Journal articles on the topic 'Mu2e'

To see the other types of publications on this topic, follow the link: Mu2e.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mu2e.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Di Falco, Stefano. "The Mu2e Experiment." Moscow University Physics Bulletin 77, no. 2 (April 2022): 108–11. http://dx.doi.org/10.3103/s002713492202028x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bono, Jason. "The Mu2e Experiment." Journal of Physics: Conference Series 1137 (December 2018): 012042. http://dx.doi.org/10.1088/1742-6596/1137/1/012042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miscetti, Stefano. "Status of the Mu2e experiment at Fermilab." EPJ Web of Conferences 234 (2020): 01010. http://dx.doi.org/10.1051/epjconf/202023401010.

Full text
Abstract:
The Mu2e experiment aims to improve, by four orders of magnitude, current sensitivity in the search for the charged-lepton flavor violating (cLFV) neutrino-less conversion of a negative muon into an electron. The conversion process will be identified by a distinctive signature of a mono-energetic electron with energy slightly below the muon rest mass. In the Standard Model this process has a negligible rate. However, in many Beyond the Standard Model scenarios its rate is within the reach of Mu2e sensitivity. In this paper, we explain the Mu2e design guidelines and summarize the status of the experiment.
APA, Harvard, Vancouver, ISO, and other styles
4

Happacher, F. "The Mu2e crystal calorimeter." Journal of Instrumentation 12, no. 09 (September 15, 2017): P09017. http://dx.doi.org/10.1088/1748-0221/12/09/p09017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buehler, M., S. Gluchko, M. L. Lopes, C. Orozco, M. Tartaglia, and J. Tompkins. "Mu2e Magnetic Measurement Studies." IEEE Transactions on Applied Superconductivity 24, no. 3 (June 2014): 1–4. http://dx.doi.org/10.1109/tasc.2013.2287702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Atanov, N., V. Baranov, L. Baldini, J. Budagov, D. Caiulo, F. Cei, F. Cervelli, et al. "Mu2e calorimeter readout system." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 936 (August 2019): 333–34. http://dx.doi.org/10.1016/j.nima.2018.11.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

PRONSKIKH, V. S. "RADIATION STUDIES FOR THE Mu2e EXPERIMENT: A REVIEW." Modern Physics Letters A 28, no. 19 (June 21, 2013): 1330014. http://dx.doi.org/10.1142/s0217732313300140.

Full text
Abstract:
The Mu2e experiment being designed at Fermilab will be searching for a rare event — conversion of muon into electron in the field of a nucleus without emission of neutrinos — observation of which would provide unambiguous evidence for physics beyond the Standard Model, making use of an 8 GeV 8 kW proton beam. As an experiment to be performed at the Intensity Frontier, taking advantage of high-intensity proton beams, the Mu2e experimental setup will be residing in a harsh radiation environment created by secondary particle fluxes. Radiation quantities in different parts of the Mu2e apparatus, such as neutron flux, peak power density, displacements per atom (DPA), absorbed dose, dynamic heat load simulated using the MARS15 code are reviewed in this work. Radiation levels and requirements for Heat and Radiation Shield (HRS), Transport Solenoid (TS), residual dose and decay heat from the Mu2e target, beam dump design, rates in Cosmic Ray Veto (CRV) counters as well as stopping target monitor (STM) are considered. Airflow, surface and ground water activation are estimated. Recent developments in the MARS15 DPA model applied in this work are described, their consequences are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Kargiantoulakis, Manolis. "A search for charged lepton flavor violation in the Mu2e experiment." Modern Physics Letters A 35, no. 19 (April 24, 2020): 2030007. http://dx.doi.org/10.1142/s0217732320300074.

Full text
Abstract:
The Mu2e experiment will search for the neutrino-less conversion of a muon into an electron in the field of an aluminum nucleus. An observation would be the first signal of charged lepton flavor violation and de facto evidence for new physics beyond the Standard Model. The clean signature of the conversion process offers an opportunity for a powerful search: Mu2e will probe four orders of magnitude beyond current limits, with real discovery potential over a wide range of well-motivated new physics models. This goal requires an integrated system of solenoids that will create the most intense muon beam in the world, and suppression of all possible background sources. The Mu2e components are currently being constructed, with the experiment planned to begin operations in the Fermilab Muon Campus within the next few years.
APA, Harvard, Vancouver, ISO, and other styles
9

CERVELLI, F. "The Mu2e Experiment at Fermilab." Journal of Physics: Conference Series 335 (December 28, 2011): 012073. http://dx.doi.org/10.1088/1742-6596/335/1/012073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Giovannella, S. "Status of the Mu2e experiment." EPJ Web of Conferences 179 (2018): 01003. http://dx.doi.org/10.1051/epjconf/201817901003.

Full text
Abstract:
The Mu2e experiment at Fermilab searches for the charged-lepton flavor violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. The dynamics of such a process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed, in three years of running Mu2e will improve the current limit by four orders of magnitude. Such a charged lepton flavor-violating reaction probes new physics at a scale inaccessible with direct searches at either present or planned high energy colliders. The experiment both complements and extends the current search for muon decay to electron-photon at MEG and searches for new physics at the LHC. This paper focuses on the physics motivation, the design and the status of the experiment.
APA, Harvard, Vancouver, ISO, and other styles
11

Tschirhart, R. "The Mu2e Experiment at Fermilab." Nuclear Physics B - Proceedings Supplements 210-211 (January 2011): 245–48. http://dx.doi.org/10.1016/j.nuclphysbps.2010.12.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Atanov, Nikolay, Vladimir Baranov, Leo Borrel, Caterina Bloise, Julian Budagov, Sergio Ceravolo, Franco Cervelli, et al. "The Mu2e Crystal Calorimeter: An Overview." Instruments 6, no. 4 (October 9, 2022): 60. http://dx.doi.org/10.3390/instruments6040060.

Full text
Abstract:
The Mu2e experiment at Fermilab will search for the standard model-forbidden, charged lepton flavour-violating conversion of a negative muon into an electron in the field of an aluminium nucleus. The distinctive signal signature is represented by a mono-energetic electron with an energy near the muon’s rest mass. The experiment aims to improve the current single-event sensitivity by four orders of magnitude by means of a high-intensity pulsed muon beam and a high-precision tracking system. The electromagnetic calorimeter complements the tracker by providing high rejection power in muon to electron identification and a seed for track reconstruction while working in vacuum in presence of a 1 T axial magnetic field and in a harsh radiation environment. For 100 MeV electrons, the calorimeter should achieve: (a) a time resolution better than 0.5 ns, (b) an energy resolution <10%, and (c) a position resolution of 1 cm. The calorimeter design consists of two disks, each loaded with 674 undoped CsI crystals read out by two large-area arrays of UV-extended SiPMs and custom analogue and digital electronics. We describe here the status of construction for all calorimeter components and the performance measurements conducted on the large-sized prototype with electron beams and minimum ionizing particles at a cosmic ray test stand. A discussion of the calorimeter’s engineering aspects and the on-going assembly is also reported.
APA, Harvard, Vancouver, ISO, and other styles
13

Gioiosa, Antonio, Richard Bonventre, Simone Donati, Eric Flumerfelt, Glenn Horton-Smith, Luca Morescalchi, Vivian O’Dell, et al. "Mu2e DAQ and slow control systems." EPJ Web of Conferences 262 (2022): 01011. http://dx.doi.org/10.1051/epjconf/202226201011.

Full text
Abstract:
The Mu2e experiment at the Fermilab Muon Campus will search for the coherent neutrinoless conversion of a muon into an electron in the field of an aluminum nucleus with a sensitivity improvement by a factor of 10,000 over existing limits. The Mu2e Trigger and Data Acquisition System (TDAQ) uses otsdaq as the online Data Acquisition System (DAQ) solution. Developed at Fermilab, otsdaq integrates both the artdaq DAQ and the art analysis frameworks for event transfer, filtering, and processing. otsdaq is an online DAQ software suite with a focus on flexibility and scalability and provides a multiuser, web-based, interface accessible through a web browser. The data stream from the detector subsystems is read by a software filter algorithm that selects events which are combined with the data flux coming from a Cosmic Ray Veto System. The Detector Control System (DCS) has been developed using the Experimental Physics and Industrial Control System (EPICS) open source platform for monitoring, controlling, alarming, and archiving. The DCS System has been integrated into otsdaq. A prototype of the TDAQ and the DCS systems has been built at Fermilab’s Feynman Computing Center. In this paper, we report on the progress of the integration of this prototype in the online otsdaq software.
APA, Harvard, Vancouver, ISO, and other styles
14

Atanov, N., V. Baranov, J. Budagov, F. Cervelli, F. Colao, M. Cordelli, G. Corradi, et al. "The Mu2e undoped CsI crystal calorimeter." Journal of Instrumentation 13, no. 02 (February 22, 2018): C02037. http://dx.doi.org/10.1088/1748-0221/13/02/c02037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Giovannella, S. "The detectors of the Mu2e experiment." Journal of Instrumentation 15, no. 06 (June 8, 2020): C06022. http://dx.doi.org/10.1088/1748-0221/15/06/c06022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lopes, M., G. Ambrosio, K. Badgley, J. DiMarco, D. Evbota, P. Fabbricatore, S. Farinon, et al. "Mu2e Transport Solenoid Prototype Tests Results." IEEE Transactions on Applied Superconductivity 26, no. 4 (June 2016): 1–5. http://dx.doi.org/10.1109/tasc.2016.2526619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kutschke, Robert K. "Offline Software for the Mu2e Experiment." Journal of Physics: Conference Series 396, no. 2 (December 13, 2012): 022028. http://dx.doi.org/10.1088/1742-6596/396/2/022028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Feher, Sandor, Patrick DeLurgio, Luciano Elementi, Horst W. Friedsam, James J. Grudzinski, Michael J. Lamm, Jerzy M. Nogiec, et al. "Mu2e Solenoid Field Mapping System Design." IEEE Transactions on Applied Superconductivity 28, no. 3 (April 2018): 1–5. http://dx.doi.org/10.1109/tasc.2017.2786720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Atanov, N., V. Baranov, C. Bloise, J. Budagov, F. Cervelli, F. Colao, M. Cordelli, et al. "Construction status of the Mu2e crystal calorimeter." Journal of Instrumentation 15, no. 09 (September 11, 2020): C09035. http://dx.doi.org/10.1088/1748-0221/15/09/c09035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Miscetti, Stefano. "Design and status of the Mu2e experiment." EPJ Web of Conferences 118 (2016): 01021. http://dx.doi.org/10.1051/epjconf/201611801021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lopes, M. L., G. Ambrosio, M. Buehler, R. Coleman, D. Evbota, S. Feher, V. V. Kashikhin, et al. "Tolerance Studies of the Mu2e Solenoid System." IEEE Transactions on Applied Superconductivity 24, no. 3 (June 2014): 1–5. http://dx.doi.org/10.1109/tasc.2013.2278844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Feher, S., N. Andreev, J. Brandt, S. Cheban, R. Coleman, N. Dhanaraj, I. Fang, et al. "Reference Design of the Mu2e Detector Solenoid." IEEE Transactions on Applied Superconductivity 24, no. 3 (June 2014): 1–4. http://dx.doi.org/10.1109/tasc.2013.2283727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dhanaraj, N., R. Wands, M. Buehler, S. Feher, T. Page, T. Peterson, and R. Schmitt. "Thermal Design of the Mu2e Detector Solenoid." IEEE Transactions on Applied Superconductivity 25, no. 3 (June 2015): 1–4. http://dx.doi.org/10.1109/tasc.2014.2379933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fabbricatore, P., G. Ambrosio, S. Cheban, D. Evbota, S. Farinon, M. Lamm, M. Lopes, R. Musenich, R. Wands, and G. Masullo. "Mu2e Transport Solenoid Prototype Design and Manufacturing." IEEE Transactions on Applied Superconductivity 26, no. 4 (June 2016): 1–5. http://dx.doi.org/10.1109/tasc.2016.2527502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kashikhin, V. V., G. Ambrosio, N. Andreev, M. Lamm, N. V. Mokhov, T. H. Nicol, T. M. Page, and V. Pronskikh. "Conceptual Design of the Mu2e Production Solenoid." IEEE Transactions on Applied Superconductivity 23, no. 3 (June 2013): 4100604. http://dx.doi.org/10.1109/tasc.2012.2232341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tassielli, G. F. "The tracking system for the Mu2e experiment." Nuclear Physics B - Proceedings Supplements 248-250 (March 2014): 137–39. http://dx.doi.org/10.1016/j.nuclphysbps.2014.02.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Budagov, J., R. Carosi, F. Cervelli, C. Cheng, M. Cordelli, Yu Davydov, E. J. Downie, et al. "The calorimeter project for the Mu2e experiment." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 718 (August 2013): 56–59. http://dx.doi.org/10.1016/j.nima.2012.11.177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lopes, Mauricio, Giorgio Ambrosio, Karie E. Badgley, Federica Bradascio, Jeffrey Brandt, Daniel Evbota, Andy Hocker, et al. "Mu2e Transport Solenoid Cold-Mass Alignment Issues." IEEE Transactions on Applied Superconductivity 27, no. 4 (June 2017): 1–5. http://dx.doi.org/10.1109/tasc.2016.2642641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pezzullo, Gianantonio, J. Budagov, R. Carosi, F. Cervelli, C. Cheng, M. Cordelli, G. Corradi, et al. "Progress status for the Mu2e calorimeter system." Journal of Physics: Conference Series 587 (February 13, 2015): 012047. http://dx.doi.org/10.1088/1742-6596/587/1/012047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Atanov, Nikolay, Vladimir Baranov, Leo Borrel, Caterina Bloise, Julian Budagov, Sergio Ceravolo, Franco Cervelli, et al. "Mu2e Crystal Calorimeter Readout Electronics: Design and Characterisation." Instruments 6, no. 4 (October 20, 2022): 68. http://dx.doi.org/10.3390/instruments6040068.

Full text
Abstract:
The Mu2e experiment at Fermi National Accelerator Laboratory will search for the charged-lepton flavour-violating neutrinoless conversion of negative muons into electrons in the Coulomb field of an Al nucleus. The conversion electron with a monoenergetic 104.967 MeV signature will be identified by a complementary measurement carried out by a high-resolution tracker and an electromagnetic calorimeter, improving by four orders of magnitude the current single-event sensitivity. The calorimeter—composed of 1348 pure CsI crystals arranged in two annular disks—has a high granularity, 10% energy resolution and 500 ps timing resolution for 100 MeV electrons. The readout, based on large-area UV-extended SiPMs, features a fully custom readout chain, from the analogue front-end electronics to the digitisation boards. The readout electronics design was validated for operation in vacuum and under magnetic fields. An extensive radiation hardness certification campaign certified the FEE design for doses up to 100 krad and 1012 n1MeVeq/cm2 and for single-event effects. A final vertical slice test on the final readout chain was carried out with cosmic rays on a large-scale calorimeter prototype.
APA, Harvard, Vancouver, ISO, and other styles
31

Lamm, M. J., N. Andreev, G. Ambrosio, J. Brandt, R. Coleman, D. Evbota, V. V. Kashikhin, et al. "Solenoid Magnet System for the Fermilab Mu2e Experiment." IEEE Transactions on Applied Superconductivity 22, no. 3 (June 2012): 4100304. http://dx.doi.org/10.1109/tasc.2011.2179835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Atanov, N., V. Baranov, J. Budagov, F. Cervelli, F. Colao, M. Cordelli, G. Corradi, et al. "The calorimeter of the Mu2e experiment at Fermilab." Journal of Instrumentation 12, no. 01 (January 23, 2017): C01061. http://dx.doi.org/10.1088/1748-0221/12/01/c01061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pezzullo, G., J. Budagov, R. Carosi, F. Cervelli, C. Cheng, M. Cordelli, G. Corradi, et al. "The LYSO crystal calorimeter for the Mu2e experiment." Journal of Instrumentation 9, no. 03 (March 14, 2014): C03018. http://dx.doi.org/10.1088/1748-0221/9/03/c03018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Atanov, N., V. Baranov, J. Budagov, Y. I. Davydov, V. Glagolev, V. Tereshchenko, Z. Usubov, et al. "Design and Status of the Mu2e Crystal Calorimeter." IEEE Transactions on Nuclear Science 65, no. 8 (August 2018): 2073–80. http://dx.doi.org/10.1109/tns.2018.2790702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lee, MyeongJae. "The Straw-tube Tracker for the Mu2e Experiment." Nuclear and Particle Physics Proceedings 273-275 (April 2016): 2530–32. http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Atanov, N., V. Baranov, C. Bloise, J. Budagov, F. Cervelli, S. Ceravolo, F. Colao, et al. "Design and status of the Mu2e crystal calorimeter." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 958 (April 2020): 162140. http://dx.doi.org/10.1016/j.nima.2019.04.094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Strauss, Thomas, Sandor Feher, Horst W. Friedsam, Michael J. Lamm, Thomas Nicol, and Thomas Page. "The Mu2e Solenoid Cold Mass Position Monitor System." IEEE Transactions on Applied Superconductivity 28, no. 3 (April 2018): 1–5. http://dx.doi.org/10.1109/tasc.2018.2796589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Atanov, N., V. Baranov, J. Budagov, R. Carosi, F. Cervelli, F. Colao, M. Cordelli, et al. "Design and status of the Mu2e electromagnetic calorimeter." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 824 (July 2016): 695–98. http://dx.doi.org/10.1016/j.nima.2015.09.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Oh, S. H., and C. Wang. "An X-ray mapper for the Mu2e experiment." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 807 (January 2016): 64–68. http://dx.doi.org/10.1016/j.nima.2015.09.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Atanov, N., V. Baranov, L. Borrel, C. Bloise, J. Budagov, S. Ceravolo, F. Cervelli, et al. "Development, construction and tests of the Mu2e electromagnetic calorimeter mechanical structures." Journal of Instrumentation 17, no. 01 (January 1, 2022): C01007. http://dx.doi.org/10.1088/1748-0221/17/01/c01007.

Full text
Abstract:
Abstract The “muon-to-electron conversion” (Mu2e) experiment at Fermilab will search for the charged lepton flavour violating neutrino-less coherent conversion of a muon into an electron in the field of an aluminum nucleus. The observation of this process would be the unambiguous evidence of the existence of physics beyond the standard model. Mu2e detectors comprise a straw-tracker, an electromagnetic calorimeter and an external veto for cosmic rays. In particular, the calorimeter provides excellent electron identification, a fast calorimetric online trigger, and complementary information to aid pattern recognition and track reconstruction. The detector has been designed as a state-of-the-art crystal calorimeter and employs 1348 pure Cesium Iodide (CsI) crystals readout by UV-extended silicon photosensors and fast front-end and digitization electronics. A design consisting of two identical annular matrices (named “disks”) positioned at the relative distance of 70 cm downstream the aluminum target along the muon beamline satisfies the Mu2e physics requirements. The hostile Mu2e operational conditions, in terms of radiation levels (total expected ionizing dose of 12 krad and a neutron fluence of 5 × 1010 n/cm2 @ 1 MeVeq (Si)/y), magnetic field intensity (1 T) and vacuum level (10−4 Torr) have posed tight constraints on scintillating materials, sensors, electronics and on the design of the detector mechanical structures and material choice. The support structure of each 674 crystal matrix is composed of an aluminum hollow ring and parts made of open-cell vacuum-compatible carbon fiber. The photosensors and front-end electronics for the readout of each crystal are inserted in a machined copper holder and make a unique mechanical unit. The resulting 674 mechanical units are supported by a machined plate of vacuum-compatible plastic material. The plate also integrates the cooling system made of a network of copper lines flowing a low temperature radiation-hard fluid and placed in thermal contact with the copper holders to constitute a low resistance thermal bridge. The data acquisition electronics are hosted in aluminum custom crates positioned on the external lateral surface of the disks. The crates also integrate the electronics cooling system as lines running in parallel to the front-end system. In this paper we report on the calorimeter mechanical structure design, the mechanical and thermal simulations that have determined the design technological choices, and the status of component production, quality assurance tests and plans for assembly at Fermilab.
APA, Harvard, Vancouver, ISO, and other styles
41

Makarov, A., N. Andreev, V. S. Kashikhin, M. Lamm, G. V. Velev, A. Yamamoto, and T. Ogitsu. "Design and Fabrication of the Mu2e Cable Test Solenoid." IEEE Transactions on Applied Superconductivity 21, no. 3 (June 2011): 2324–26. http://dx.doi.org/10.1109/tasc.2010.2100353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

White, Mike, Mike Lamm, Andy Hocker, Don Arnold, Grzegorz Tatkowski, James Kilmer, Valeri Poloubotko, et al. "Design and fabrication of the Mu2e cryogenic distribution system." IOP Conference Series: Materials Science and Engineering 755 (June 30, 2020): 012060. http://dx.doi.org/10.1088/1757-899x/755/1/012060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Atanov, N., V. Baranov, J. Budagov, D. Caiulo, F. Cervelli, F. Colao, M. Cordelli, et al. "The Mu2e e.m. Calorimeter: Crystals and SiPMs Production Status." IEEE Transactions on Nuclear Science 67, no. 6 (June 2020): 978–82. http://dx.doi.org/10.1109/tns.2020.2988422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Brown, David. "Mu2e: a Muon to Electron Conversion Experiment at Fermilab." Nuclear Physics B - Proceedings Supplements 248-250 (March 2014): 41–46. http://dx.doi.org/10.1016/j.nuclphysbps.2014.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Brown, David. "The Mu2e Experiment: Searching for Muon to Electron Conversion." Nuclear and Particle Physics Proceedings 260 (March 2015): 151–54. http://dx.doi.org/10.1016/j.nuclphysbps.2015.02.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hitlin, David G. "The tracker and calorimeter systems of the Mu2e experiment." Nuclear and Particle Physics Proceedings 273-275 (April 2016): 1185–89. http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Onorato, Giovanni. "The Mu2e experiment at fermilab: μ−N→e−N." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 718 (August 2013): 102–3. http://dx.doi.org/10.1016/j.nima.2012.11.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bono, J. S., J. F. Caron, S. H. Oh, and C. Wang. "The stress relaxation (creep) rate of Mu2e straw tubes." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 902 (September 2018): 95–102. http://dx.doi.org/10.1016/j.nima.2018.05.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Atanov, N., V. Baranov, J. Budagov, R. Carosi, F. Cervelli, F. Colao, M. Cordelli, et al. "Design, status and test of the Mu2e crystal calorimeter." Journal of Physics: Conference Series 928 (November 2017): 012017. http://dx.doi.org/10.1088/1742-6596/928/1/012017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Atanov, N., V. Baranov, L. Borrel, C. Bloise, J. Budagov, S. Ceravolo, F. Cervelli, et al. "Towards the construction of the Mu2e electromagnetic calorimeter at Fermilab." Journal of Physics: Conference Series 2374, no. 1 (November 1, 2022): 012021. http://dx.doi.org/10.1088/1742-6596/2374/1/012021.

Full text
Abstract:
Mu2e will search for the Charge Lepton Flavor Violating (CLFV) conversion of a muon into an electron in the field of a nucleus. A clean discovery signature is provided by the mono-energetic conversion electron (Ee = 104.96 MeV). If no events are observed, Mu2e will set a limit on the ratio between the conversion and the nuclear capture rate below 3 × 10−17 (at 90% C.L.). In order to confirm that the observed candidate is an electron, the calorimeter resolution requirements are to provide Eres < 10%, Tres < 500 ps for 100 MeV electrons while working in vacuum and in a high radiation environment and high magnetic field. The calorimeter is made of two annular aluminum disks, each one filled with 674 pure CsI crystals read out by SiPMs. A sophisticated mechanics and cooling system has been developed to support the crystals and cool the sensors. Radiation hard analog and fast digital electronics have been developed. In this paper the QC tests performed on the produced components and the construction status are reported, as well as the results obtained on the large size prototype with test beam data and at a cosmic ray test stand.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography