Fluidized, Bio Resources 12(2), 3546-3559. XIII N.G. Deen, M. Van Sint Annaland, M.A. Van der Hoef, J.A.M. Kuipers (2007), Reviewof discrete particle modeling of fluidized beds, Chemical Engineering Science 62, 28 – 44. XIV BaskaraSethupathySubbaiah, Deepak Kumar Murugan, Dinesh Babu Deenadayalan, Dhamodharan.M.I (2014), Gasification of Biomass Using Fluidized Bed, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 3, Issue 2. XV Priyanka Kaushal, Tobias Pröll and Hermann Hofbauer, Modelling and simulation of the biomass fired dual fluidized bed gasifier at Guessing/Austria. XVI Dawit DiribaGuta (2012), Assessment of Biomass Fuel Resource Potential and Utilization in Ethiopia: Sourcing Strategies for Renewable Energies, International Journal of Renewable Energy Research, Vol.2, and No.1. View Download Journal Vol – 15 No -7, July 2020 AN APPROACH FOR OPTIMISING THE FLOW RATE CONDITIONS OF A DIVERGENT NOZZLE UNDER DIFFERENT ANGULAR CONDITIONS Authors: Lam Ratna Raju ,Ch. Pavan Satyanarayana,Neelamsetty Vijaya Kavya, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00054 admin July 26, 2020 Abstract: A spout is a device which is used to offer the guidance to the gases leaving the burning chamber. Spout is a chamber which has a capability to change over the thermo-compound essentials created within the ignition chamber into lively vitality. The spout adjustments over the low speed, excessive weight, excessive temperature fuel in the consuming chamber into rapid gasoline of decrease weight and low temperature. An exciting spout is used if the spout weight volume is superior vehicles in supersonic airplane machines commonly combine a few sort of a distinctive spout. Our exam is surpassed on the use of programming like Ansys Workbench for arranging of the spout and Fluent 15.0 for separating the streams inside the spout. The events of staggers for the pipe formed spouts have been seen close by trade parameters for numerous considered one of a kind edges. The parameters underneath recognition are differentiated and that of shape spout for singular terrific edges by using keeping up the gulf, outlet and throat width and lengths of joined together and diverse quantities as same. The simultaneous component and throat expansiveness are kept regular over the cases.The surprise of stun became envisioned and the effects exhibited near closeness in direction of motion of Mach circle and its appearance plans as exposed in numerous preliminary considers on advancement in pipe molded particular spouts with assorted edges four°,7°, 10°, Occurrence of stun is seen with higher special factors Keywords: Nozzle,Supersonic Rocket Engine,Divergent edges, Refference: I. Varun, R.; Sundararajan,T.; Usha,R.; Srinivasan,ok.; Interaction among particle-laden under increased twin supersonic jets, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2010 224: 1005. II. Pandey,K.M.; Singh, A.P.; CFD Analysis of Conical Nozzle for Mach 3 at Various Angles of Divergence with Fluent Software, International Journal of Chemical Engineering and Applications, Vol. 1, No. 2, August 2010, ISSN: 2010-0221. III. Natta, Pardhasaradhi.; Kumar, V.Ranjith.; Rao, Dr. Y.V. Hanumantha.; Flow Analysis of Rocket Nozzle Using Computational Fluid Dynamics (Cfd), International Journal of Engineering Research and Applications (IJERA), ISSN: 2248-9622,Vol. 2, Issue five, September- October 2012, pp.1226-1235. IV. K.M. Pandey, Member IACSIT and A.P. Singh. K.M.Pandey, Member, IACSIT and S.K.YadavK.M.Pandey and S.K.Yadav, ―CFD Analysis of a Rocket Nozzle with Two Inlets at Mach2.1, Journal of Environmental Research and Development, Vol 5, No 2, 2010, pp- 308-321. V. Shigeru Aso, ArifNur Hakim, Shingo Miyamoto, Kei Inoue and Yasuhiro Tani “ Fundamental examine of supersonic combustion in natural air waft with use of surprise tunnel” Department of Aeronautics and Astronautics, Kyushu University, Japan , Acta Astronautica 57 (2005) 384 – 389. VI. P. Padmanathan, Dr. S. Vaidyanathan, Computational Analysis of Shockwave in Convergent Divergent Nozzle, International Journal of Engineering Research and Applications (IJERA), ISSN: 2248-9622 , Vol. 2, Issue 2,Mar-Apr 2012, pp.1597-1605. VII. Adamson, T.C., Jr., and Nicholls., J.A., “On the shape of jets from Highly below improved Nozzles into Still Air,” Journal of the Aerospace Sciences, Vol.26, No.1, Jan 1959, pp. Sixteen-24. VIII. Lewis, C. H., Jr., and Carlson, D. J., “Normal Shock Location in underneath increased Gas and Gas particle Jets,” AIAA Journal, Vol 2, No.4, April 1964, pp. 776-777. Books IX. Anderson, John D.Jr.; Modern Compressible Flow with Historical Perspective, Third edition, 2012 X. Versteeg. H.; Malalasekra.W.; An Introduction to Computational Fluid Dynamics The Finite Volume Method, Second Edition,2009. XI. H.K.Versteeg and W.Malala Sekhara, “An introduction to Computational fluid Dynamics”, British Library cataloguing pub, 4th version, 1996. XII. Lars Davidson, “An introduction to turbulenceModels”, Department of thermo and fluid dynamics, Chalmers college of era, Goteborg, Sweden, November, 2003. XIII. Karna s. Patel, “CFD analysis of an aerofoil”, International Journal of engineering studies,2009. XIV. K.M. Pandey, Member IACSIT and A.P. Singh “CFD Analysis of Conical Nozzle for Mach 3 at Various Angles of Divergence with Fluent Software,2017. XV. P. Parthiban, M. Robert Sagayadoss, T. Ambikapathi, Design And Analysis Of Rocket Engine Nozzle by way of the usage of CFD and Optimization of Nozzle parameters, International Journal of Engineering Research, Vol.Three., Issue.5., 2015 (Sept.-Oct.). View Download Journal Vol – 15 No -7, July 2020 DESIGN OPTIMIZATION OF DRIVE SHAFT FOR AN AUTOMOBILE APPLICATIONS Authors: Govindarajulu Eedara,P. N. Manthru Naik, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00055 admin July 26, 2020 Abstract: The driveshaft is a mechanical instrument that is used in automobiles. The other name of the drive shaft is driveshaft is prop shaft. It has one long cylindrical structure consist of two universal joints. By using the driveshaft it transfers the rotary motion to the differential by using the helical gearbox. By using this rotary motion the rare wheels will run. The 3dimensional Model of automobile drive Shaft is designed using CATIA parametric which enables product development processes and thereby brings about an optimum design. Now a day’s steel is using the best material for the driveshaft.In this paper replacing the composite materials (Kevlar, e-glass epoxy) instead of steel material and itreduces a considerable amount of weight when compared to the conventional steel shaft. The composite driveshaft have high modulus is designed by using CATIA software and tested in ANSYS for optimization of design or material check and providing the best datebook Keywords: The driveshaft ,CATIA,automobile,steel,composite materials,ANSYS,Kevla,e-glass epoxy, Refference: I A.R. Abu Talib, Aidy Ali, Mohamed A. Badie, Nur Azienda Che Lah, A.F. Golestaneh Developing a hybrid, carbon/glass-fiber-reinforced, epoxy composite automotive driveshaft, Material and Design, volume31, 2010, pp 514 – 521 II ErcanSevkat, Hikmet Tumer, Residual torsional properties of composite shafts subjected to impact Loadings, Materials, and design, volume – 51, 2013, pp -956-967. III H. Bayrakceken, S. Tasgetiren, I. Yavuz two cases of failure in the power transmission system on vehicles: A Universal joint yoke and a drive shaft, volume-14,2007,pp71. IV H.B.H. Gubran, Dynamics of hybrid shafts, Mechanics Research communication, volume – 32, 2005, pp – 368-374. V Shaw D, Simitses DJ, SheinmanI. Imperfection sensitivity of laminated cylindrical shells in torsion and axial compression. ComposStruct 1985; 4(3) pp:35–60. View Download Journal Vol – 15 No -7, July 2020 EXPERIMENTAL EVALUATION OF AN SI ENGINE USING E10 EQUIVALENT TERNARY GASOLINE- ALCOHOL BLENDS." JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES 15, no. 7 (July 26, 2020). http://dx.doi.org/10.26782/jmcms.2020.07.00056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography