To see the other types of publications on this topic, follow the link: MRI IMAGE.

Journal articles on the topic 'MRI IMAGE'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'MRI IMAGE.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Angadi, Sanjeevkumar, Mukesh Kumar Tripathi, Chudaman Devidasrao Sukte, and Shivendra Shivendra. "Medical image registration and classification using smell agent rat swarm optimization based deep Maxout network." Indonesian Journal of Electrical Engineering and Computer Science 37, no. 3 (2025): 1908. https://doi.org/10.11591/ijeecs.v37.i3.pp1908-1917.

Full text
Abstract:
Medical image registration (MIR) is a crucial task in clinical image processing, involving the alignment of images from different modalities, such as magnetic resonance imaging (MRI) and computed tomography (CT), across various time points and subjects. Despite numerous advancements, no universal method caters to all MIR applications. This paper introduces the smell agent rat swarm optimization based deep Maxout network (SARSO-DMN) for MIR and classification. This work aims to enhance the accuracy and efficiency of medical image alignment and classification, addressing the challenges posed by diverse imaging modalities and temporal variations. The problem involves effectively registering CT and MRI images, followed by inhale and exhale classification. The proposed approach begins with feeding the input images into a convolutional neural network (CNN), followed by applying a deformation field to generate an intermediate output (output-1). This output, along with the input MRI images, is further processed by a CNN to produce output-2. Subsequently, output-2 and the input MRI image are subjected to another CNN, resulting in the final registered image. The classification phase utilizes a DMN optimized by the SARSO algorithm, which combines smell agent optimization (SAO) and rat swarm optimizer (RSO). The results demonstrate that SARSO-DMN achieves a maximum accuracy of 90.7%, a minimum false positive rate (FPR) of 11.3%, and a maximum true positive rate (TPR) of 91.2%. The SARSO-DMN approach provides a robust solution for MIR and classification, leveraging advanced optimization techniques to enhance performance.
APA, Harvard, Vancouver, ISO, and other styles
2

Sanjeevkumar, Angadi Mukesh Kumar Tripathi Chudaman Devidasrao Sukte Shivendra Shivendra. "Medical image registration and classification using smell agent rat swarm optimization based deep Maxout network." Indonesian Journal of Electrical Engineering and Computer Science 37, no. 3 (2025): 1908–17. https://doi.org/10.11591/ijeecs.v37.i3.pp1908-1917.

Full text
Abstract:
Medical image registration (MIR) is a crucial task in clinical image processing, involving the alignment of images from different modalities, such as magnetic resonance imaging (MRI) and computed tomography (CT), across various time points and subjects. Despite numerous advancements, no universal method caters to all MIR applications. This paper introduces the smell agent rat swarm optimization based deep Maxout network (SARSO-DMN) for MIR and classification. This work aims to enhance the accuracy and efficiency of medical image alignment and classification, addressing the challenges posed by diverse imaging modalities and temporal variations. The problem involves effectively registering CT and MRI images, followed by inhale and exhale classification. The proposed approach begins with feeding the input images into a convolutional neural network (CNN), followed by applying a deformation field to generate an intermediate output (output-1). This output, along with the input MRI images, is further processed by a CNN to produce output-2. Subsequently, output-2 and the input MRI image are subjected to another CNN, resulting in the final registered image. The classification phase utilizes a DMN optimized by the SARSO algorithm, which combines smell agent optimization (SAO) and rat swarm optimizer (RSO). The results demonstrate that SARSO-DMN achieves a maximum accuracy of 90.7%, a minimum false positive rate (FPR) of 11.3%, and a maximum true positive rate (TPR) of 91.2%. The SARSO-DMN approach provides a robust solution for MIR and classification, leveraging advanced optimization techniques to enhance performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Huixian, Hailong Li, Jonathan R. Dillman, Nehal A. Parikh, and Lili He. "Multi-Contrast MRI Image Synthesis Using Switchable Cycle-Consistent Generative Adversarial Networks." Diagnostics 12, no. 4 (2022): 816. http://dx.doi.org/10.3390/diagnostics12040816.

Full text
Abstract:
Multi-contrast MRI images use different echo and repetition times to highlight different tissues. However, not all desired image contrasts may be available due to scan-time limitations, suboptimal signal-to-noise ratio, and/or image artifacts. Deep learning approaches have brought revolutionary advances in medical image synthesis, enabling the generation of unacquired image contrasts (e.g., T1-weighted MRI images) from available image contrasts (e.g., T2-weighted images). Particularly, CycleGAN is an advanced technique for image synthesis using unpaired images. However, it requires two separate image generators, demanding more training resources and computations. Recently, a switchable CycleGAN has been proposed to address this limitation and successfully implemented using CT images. However, it remains unclear if switchable CycleGAN can be applied to cross-contrast MRI synthesis. In addition, whether switchable CycleGAN is able to outperform original CycleGAN on cross-contrast MRI image synthesis is still an open question. In this paper, we developed a switchable CycleGAN model for image synthesis between multi-contrast brain MRI images using a large set of publicly accessible pediatric structural brain MRI images. We conducted extensive experiments to compare switchable CycleGAN with original CycleGAN both quantitatively and qualitatively. Experimental results demonstrate that switchable CycleGAN is able to outperform CycleGAN model on pediatric MRI brain image synthesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Destyningtias, Budiani, Andi Kurniawan Nugroho, and Sri Heranurweni. "Analisa Citra Medis Pada Pasien Stroke dengan Metoda Peregangan Kontras Berbasis ImageJ." eLEKTRIKA 10, no. 1 (2019): 15. http://dx.doi.org/10.26623/elektrika.v10i1.1105.

Full text
Abstract:
<p>This study aims to develop medical image processing technology, especially medical images of CT scans of stroke patients. Doctors in determining the severity of stroke patients usually use medical images of CT scans and have difficulty interpreting the extent of bleeding. Solutions are used with contrast stretching which will distinguish cell tissue, skull bone and type of bleeding. This study uses contrast stretching from the results of CT Scan images produced by first turning the DICOM Image into a JPEG image using the help of the ImageJ program. The results showed that the histogram equalization method and statistical texture analysis could be used to distinguish normal MRI and abnormal MRI detected by stroke.</p><p><strong>Keywords : </strong>Stroke, MRI, Dicom, JPEG, ImageJ, Contrast Stretching<strong></strong></p><p> </p>
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Huan, Pengjiang Qian, and Chao Fan. "An Indirect Multimodal Image Registration and Completion Method Guided by Image Synthesis." Computational and Mathematical Methods in Medicine 2020 (June 30, 2020): 1–10. http://dx.doi.org/10.1155/2020/2684851.

Full text
Abstract:
Multimodal registration is a challenging task due to the significant variations exhibited from images of different modalities. CT and MRI are two of the most commonly used medical images in clinical diagnosis, since MRI with multicontrast images, together with CT, can provide complementary auxiliary information. The deformable image registration between MRI and CT is essential to analyze the relationships among different modality images. Here, we proposed an indirect multimodal image registration method, i.e., sCT-guided multimodal image registration and problematic image completion method. In addition, we also designed a deep learning-based generative network, Conditional Auto-Encoder Generative Adversarial Network, called CAE-GAN, combining the idea of VAE and GAN under a conditional process to tackle the problem of synthetic CT (sCT) synthesis. Our main contributions in this work can be summarized into three aspects: (1) We designed a new generative network called CAE-GAN, which incorporates the advantages of two popular image synthesis methods, i.e., VAE and GAN, and produced high-quality synthetic images with limited training data. (2) We utilized the sCT generated from multicontrast MRI as an intermediary to transform multimodal MRI-CT registration into monomodal sCT-CT registration, which greatly reduces the registration difficulty. (3) Using normal CT as guidance and reference, we repaired the abnormal MRI while registering the MRI to the normal CT.
APA, Harvard, Vancouver, ISO, and other styles
6

Bellam, Kiranmai, N. Krishnaraj, T. Jayasankar, N. B. Prakash, and G. R. Hemalakshmi. "Adaptive Multimodal Image Fusion with a Deep Pyramidal Residual Learning Network." Journal of Medical Imaging and Health Informatics 11, no. 8 (2021): 2135–43. http://dx.doi.org/10.1166/jmihi.2021.3763.

Full text
Abstract:
Multimodal medical imaging is an indispensable requirement in the treatment of various pathologies to accelerate care. Rather than discrete images, a composite image combining complementary features from multimodal images is highly informative for clinical examinations, surgical planning, and progress monitoring. In this paper, a deep learning fusion model is proposed for the fusion of medical multimodal images. Based on pyramidal and residual learning units, the proposed model, strengthened with adaptive fusion rules, is tested on image pairs from a standard dataset. The potential of the proposed model for enhanced image exams is shown by fusion studies with deep network images and quantitative output metrics of magnetic resonance imaging and positron emission tomography (MRI/PET) and magnetic resonance imaging and single-photon emission computed tomography (MRI/SPECT). The proposed fusion model achieves the Structural Similarity Index Measure (SSIM) values of 0.9502 and 0.8103 for the MRI/SPECT and MRI/PET MRI/SPECT image sets, signifying the perceptual visual consistency of the fused images. Testing is performed on 20 pairs of MRI/SPECT and MRI/PET images. Similarly, the Mutual Information (MI) values of 2.7455 and 2.7776 obtained for the MRI/SPECT and MRI/PET image sets, indicating the model’s ability to capture the information content from the source images to the composite image. Further, the proposed model allows deploying its variants, introducing refinements on the basic model suitable for the fusion of low and high-resolution medical images of diverse modalities.
APA, Harvard, Vancouver, ISO, and other styles
7

N., Rajalakshmi, Narayanan K., and Amudhavalli P. "Wavelet-Based Weighted Median Filter for Image Denoising of MRI Brain Images." Indonesian Journal of Electrical Engineering and Computer Science 10, no. 1 (2018): 201–6. https://doi.org/10.11591/ijeecs.v10.i1.pp201-206.

Full text
Abstract:
Preliminary diagnosing of MRI images from the hospital cannot be relied on because of the chances of occurrence of artifacts resulting in degraded quality of image, while others may be confused with pathology. Obtained MRI image usually contains limited artifacts. It becomes complex one for doctors in analyzing them. By increasing the contrast of an image, it will be easy to analyze. In order to find the tumor part efficiently MRI brain image should be enhanced properly. The image enhancement methods mainly improve the visual appearance of MRI images. The goal of denoising is to remove the noise, which may corrupt an image during its acquisition or transmission, while retaining its quality. In this paper effectiveness of seven denoising algorithms viz. median filter, wiener filter, wavelet filter, wavelet based wiener, NLM, wavelet based NLM, proposed wavelet based weighted median filter(WMF) using MRI images in the presence of additive white Gaussian noise is compared. The experimental results are analyzed in terms of various image quality metrics.
APA, Harvard, Vancouver, ISO, and other styles
8

Schramm, Georg, and Claes Nøhr Ladefoged. "Metal artifact correction strategies in MRI-based attenuation correction in PET/MRI." BJR|Open 1, no. 1 (2019): 20190033. http://dx.doi.org/10.1259/bjro.20190033.

Full text
Abstract:
In hybrid positron emission tomography (PET) and MRI systems, attenuation correction for PET image reconstruction is commonly based on processing of dedicated MR images. The image quality of the latter is strongly affected by metallic objects inside the body, such as e.g. dental implants, endoprostheses, or surgical clips which all lead to substantial artifacts that propagate into MRI-based attenuation images. In this work, we review publications about metal artifact correction strategies in MRI-based attenuation correction in PET/MRI. Moreover, we also give an overview about publications investigating the impact of MRI-based attenuation correction metal artifacts on the reconstructed PET image quality and quantification.
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, Ram, and Lakhwinder Kaur. "Noise-residue learning convolutional network model for magnetic resonance image enhancement." Journal of Physics: Conference Series 2089, no. 1 (2021): 012029. http://dx.doi.org/10.1088/1742-6596/2089/1/012029.

Full text
Abstract:
Abstract Magnetic Resonance Image (MRI) is an important medical image acquisition technique used to acquire high contrast images of human body anatomical structures and soft tissue organs. MRI system does not use any harmful radioactive ionized material like x-rays and computerized tomography (CT) imaging techniques. High-resolution MRI is desirable in many clinical applications such as tumor segmentation, image registration, edges & boundary detection, and image classification. During MRI acquisition, many practical constraints limit the MRI quality by introducing random Gaussian noise and some other artifacts by the thermal energy of the patient body, random scanner voltage fluctuations, body motion artifacts, electronics circuits impulse noise, etc. High-resolution MRI can be acquired by increasing scan time, but considering patient comfort, it is not preferred in practice. Hence, postacquisition image processing techniques are used to filter noise contents and enhance the MRI quality to make it fit for further image analysis tasks. The main motive of MRI enhancement is to reconstruct a high-quality MRI while improving and retaining its important features. The new deep learning image denoising and artifacts removal methods have shown tremendous potential for high-quality image reconstruction from noise degraded MRI while preserving useful image information. This paper presents a noise-residue learning convolution neural network (CNN) model to denoise and enhance the quality of noise-corrupted low-resolution MR images. The proposed technique shows better performance in comparison with other conventional MRI enhancement methods. The reconstructed image quality is evaluated by the peak-signal-to-noise ratio (PSNR) and structural similarity index (SSIM) metrics by optimizing information loss in reconstructed MRI measured in mean squared error (MSE) metric.
APA, Harvard, Vancouver, ISO, and other styles
10

Yan, Rong. "The Value of Convolutional-Neural-Network-Algorithm-Based Magnetic Resonance Imaging in the Diagnosis of Sports Knee Osteoarthropathy." Scientific Programming 2021 (July 2, 2021): 1–11. http://dx.doi.org/10.1155/2021/2803857.

Full text
Abstract:
The application value of the convolutional neural network (CNN) algorithm in the diagnosis of sports knee osteoarthropathy was investigated in this study. A network model was constructed in this experiment for image analysis of magnetic resonance imaging (MRI) technology. Then, 100 cases of sports knee osteoarthropathy patients and 50 healthy volunteers were selected. Digital radiography (DR) images and MRI images of all the research objects were collected after the inclusion of the two groups. Besides, the important physiological representations were extracted from their image data graphs, and the hidden complex relationships were learned. The state without input results was judged through convolutional network calculation, and the result prediction was given. On this basis, there was an analysis of the diagnostic efficiency of traditional DR images and MRI images based on CNN for patients with sports knee osteoarthropathy. The results showed that the MRI images analyzed by the CNN model showed a more obvious display rate than DR images for some nonbone changes of osteoarthritis. The correlation coefficient between MRI image rating and visual analog scale (VAS) was 0.865, which was higher than 0.713 of DR image rating, with a statistical meaning ( P < 0.01 ). For cases with mild lesions, the number of cases detected by MRI based on CNN algorithm in 0–4 image rating was 15, 18, 10, 6, and 7, respectively, which was markedly better than that of DR images. In short, the MRI examination based on the CNN image analysis model could extract important physiological representations from the image data and learn the hidden complex relationships. The convolutional network was calculated to determine the state of the uninput results and give the result predictions. Moreover, MRI examination based on the CNN image analysis model had high overall diagnostic efficiency and grading diagnostic efficiency for patients with motor knee osteoarthropathy, which was of great significance in clinical practice.
APA, Harvard, Vancouver, ISO, and other styles
11

Sujata Tukaram Bhairnallykar, Et al. "T1- Weighted MRI Image Segmentation." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9 (2023): 2078–84. http://dx.doi.org/10.17762/ijritcc.v11i9.9208.

Full text
Abstract:
Growing evidence in recent years indicates that interest in the development of automated image analysis techniques for medical imaging, especially with regard to the discipline of magnetic resonance imaging. T1-weighted MRI scans are often used for both diagnosis and monitoring various neurological disorders, making accurate segmentation of these images crucial for effective treatment planning. In this work, we offer a new method for T1-weighted MRI image segmentation using patch densenet, an image segmentation-specific deep learning architecture. Our method aims to improve the accuracy and efficiency of segmentation, while also addressing some of the challenges associated with traditional segmentation methods. Traditional segmentation methods typically rely on features that are handcrafted and may struggle to accurately capture the intricate details present in MRI images. By utilizing patch densenet, our method automatically learn and extract relevant features from the T1-weighted MRI images and further enhance the accuracy and specificity of the segmentation results. Ultimately, we believe that our proposed approach can greatly improve diagnosis and treatment planning process for neurological disorders.
APA, Harvard, Vancouver, ISO, and other styles
12

Odusami, Modupe, Rytis Maskeliūnas, and Robertas Damaševičius. "Pareto Optimized Adaptive Learning with Transposed Convolution for Image Fusion Alzheimer’s Disease Classification." Brain Sciences 13, no. 7 (2023): 1045. http://dx.doi.org/10.3390/brainsci13071045.

Full text
Abstract:
Alzheimer’s disease (AD) is a neurological condition that gradually weakens the brain and impairs cognition and memory. Multimodal imaging techniques have become increasingly important in the diagnosis of AD because they can help monitor disease progression over time by providing a more complete picture of the changes in the brain that occur over time in AD. Medical image fusion is crucial in that it combines data from various image modalities into a single, better-understood output. The present study explores the feasibility of employing Pareto optimized deep learning methodologies to integrate Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) images through the utilization of pre-existing models, namely the Visual Geometry Group (VGG) 11, VGG16, and VGG19 architectures. Morphological operations are carried out on MRI and PET images using Analyze 14.0 software and after which PET images are manipulated for the desired angle of alignment with MRI image using GNU Image Manipulation Program (GIMP). To enhance the network’s performance, transposed convolution layer is incorporated into the previously extracted feature maps before image fusion. This process generates feature maps and fusion weights that facilitate the fusion process. This investigation concerns the assessment of the efficacy of three VGG models in capturing significant features from the MRI and PET data. The hyperparameters of the models are tuned using Pareto optimization. The models’ performance is evaluated on the ADNI dataset utilizing the Structure Similarity Index Method (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), and Entropy (E). Experimental results show that VGG19 outperforms VGG16 and VGG11 with an average of 0.668, 0.802, and 0.664 SSIM for CN, AD, and MCI stages from ADNI (MRI modality) respectively. Likewise, an average of 0.669, 0.815, and 0.660 SSIM for CN, AD, and MCI stages from ADNI (PET modality) respectively.
APA, Harvard, Vancouver, ISO, and other styles
13

R., Deepa, and Narendran P. "Brain Tumor Detection Segmentation Techniques." International Journal of Trend in Scientific Research and Development 2, no. 3 (2018): 207–12. https://doi.org/10.31142/ijtsrd9634.

Full text
Abstract:
Computerized brain tumor detection from MRI images is one of the most challenging task in today's contemporary Medical imaging research. Magnetic Resonance Images are used to produce images of soft tissue of human body. It is used to analyze the human organs without the need for surgery. Automatic detection requires brain image most important and challenging aspect of computer aided clinical diagnostic tools. Noises present in the Brain MRI images are multiplicative noises and reductions of these noises are difficult task. The minute anatomical details should not be destroyed by the process of noise removal from clinical point of view. These makes accurate segmentation of brain images a challenge. However, accurate segmentation of the MRI images is very important and crucial for the exact diagnosis by computer aided clinical tools. A large variety of algorithms for segmentation of MRI images had been developed. In this work, it's presented a review of the methods used in brain MRI image segmentation. The review covers imaging modalities, magnetic resonance imaging and methods for noise reduction and segmentation approaches. The paper concludes with a discussion on the upcoming trend of advanced researches in brain image segmentation. R. Deepa | P. Narendran "Brain Tumor Detection Segmentation Techniques" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-3 , April 2018, URL: https://www.ijtsrd.com/papers/ijtsrd9634.pdf
APA, Harvard, Vancouver, ISO, and other styles
14

Wu, Hongliang, Guocheng Chen, Guibao Zhang, and Minghua Dai. "Application of Multimodal Fusion Technology in Image Analysis of Pretreatment Examination of Patients with Spinal Injury." Journal of Healthcare Engineering 2022 (April 12, 2022): 1–10. http://dx.doi.org/10.1155/2022/4326638.

Full text
Abstract:
As one of the most common imaging screening techniques for spinal injuries, MRI is of great significance for the pretreatment examination of patients with spinal injuries. With rapid iterative update of imaging technology, imaging techniques such as diffusion weighted magnetic resonance imaging (DWI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and magnetic resonance spectroscopy are frequently used in the clinical diagnosis of spinal injuries. Multimodal medical image fusion technology can obtain richer lesion information by combining medical images in multiple modalities. Aiming at the two modalities of DCE-MRI and DWI images under MRI images of spinal injuries, by fusing the image data under the two modalities, more abundant lesion information can be obtained to diagnose spinal injuries. The research content includes the following: (1) A registration study based on DCE-MRI and DWI image data. To improve registration accuracy, a registration method is used, and VGG-16 network structure is selected as the basic registration network structure. An iterative VGG-16 network framework is proposed to realize the registration of DWI and DCE-MRI images. The experimental results show that the iterative VGG-16 network structure is more suitable for the registration of DWI and DCE-MRI image data. (2) Based on the fusion research of DCE-MRI and DWI image data. For the registered DCE-MRI and DWI images, this paper uses a fusion method combining feature level and decision level to classify spine images. The simple classifier decision tree, SVM, and KNN were used to predict the damage diagnosis classification of DCE-MRI and DWI images, respectively. By comparing and analyzing the classification results of the experiments, the performance of multimodal image fusion in the auxiliary diagnosis of spinal injuries was evaluated.
APA, Harvard, Vancouver, ISO, and other styles
15

Rajalakshmi, N., K. Narayanan, and P. Amudhavalli. "Wavelet-Based Weighted Median Filter For Image Denoising Of MRI Brain Images." Indonesian Journal of Electrical Engineering and Computer Science 10, no. 1 (2018): 201. http://dx.doi.org/10.11591/ijeecs.v10.i1.pp201-206.

Full text
Abstract:
<p>Preliminary diagnosing of MRI images from the hospital cannot be relied on because of the chances of occurrence of artifacts resulting in degraded quality of image, while others may be confused with pathology. Obtained MRI image usually contains limited artifacts. It becomes complex one for doctors in analyzing them. By increasing the contrast of an image, it will be easy to analyze. In order to find the tumor part efficiently MRI brain image should be enhanced properly. The image enhancement methods mainly improve the visual appearance of MRI images. The goal of denoising is to remove the noise, which may corrupt an image during its acquisition or transmission, while retaining its quality. In this paper effectiveness of seven denoising algorithms viz. median filter, wiener filter, wavelet filter, wavelet based wiener, NLM, wavelet based NLM, proposed wavelet based weighted median filter(WMF) using MRI images in the presence of additive white Gaussian noise is compared. The experimental results are analyzed in terms of various image quality metrics.</p>
APA, Harvard, Vancouver, ISO, and other styles
16

Xie, Xiaoxiao, Zhen Li, Lu Bai, et al. "Deep Learning-Based MRI in Diagnosis of Fracture of Tibial Plateau Combined with Meniscus Injury." Scientific Programming 2021 (December 20, 2021): 1–8. http://dx.doi.org/10.1155/2021/9935910.

Full text
Abstract:
This study aimed to explore the application value of magnetic resonance imaging (MRI) images based on deep learning algorithms in the diagnosis of tibial plateau fractures combined with meniscus injuries. The original MRI image was input into the deep learning convolutional neural network (CNN), and the knee joint undersampled and fully sampled MRI image data were used for training to obtain a neural network model that can effectively remove the noise and blur of the undersampled image. Then, the image was reconstructed by the Regridding model to obtain an image with less noise and clearer structure. At the same time, all subjects underwent knee MRI examinations, and algorithms were used to analyze the sensitivity, specificity, and accuracy of their images. It was found that of 160 menisci from 80 cases of tibial plateau fractures, 64 were normal meniscus and 88 were injured menisci. The sensitivity, specificity, and accuracy of optimized MRI in diagnosing fracture of tibial plateau combined with meniscus injury were 96.9%, 93.2%, and 95.3%, respectively. In conclusion, the restored MRI images have high sensitivity in the diagnosis of meniscus injury and high consistency with the intraoperative results. It suggests that the optimized MRI image is effective in the diagnosis of meniscus injury.
APA, Harvard, Vancouver, ISO, and other styles
17

Liang, Yingbo, and Jian Fu. "Watershed Algorithm for Medical Image Segmentation Based on Morphology and Total Variation Model." International Journal of Pattern Recognition and Artificial Intelligence 33, no. 05 (2019): 1954019. http://dx.doi.org/10.1142/s0218001419540193.

Full text
Abstract:
The traditional watershed algorithm has the limitation of false mark in medical image segmentation, which causes over-segmentation and images to be contaminated by noise possibly during acquisition. In this study, we proposed an improved watershed segmentation algorithm based on morphological processing and total variation model (TV) for medical image segmentation. First of all, morphological gradient preprocessing is performed on MRI images of brain lesions. Secondly, the gradient images are denoised by the all-variational model. While retaining the edge information of MRI images of brain lesions, the image noise is reduced. And then, the internal and external markers are obtained by forced minimum technique, and the gradient amplitude images are corrected by using these markers. Finally, the modified gradient image is subjected to watershed transformation. The experiment of segmentation and simulation of brain lesion MRI image is carried out on MATLAB. And the segmentation results are compared with other watershed algrothims. The experimental results demonstrate that our method obtains the least number of regions, which can extract MRI images of brain lesions effectively. In addition, this method can inhibit over-segmentation, improving the segmentation results of lesions in MRI images of brain lesions.
APA, Harvard, Vancouver, ISO, and other styles
18

Naresh, Ghorpade, and R. Bhapkar H. "Enhanced N-Cut and Watershed based Model for Brain MRI Segmentation." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 5 (2020): 346–51. https://doi.org/10.35940/ijeat.E9535.069520.

Full text
Abstract:
Segmentation of an image is most important and essential task in medical image processing, specifically while analyzing magnetic resonance (MR) image of brain clinically. during the clinical investigation of brain MRI images. Lot of research has been carried out for MRI segmentation but still it is challenging task. Hybrid approach which uses enhanced normalized cut and watershed transform to segment brain MRI images is developed in this paper. Watershed transform is used for the initial partitioning of the MRI, which creates primitive regions. In the next stage these primitive regions resembled for graph depiction and then the normalized cut method is used for segmenting an image. Variety of simulated and actual MR images are being segmented by using proposed algorithm to test its efficiency, in addition to it segmentation results are also compared with the other available techniques of brain MRI segmentation.
APA, Harvard, Vancouver, ISO, and other styles
19

., Swapnali Matkar. "IMAGE SEGMENTATION METHODS FOR BRAIN MRI IMAGES." International Journal of Research in Engineering and Technology 04, no. 03 (2015): 263–66. http://dx.doi.org/10.15623/ijret.2015.0403045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sun, Lifang, Xi Hu, Yutao Liu, and Hengyu Cai. "Image Features of Magnetic Resonance Imaging under the Deep Learning Algorithm in the Diagnosis and Nursing of Malignant Tumors." Contrast Media & Molecular Imaging 2021 (August 30, 2021): 1–8. http://dx.doi.org/10.1155/2021/1104611.

Full text
Abstract:
In order to explore the effect of convolutional neural network (CNN) algorithm based on deep learning on magnetic resonance imaging (MRI) images of brain tumor patients and evaluate the practical value of MRI image features based on deep learning algorithm in the clinical diagnosis and nursing of malignant tumors, in this study, a brain tumor MRI image model based on the CNN algorithm was constructed, and 80 patients with brain tumors were selected as the research objects. They were divided into an experimental group (CNN algorithm) and a control group (traditional algorithm). The patients were nursed in the whole process. The macroscopic characteristics and imaging index of the MRI image and anxiety of patients in two groups were compared and analyzed. In addition, the image quality after nursing was checked. The results of the study revealed that the MRI characteristics of brain tumors based on CNN algorithm were clearer and more accurate in the fluid-attenuated inversion recovery (FLAIR), MRI T1, T1c, and T2; in terms of accuracy, sensitivity, and specificity, the mean value was 0.83, 0.84, and 0.83, which had obvious advantages compared with the traditional algorithm ( P < 0.05 ). The patients in the nursing group showed lower depression scores and better MRI images in contrast to the control group ( P < 0.05 ). Therefore, the deep learning algorithm can further accurately analyze the MRI image characteristics of brain tumor patients on the basis of conventional algorithms, showing high sensitivity and specificity, which improved the application value of MRI image characteristics in the diagnosis of malignant tumors. In addition, effective nursing for patients undergoing analysis and diagnosis on brain tumor MRI image characteristics can alleviate the patient’s anxiety and ensure that high-quality MRI images were obtained after the examination.
APA, Harvard, Vancouver, ISO, and other styles
21

Dong, Jie, Yueying Zhang, Yun Meng, Tingxiao Yang, Wei Ma, and Huixin Wu. "Segmentation Algorithm of Magnetic Resonance Imaging Glioma under Fully Convolutional Densely Connected Convolutional Networks." Stem Cells International 2022 (October 17, 2022): 1–9. http://dx.doi.org/10.1155/2022/8619690.

Full text
Abstract:
This work focused on the application value of magnetic resonance imaging (MRI) image segmentation algorithm based on fully convolutional DenseNet neural network (FCDNN) in glioma diagnosis. In this work, based on the fully convolutional DenseNet algorithm, a new MRI image automatic semantic segmentation method cerebral gliomas semantic segmentation network (CGSSNet) was established and was applied to glioma MRI image segmentation by using the BraTS public dataset as research data. Under the same conditions, compare the differences of dice similarity coefficient (DSC), sensitivity, and Hausdroff distance (HD) between this algorithm and other algorithms in MRI image processing. The results showed that the CGSSNet network segmentation algorithm significantly improved the segmentation accuracy of glioma MRI images. In addition, its DSC, sensitivity, and HD values for glioma MRI images were 0.937, 0.811, and 1.201, respectively. Under different iteration times, the DSC, sensitivity, and HD values of the CGSSNet network segmentation algorithm are significantly better than other algorithms. It showed that the CGSSNet model based on the DenseNet can improve the segmentation accuracy of glioma MRI images, and has potential application value in clinical practice.
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, Huanyu, Jiaqi Liu, Junbao Li, Jeng-Shyang Pan, and Xiaqiong Yu. "DL-MRI: A Unified Framework of Deep Learning-Based MRI Super Resolution." Journal of Healthcare Engineering 2021 (April 9, 2021): 1–9. http://dx.doi.org/10.1155/2021/5594649.

Full text
Abstract:
Magnetic resonance imaging (MRI) is widely used in the detection and diagnosis of diseases. High-resolution MR images will help doctors to locate lesions and diagnose diseases. However, the acquisition of high-resolution MR images requires high magnetic field intensity and long scanning time, which will bring discomfort to patients and easily introduce motion artifacts, resulting in image quality degradation. Therefore, the resolution of hardware imaging has reached its limit. Based on this situation, a unified framework based on deep learning super resolution is proposed to transfer state-of-the-art deep learning methods of natural images to MRI super resolution. Compared with the traditional image super-resolution method, the deep learning super-resolution method has stronger feature extraction and characterization ability, can learn prior knowledge from a large number of sample data, and has a more stable and excellent image reconstruction effect. We propose a unified framework of deep learning -based MRI super resolution, which has five current deep learning methods with the best super-resolution effect. In addition, a high-low resolution MR image dataset with the scales of ×2, ×3, and ×4 was constructed, covering 4 parts of the skull, knee, breast, and head and neck. Experimental results show that the proposed unified framework of deep learning super resolution has a better reconstruction effect on the data than traditional methods and provides a standard dataset and experimental benchmark for the application of deep learning super resolution in MR images.
APA, Harvard, Vancouver, ISO, and other styles
23

., Gautam. "Super Resolution MRI Using Generative Adversarial Networks." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (2021): 3896–905. http://dx.doi.org/10.22214/ijraset.2021.37237.

Full text
Abstract:
This paper proposes a new frame for MRI Image Enhancement from a low-resolution (LR) image obtain from an early used MRI machine to generate a high-resolution (HR) MRI image. For this we use Generative Adversarial Networks, which have proven well in image recovery task. Here we simultaneously train two models which is Generative model that captures the data distribution in the LR MRI images, and a discriminative model that estimates the probability that a sample came from the training data rather than generator. For training generator, we have to maximize the probability of discriminator of making a mistake in comparing the fake image. For discriminator the adversarial loss uses least squares in order to stabilize the training and for generator the function is a combination of a least square adversarial loss and a content term based on mean square error and image gradient to improve the quality of generated images of MRI.
APA, Harvard, Vancouver, ISO, and other styles
24

Min, Liang, Yi Gu, Rui Xue, Yi Ren, and Bo Gao. "Composite MRI Task Construction from CT Images based on Deep Convolution Neural Network." Journal of Imaging Science and Technology 65, no. 3 (2021): 30404–1. http://dx.doi.org/10.2352/j.imagingsci.technol.2021.65.3.030404.

Full text
Abstract:
Abstract In traditional CBCT guided radiotherapy, the conventional process is to scan a planned CT image of the patient before treatment, and use the CT image to prepare a treatment plan for the patient, and calculate the radiation dose with the electronic density information of the CT image to obtain the radiation dose that the patient needs to receive. Because CT images cannot be directly used to calculate the amount of data, in order to solve the problem of CT image attenuation corresponding to MRI image synthesis, the deep convolution network model is used to map the CT image to the MRI image, input the CT image, and synthesize the corresponding MRI image with the convolution network model in this article. The synthetic MRI image can be used for the same mode registration with the patient’s positioning MRI image, so as to solve the problem of inaccurate cross-membrane registration. The multi-mode synthesis and transformation of CT/MRI images have been realized. Experiments have proved that the method presented in this article is beneficial to reducing the radiation dose of patients, enabling patients to receive more accurate radiotherapy, so that the tumor part can be irradiated as much as possible and the normal tissues around the tumor can be irradiated less, so as to improve the therapeutic effect of tumor patients.
APA, Harvard, Vancouver, ISO, and other styles
25

Noor, Elaiza Abd Khalid, Firdaus Ismail Muhammad, Azri AB Manaf Muhammad, Firdaus Ahmad Fadzil Ahmad, and Ibrahim Shafaf. "MRI brain tumor segmentation: A forthright image processing approach." Bulletin of Electrical Engineering and Informatics 9, no. 3 (2020): 1024–31. https://doi.org/10.11591/eei.v9i3.2063.

Full text
Abstract:
Brain tumor is a collection of cells that grow in an abnormal and uncontrollable way. It may affect the regular function of the brain since it grows inside the skull region. As a brain tumor can be possibly led to cancer, early detection in computed tomography (CT) or magnetic resonance imaging (MRI) scanned images are crucial. Thus, this paper proposed a forthright image processing approach towards detection and localization of brain tumor region The approach consists of a few stages such as pre-processing, edge detection and segmentation. The pre-processing stage converts the original image into a greyscale image, and noise removal if necessary. Next, the image is enhanced using image enhancement techniques. It is then followed by edge detection using Sobel and Canny algorithms. Finally, the segmentation is applied to highlight the tumor with morphological operations towards the affected region in the MRI images. The in-depth analysis is measured using a confusion matrix. From the results, it signifies that the proposed approach is capable to provide decent segmentation of brain tumor from various MRI brain images.
APA, Harvard, Vancouver, ISO, and other styles
26

Tajuddin, Nur Wahyu, Bambang Satoto, Rini Indrati, Donny Kristanto Mulyantoro, Darmini Darmini, and Gatot Murti Wibowo. "Application of Fusion Technique with ImageJ Stacks Feature for Brain Tumor MRI Image Optimization." Asian Journal of Social and Humanities 2, no. 11 (2024): 2768–80. http://dx.doi.org/10.59888/ajosh.v2i11.359.

Full text
Abstract:
Fusion techniques on MRI for brain tumors can provide comprehensive visualization by combining Axial T2-Flair and Axial T1-GD (T1-weighted post-contrast) sequence images. Fusion MRI in brain tumors is able to clearly display the location, size and characteristics of the tumor. However, not all institutions can install such additional fusion software due to significant additional costs. Therefore, this study aims to prove that the Stacks feature on ImageJ as an alternative can be optimal in visualizing brain tumor image information through MRI fusion techniques. This study used 17 image samples with a quasi experimental design post test only without control group design to compare three analysis methods, namely fusion maximum intensity, minimum intensity and average intensity so that the most suitable projection can be determined. The evaluation of image quality was carried out through a histogram which was then analyzed with a crucal-wallis and the Mann Whitney u test, while the analysis of pathological information used a crucal-wallis, followed by a post hoc test and continued with Mann Whitney u for further analysis. The results show that the stacks feature on ImageJ can be used in the application of fusion techniques so that it will improve the contrast and sharpness of MRI images, especially in areas with high tumor activity. MRI images of brain tumors with maximum fusion intensity produced images with the highest average gray level and the best pathological information. This projection is more optimal than the minimum intensity and average intensity because it provides a more detailed and clear visualization of brain tumors.
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Giljae, Hwunjae Lee, and Gyehwan Jin. "Analysis of Fitting Degree of MRI and PET Images in Simultaneous MRPET Images by Machine Learning Neural Networks." ScholarGen Publishers 3, no. 1 (2020): 43–61. http://dx.doi.org/10.31916/sjmi2020-01-05.

Full text
Abstract:
Simultaneous MR-PET imaging is a fusion of MRI using various parameters and PET images using various nuclides. In this paper, we performed analysis on the fitting degree between MRI and simultaneous MR-PET images and between PET and simultaneous MR-PET images. For the fitness analysis by neural network learning, feature parameters of experimental images were extracted by discrete wavelet transform (DWT), and the extracted parameters were used as input data to the neural network. In comparing the feature values extracted by DWT for each image, the horizontal and vertical low frequencies showed similar patterns, but the patterns were different in the horizontal and vertical high frequency and diagonal high frequency regions. In particular, the signal value was large in the T1 and T2 weighted images of MRI. Neural network learning results for fitting degree analysis were as follows. 1. T1-weighted MRI and simultaneous MR-PET image fitting degree: Regression (R) values were found to be Training 0.984, Validation 0.844, and Testing 0.886. 2. Dementia-PET image and Simultaneous MR-PET Image fitting degree: R values were found to be Training 0.970, Validation 0.803, and Testing 0.828. 3. T2-weighted MRI and concurrent MR-PET image fitting degree: R values were found to be Training 0.999, Validation 0.908, and Testing 0.766. 4. Brain tumor-PET image and Simultaneous MR-PET image fitting degree: R values were found to be Training 0.999, Validation 0.983, and Testing 0.876. An R value closer to 1 indicates more similarity. Therefore, each image fused in the simultaneous MR-PET images verified in this study was found to be similar. Ongoing study of images acquired with pulse sequences other than the weighted images in the MRI is needed. These studies may establish a useful protocol for the acquisition of simultaneous MR-PET images.
APA, Harvard, Vancouver, ISO, and other styles
28

Zhang, Weilan, Jingyi Zhu, Xiaohan Xu, and Guoguang Fan. "Synthetic MRI of the lumbar spine at 3.0 T: feasibility and image quality comparison with conventional MRI." Acta Radiologica 61, no. 4 (2019): 461–70. http://dx.doi.org/10.1177/0284185119871670.

Full text
Abstract:
Background Synthetic magnetic resonance imaging (MRI), which can generate multiple morphologic MR images as well as quantitative maps from a single sequence, is not widely used in the spine at 3.0 T. Purpose To investigate the feasibility of synthetic MRI of the lumbar spine in clinical practice at 3.0 T. Material and Methods Eighty-four patients with lumbar diseases underwent conventional T1-weighted images, T2-weighted images, short-tau inversion recovery (STIR) images, and synthetic MRI of the lumbar spine at 3.0 T. The quantitative and qualitative image quality and agreement for detection of spinal lesions between conventional and synthetic MRI were compared by two radiologists. Results The signal-to-noise ratios of synthetic MRI showed an inferior image quality in the vertebrae and disc, whereas were higher for spinal canal and fat on the synthetic T1-weighted, T2-weighted, and STIR images. The contrast-to-noise ratios of the synthetic MRI was superior to conventional sequences, except for the vertebrae–disc contrast-to-noise ratio on T1-weighted imaging ( P = 0.005). Image quality assessments showed that synthetic MRI had greater STIR fat suppression ( P < 0.001) and fluid brightness ( P = 0.014), as well as higher degree of artifacts ( P < 0.001) and worse spatial resolution ( P = 0.002). The inter-method agreements for detection of spinal lesions were substantial to perfect (kappa, 0.614–0.925). Conclusion Synthetic MRI is a feasible method for lumbar spine imaging in a clinical setting at 3.0-T MR. It provides morphologic sequences with acceptable image quality, good agreement with conventional MRI for detection of spinal lesions and quantitative image maps with a slightly shorter acquisition time compared with conventional MRI.
APA, Harvard, Vancouver, ISO, and other styles
29

Wei, Hui, Baolong Lv, Feng Liu, Haojun Tang, Fangfang Gou, and Jia Wu. "A Tumor MRI Image Segmentation Framework Based on Class-Correlation Pattern Aggregation in Medical Decision-Making System." Mathematics 11, no. 5 (2023): 1187. http://dx.doi.org/10.3390/math11051187.

Full text
Abstract:
Medical image analysis methods have been applied to clinical scenarios of tumor diagnosis and treatment. Many studies have attempted to optimize the effectiveness of tumor MRI image segmentation by deep learning, but they do not consider the optimization of local details and the interaction of global semantic information. Second, although medical image pattern recognition can learn representative semantic features, it is challenging to ignore useless features in order to learn generalizable embeddings. Thus, a tumor-assisted segmentation method is proposed to detect tumor lesion regions and boundaries with complex shapes. Specifically, we introduce a denoising convolutional autoencoder (DCAE) for MRI image noise reduction. Furthermore, we design a novel tumor MRI image segmentation framework (NFSR-U-Net) based on class-correlation pattern aggregation, which first aggregates class-correlation patterns in MRI images to form a class-correlational representation. Then the relationship of similar class features is identified to closely correlate the dense representations of local features for classification, which is conducive to identifying image data with high heterogeneity. Meanwhile, the model uses a spatial attention mechanism and residual structure to extract effective information of the spatial dimension and enhance statistical information in MRI images, which bridges the semantic gap in skip connections. In the study, over 4000 MRI images from the Monash University Research Center for Artificial Intelligence are analyzed. The results show that the method achieves segmentation accuracy of up to 96% for tumor MRI images with low resource consumption.
APA, Harvard, Vancouver, ISO, and other styles
30

Veress, Alexander I., Gregory Klein, and Grant T. Gullberg. "A Comparison of Hyperelastic Warping of PET Images with Tagged MRI for the Analysis of Cardiac Deformation." International Journal of Biomedical Imaging 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/728624.

Full text
Abstract:
The objectives of the following research were to evaluate the utility of a deformable image registration technique known as hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PET image datasets. Two normal human male subjects were sequentially imaged with PET and tagged MRI imaging. Strain predictions were made for systolic contraction using warping analyses of the PET images and HARP based strain analyses of the MRI images. Coefficient of determinationR2values were computed for the comparison of circumferential and radial strain predictions produced by each methodology. There was good correspondence between the methodologies, withR2values of 0.78 for the radial strains of both hearts and from anR2=0.81andR2=0.83for the circumferential strains. The strain predictions were not statistically different(P≤0.01). A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image intensity, random image noise, and alterations in fiber structure. This study demonstrated that warping was able to provide strain predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.
APA, Harvard, Vancouver, ISO, and other styles
31

Djan, Igor, Borislava Petrovic, Marko Erak, Ivan Nikolic, and Silvija Lucic. "Radiotherapy treatment planning: Benefits of CT-MR image registration and fusion in tumor volume delineation." Vojnosanitetski pregled 70, no. 8 (2013): 735–39. http://dx.doi.org/10.2298/vsp110404001d.

Full text
Abstract:
Background/Aim. Development of imaging techniques, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), made great impact on radiotherapy treatment planning by improving the localization of target volumes. Improved localization allows better local control of tumor volumes, but also minimizes geographical misses. Mutual information is obtained by registration and fusion of images achieved manually or automatically. The aim of this study was to validate the CT-MRI image fusion method and compare delineation obtained by CT versus CT-MRI image fusion. Methods. The image fusion software (XIO CMS 4.50.0) was applied to delineate 16 patients. The patients were scanned on CT and MRI in the treatment position within an immobilization device before the initial treatment. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated on CT alone and on CT+MRI images consecutively and image fusion was obtained. Results. Image fusion showed that CTV delineated on a CT image study set is mainly inadequate for treatment planning, in comparison with CTV delineated on CT-MRI fused image study set. Fusion of different modalities enables the most accurate target volume delineation. Conclusion. This study shows that registration and image fusion allows precise target localization in terms of GTV and CTV and local disease control.
APA, Harvard, Vancouver, ISO, and other styles
32

Shwetha, V., C. H. Renu Madhavi, and Kumar M. Nagendra. "Classification of Brain Tumors Using Hybridized Convolutional Neural Network in Brain MRI images." International Journal of Circuits, Systems and Signal Processing 16 (January 14, 2022): 561–70. http://dx.doi.org/10.46300/9106.2022.16.70.

Full text
Abstract:
In this research article, we have proposed a novel technique to operate on the Magnetic Resonance Imaging (MRI) data images which can be classified as image classification, segmentation and image denoising. With the efficient utilization of MRI images the medical experts are able to identify the medical disorders such as tumors which are correspondent to the brain. The prime agenda of the study is to organize brain into healthy and brain with tumor in brain with the test MRI data as considered. The MRI based technique is an methodology to study brain tumor based information for the better detailing of the internal body images when compared to other technique such as Computed Tomography (CT).Initially the MRI image is denoised using Anisotropic diffusion filter, then MRI image is segmented using Morphological operations, to classify the images for the disorder CNN based hybrid technique is incorporated, which is associated with five different set of layers with the pairing of pooling and convolution layers for the comparatively improved performance than other existing technique. The considered data base for the designed model is a publicly available and tested KAGGLE database for the brain MRI images which has resulted in the accuracy of 88.1%.
APA, Harvard, Vancouver, ISO, and other styles
33

Ding, Wei Li, Feng Jiang, and Jia Qing Yan. "Automatic Segmentation of the Skull in MRI Sequences Using Level Set Method." Applied Mechanics and Materials 58-60 (June 2011): 2370–75. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.2370.

Full text
Abstract:
Magnetic Resonance Imaging (MRI) has been widely used in clinical diagnose. Segmentation of these images obtained by MRI is a necessary procedure in medical image processing. In this paper, an improved level set algorithm was proposed to optimize the segmentation of MRI image sequences based on article [1]. Firstly, we add an area term and the edge indicator function to the total energy function for single image segmentation. Secondly, we presented a new method which uses the circumscribed polygon of the previous segmentation result as the initial contour of the next image to achieve automatic segmentation of image sequences. The algorithm was tested on MRI image sequences provided by Chuiyanliu Hospital, Chaoyang District of Beijing; the results have indicated that the proposed algorithm can effectively enhance the segmentation speed and quality of MRI sequences.
APA, Harvard, Vancouver, ISO, and other styles
34

Taime, Abderazzak, Aziz Khamjane, Jamal Riffi, and Hamid Tairi. "Improving the accuracy of the PET/MRI tridimensional multimodal rigid image registration based on the FATEMD." Radioelectronic and Computer Systems, no. 1 (March 7, 2023): 122–33. http://dx.doi.org/10.32620/reks.2023.1.10.

Full text
Abstract:
The subject matter of the article is the improvement in the accuracy of multimodal image registration between PET and MRI images in the medical field. The focus of the article pertains to the importance of these images in diagnosis, interpretation, and surgical intervention. This study increased the accuracy of PET/MRI multimodal image registration achieved through a new approach based on the multi-resolution image decomposition. The tasks to be solved are: The study proposes a new method, the fast and adaptive three-dimensional mode decomposition (FATEMD), to generate multi-resolution components for accurate registration. The method used: The study uses the FATEMD approach, which estimates the transformation parameters of the registration from the PET image and the residue of the second level of the MRI image that is obtained after the extraction of the first two tridimensional intrinsic mode functions (TIMFs). The following results were obtained: The proposed method of multimodal registration between PET and MRI images involves the use of the fast and adaptive three-dimensional mode decomposition (FATEMD) approach. This approach was tested on 25 pairs of images from the Vanderbilt database and was found to have improved accuracy compared to the usual method, as shown through comparative studies using measures of mutual information, normalized mutual information, and entropy correlation coefficient. Conclusion. The main objective achieved in the study was to enhance the accuracy of PET/MRI multimodal image registration through the application of the FATEMD decomposition method. This approach is novel compared to traditional methods as it involves estimating the transformation parameters from the PET image and the second level residue of the MRI image, resulting in more precise outcomes as opposed to using just the PET and MRI images alone. The integration of multiple imaging techniques, such as PET and MRI, provides healthcare professionals with a more comprehensive view of a patient's anatomy and physiology, leading to enhanced diagnosis and treatment planning.
APA, Harvard, Vancouver, ISO, and other styles
35

Ahmed, Ahmed Shihab, and Hussein Ali Salah. "The IoT and registration of MRI brain diagnosis based on genetic algorithm and convolutional neural network." Indonesian Journal of Electrical Engineering and Computer Science 25, no. 1 (2022): 273. http://dx.doi.org/10.11591/ijeecs.v25.i1.pp273-280.

Full text
Abstract:
The technology <span>of the multimodal brain image registration is the key method for accurate and rapid diagnosis and treatment of brain diseases. For achieving high-resolution image registration, a fast sub pixel registration algorithm is used based on single-step discrete wavelet transform (DWT) combined with phase convolution neural network (CNN) to classify the registration of brain tumors. In this work apply the genetic algorithm and CNN clasifcation in registration of magnetic resonance imaging (MRI) image. This approach follows eight steps, reading the source of MRI brain image and loading the reference image, enhencment all MRI images by bilateral filter, transforming DWT image by applying the DWT2, evaluating (fitness function) each MRI image by using entropy, applying the genetic algorithm, by selecting the two images based on rollout wheel and crossover of the two images, the CNN classify the result of subtraction to normal or abnormal, “in the eighth one,” the Arduino and global system for mobile (GSM) 8080 are applied to send the message to patient. The proposed model is tested on MRI Medical City Hospital in Baghdad database consist 550 normal and 350 abnormal and split to 80% training and 20 testing, the proposed model result achieves the 98.8% </span>accuracy.
APA, Harvard, Vancouver, ISO, and other styles
36

Ahmed, Ahmed Shihab, and Hussein Ali Salah. "The IoT and registration of MRI brain diagnosis based on genetic algorithm and convolutional neural network." Indonesian Journal of Electrical Engineering and Computer Science 25, no. 1 (2022): 273–80. https://doi.org/10.11591/ijeecs.v25.i1.pp273-280.

Full text
Abstract:
The technology of the multimodal brain image registration is the key method for accurate and rapid diagnosis and treatment of brain diseases. For achieving high-resolution image registration, a fast sub pixel registration algorithm is used based on single-step discrete wavelet transform (DWT) combined with phase convolution neural network (CNN) to classify the registration of brain tumors. In this work apply the genetic algorithm and CNN clasifcation in registration of magnetic resonance imaging (MRI) image. This approach follows eight steps, reading the source of MRI brain image and loading the reference image, enhencment all MRI images by bilateral filter, transforming DWT image by applying the DWT2, evaluating (fitness function) each MRI image by using entropy, applying the genetic algorithm, by selecting the two images based on rollout wheel and crossover of the two images, the CNN classify the result of subtraction to normal or abnormal, “in the eighth one,” the Arduino and global system for mobile (GSM) 8080 are applied to send the message to patient. The proposed model is tested on MRI Medical City Hospital in Baghdad database consist 550 normal and 350 abnormal and split to 80% training and 20 testing, the proposed model result achieves the 98.8% accuracy.
APA, Harvard, Vancouver, ISO, and other styles
37

Jiang, Mingfeng, Peihang Jia, Xin Huang, et al. "Frequency-Aware Diffusion Model for Multi-Modal MRI Image Synthesis." Journal of Imaging 11, no. 5 (2025): 152. https://doi.org/10.3390/jimaging11050152.

Full text
Abstract:
Magnetic Resonance Imaging (MRI) is a widely used, non-invasive imaging technology that plays a critical role in clinical diagnostics. Multi-modal MRI, which combines images from different modalities, enhances diagnostic accuracy by offering comprehensive tissue characterization. Meanwhile, multi-modal MRI enhances downstream tasks, like brain tumor segmentation and image reconstruction, by providing richer features. While recent advances in diffusion models (DMs) show potential for high-quality image translation, existing methods still struggle to preserve fine structural details and ensure accurate image synthesis in medical imaging. To address these challenges, we propose a Frequency-Aware Diffusion Model (FADM) for generating high-quality target modality MRI images from source modality images. The FADM incorporates a discrete wavelet transform within the diffusion model framework to extract both low- and high-frequency information from MRI images, enhancing the capture of tissue structural and textural features. Additionally, a wavelet downsampling layer and supervision module are incorporated to improve frequency awareness and optimize high-frequency detail extraction. Experimental results on the BraTS 2021 dataset and a 1.5T–3T MRI dataset demonstrate that the FADM outperforms existing generative models, particularly in preserving intricate brain structures and tumor regions while generating high-quality MRI images.
APA, Harvard, Vancouver, ISO, and other styles
38

YOUSIF, AHMED, Zaid Bin Omar, and Usman Ullah Sheikh. "A Survey on Multi-Scale Medical images Fusion Techniques: Brain Diseases." Journal of Biomedical Engineering and Medical Imaging 7, no. 1 (2020): 18–38. http://dx.doi.org/10.14738/jbemi.71.7415.

Full text
Abstract:
Brain diseases such as degenerative (alzheimer's disease), neoplastic disease (brain tumor like sarcoma, glioma) are considered an interesting topic areas in the medical image fusion diagnosis. Pixel-level image fusion techniques are designed to combine multiple/multi-scale input images into a fused image, which is expected to be more informative for human or machine perception as compared to any of the input images. Since they are difficult to be summarized ; survey paper are characterized by (1) medical image definition , brain diseases challenges , analysis a various techniques for multi-scale image fusion with its own modalities, fusion rule, fusion strategy and dis-advantage ,Whilst used a database of medical images for medical Harvard School (brain diseases) which contains various groups of co-registered multi-modal images including MRI/CT, MRI/PET and PET/SPECT and MRI (T1/T2) images.
APA, Harvard, Vancouver, ISO, and other styles
39

Setyabudi, Bintang Kukuh Iman, Hernastiti Sedya Utami, Fani Susanto, and Kusnanto Mukti Wibowo. "Difference in Image Information Between DWI Sequence and DWI Blade for Optimization of Axial Brain." Proceedings Series on Health & Medical Sciences 5 (March 20, 2024): 140–44. http://dx.doi.org/10.30595/pshms.v5i.976.

Full text
Abstract:
Background: Diffusion Weighted Image (DWI) sequence that utilizes the movement of molecules due to random thermal motion. The aim of this research is to determine the difference in image information between DWI sequence and DWI BLADE on axial brain MRI images for optimization and to find the most optimal sequence between DWI and DWI BLADE on axial brain MRI images. Method: This study used a quantitative experimental research that aims to determine image information and optimize brain MRI examinations between DWI sequence and DWI BLADE using the MRI Siemens Magnetom Amira 1.5 T at Dr. Oen Kandang Sapi Hospital Solo in May-June 2023. The sample consisted of 11 MRI assessments through visual grading analysis to provide interpretations related to image clarity information, thus obtaining the optimal use of DWI and DWI Blade sequences. Results: Based on the research and discussion results, it can be concluded that there is a difference in anatomical image information between DWI sequence with BLADE and without BLADE on axial brain MRI examinations, with a significance value of 0.00 (p<0.05), indicating a difference in anatomical image information in the cortex cerebri, thalamus, cerebellum, basal ganglia, and a significance value of 1.000 (p<0.05) for artifact information, indicating no difference in artifact image information between DWI sequences with BLADE and without BLADE. Conclusion: DWI BLADE sequence provides better anatomical image information compared to DWI sequence without BLADE in axial brain MRI examinations.
APA, Harvard, Vancouver, ISO, and other styles
40

Murugachandravel, J., and S. Anand. "Enhancing MRI Brain Images Using Contourlet Transform and Adaptive Histogram Equalization." Journal of Medical Imaging and Health Informatics 11, no. 12 (2021): 3024–27. http://dx.doi.org/10.1166/jmihi.2021.3906.

Full text
Abstract:
Human brain can be viewed using MRI images. These images will be useful for physicians, only if their quality is good. We propose a new method called, Contourlet Based Two Stage Adaptive Histogram Equalization (CBTSA), that uses Nonsubsampled Contourlet Transform (NSCT) for smoothing images and adaptive histogram equalization (AHE), under two occasions, called stages, for enhancement of the low contrast MRI images. The given MRI image is fragmented into equal sized sub-images and NSCT is applied to each of the sub-images. AHE is imposed on each resultant sub-image. All processed images are merged and AHE is applied again to the merged image. The clarity of the output image obtained by our method has outperformed the output image produced by traditional methods. The quality was measured and compared using criteria like, Entropy, Absolute Mean Brightness Error (AMBE) and Peak Signal to Noise Ratio (PSNR).
APA, Harvard, Vancouver, ISO, and other styles
41

Taie, Shereen A., and Wafaa Ghonaim. "A new model for early diagnosis of alzheimer's disease based on BAT-SVM classifier." Bulletin of Electrical Engineering and Informatics 10, no. 2 (2021): 759–66. http://dx.doi.org/10.11591/eei.v10i2.2714.

Full text
Abstract:
Magnetic Resonance Images (MRI) of the Brain is a significant tool to diagnosis Alzheimer's disease due to its ability to measure regional changes in the brain that reflect disease progression to detect early stages of the disease. In this paper, we propose a new model that adopts Bat for parameter optimization problem of Support vector machine (SVM) to diagnose Alzheimer’s disease via MRI biomedical image. The proposed model uses MRI for biomedical image classification to diagnose three classes; normal controls (NC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD). The proposed model based on segmentation for the most involved areas in the disease hippocampus, the features of MRI brain images are extracted to build feature vector of the brain, then extracting the most significant features in neuroimaging to reduce the high dimensional space of MRI images to lower dimensional subspace, and submitted to machine learning classification technique. Moreover, the model is applied on different datasets to validate the efficiency which show that the new Bat-SVM model can yield promising acceptable level of accuracy reached to 95.36 % using maximum number of bats equal to 50 and number of generation equal to 10.
APA, Harvard, Vancouver, ISO, and other styles
42

Shereen, A. Taie, and Ghonaim Wafaa. "A new model for early diagnosis of Alzheimer's disease based on BAT-SVM classifier." Bulletin of Electrical Engineering and Informatics 10, no. 2 (2021): 759~766. https://doi.org/10.11591/eei.v10i2.2714.

Full text
Abstract:
Magnetic resonance images (MRI) of the brain is a significant tool to diagnosis Alzheimer's disease, for this reason we use it to measure regional changes in the brain that reflect disease progression to detect early stages of the disease. In this paper, we propose a new model that adopts Bat for parameter optimization problem of support vector machine (SVM) to diagnose Alzheimer’s disease via MRI biomedical image. The proposed model uses MRI for biomedical image classification to diagnose three classes; normal controls (NC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD). The proposed model based on segmentation for the most involved areas in the disease hippocampus, the features of MRI brain images are extracted to build feature vector of the brain, then extracting the most significant features in neuroimaging to reduce the high dimensional space of MRI images to lower dimensional subspace, and submitted to machine learning classification technique. Moreover, the model is applied on different datasets for efficiency validation, it concluded that the new Bat-SVM model achieved acceptable level of accuracy reached to 95.36% using maximum number of bats equal to 50 and number of generation equal to 10.
APA, Harvard, Vancouver, ISO, and other styles
43

Kumar, L. Ravi, K. G. S. Venkatesan, and S.Ravichandran. "Cloud-enabled Internet of Things Medical Image Processing Compressed Sensing Reconstruction." International Journal of Scientific Methods in Intelligence Engineering Networks 01, no. 04 (2023): 11–21. http://dx.doi.org/10.58599/ijsmien.2023.1402.

Full text
Abstract:
Deep learning compresses medical image processing in IoMT. CS-MRI acquires quickly. It has various medicinal uses due to its advantages. This lowers motion artifacts and contrast washout. Reduces patient pressure and scanning costs. CS-MRI avoids the Nyquist-Shannon sampling barrier. Parallel imagingbased fast MRI uses many coils to reconstruct MRI images with less raw data. Parallel imaging enables rapid MRI. This research developed a deep learning-based method for reconstructing CS-MRI images that bridges the gap between typical non-learning algorithms that employ data from a single image and enormous training datasets. Conventional approaches only reconstruct CS-MRI data from one picture. Reconstructing CS-MRI images. CS-GAN is recommended for CS-MRI reconstruction. For success. Refinement learning stabilizes our C-GAN-based generator, which eliminates aliasing artifacts. This improved newly produced data. Product quality increased. Adversarial and information loss recreated the picture. We should protect the image’s texture and edges. Picture and frequency domain data establish consistency. We want frequency and picture domain information to match. It offers visual domain data. Traditional CS-MRI reconstruction and deep learning were used in our broad comparison research. C-GAN enhances reconstruction while conserving perceptual visual information. MRI image reconstruction takes 5 milliseconds, allowing real-time analysis.
APA, Harvard, Vancouver, ISO, and other styles
44

Jai Shankar, B., K. Murugan, A. Obulesu, S. Finney Daniel Shadrach, and R. Anitha. "MRI Image Segmentation Using Bat Optimization Algorithm with Fuzzy C Means (BOA-FCM) Clustering." Journal of Medical Imaging and Health Informatics 11, no. 3 (2021): 661–66. http://dx.doi.org/10.1166/jmihi.2021.3365.

Full text
Abstract:
Functional and anatomical information extraction from Magnetic Resonance Images (MRI) is important in medical image applications. The information extraction is highly influenced by the artifacts in the MRI images. The feature extraction involves the segmentation of MRI images. We present a MRI image segmentation using Bat Optimization Algorithm (BOA) with Fuzzy C Means (FCM) clustering. Echolocation of bats is utilized in Bat Optimization Algorithm. The proposed segmentation technique is evaluated with existing segmentation techniques. Results of experimentation shows that proposed segmentation technique outperforms existing methods and produces 98.5% better results.
APA, Harvard, Vancouver, ISO, and other styles
45

Fu, Qimao, Chuizhi Huang, Yan Chen, Nailong Jia, Jinghui Huang, and Changkun Lin. "Magnetic Resonance Imaging Image under Low-Rank Matrix Denoising Algorithm in the Diagnosis and Evaluation of Tibial Plateau Fracture Combined with Meniscus Injury." Scientific Programming 2021 (November 24, 2021): 1–9. http://dx.doi.org/10.1155/2021/6329020.

Full text
Abstract:
This study was carried out to explore the diagnostic effect of magnetic resonance imaging (MRI) based on the low-rank matrix (LRM) denoising algorithm under gradient sparse prior for the tibial plateau fracture (TPF) combined with meniscus injury (TPF + MI). In this study, the prior information of the noise-free MRI image block was combined with the self-phase prior, the gradient prior of MRI was introduced to eliminate the ringing effect, and a new MRI image denoising algorithm was constructed, which was compared with the anisotropic diffusion fusion (ADF) algorithm. After that, the LRM denoising algorithm based on gradient sparse prior was applied to the diagnosis of 112 patients with TPF + MI admitted to hospital, and the results were compared with those of the undenoised MRI image. Then, the incidence of patients with all kinds of different meniscus injury parting was observed. A total of 66 cases (58.93%) of meniscus tears (MT) were found, including 56 cases (50.00%) of lateral meniscus (LM), 10 cases (8.93%) of medial meniscus (MM), 16 cases (14.29%) of meniscus contusion (MC), and 18 cases (16.07%) of meniscus degenerative injury (MDI). The incidences of MI in Schatzker subtypes were 0%, 53.33% (24/45), 41.67% (5/12), 76.47% (13/17), 78.94% (15/19), and 23.53% (4/17), showing no statistically significant difference ( P > 0.05 ), but the incidence of MT was 54.46% (61/112), which was greatly higher than that of MC (15.18% (17/112)), and the difference was statistically obvious ( P < 0.05 ). The diagnostic specificity (93.83%) and accuracy (95.33%) of denoised MRI images were dramatically higher than those of undenoised MRI images, which were 78.34% and 71.23%, respectively, showing statistically observable differences ( P < 0.05 ). In short, the algorithm in this study showed better denoising performance with the most retained image information. In addition, denoising MRI images based on the algorithm constructed in this study can improve the diagnostic accuracy of MI.
APA, Harvard, Vancouver, ISO, and other styles
46

David S, Alex, Almas Begum, and Ravikumar S. "Content clustering for MRI Image compression using PPAM." International Journal of Engineering & Technology 7, no. 1.7 (2018): 126. http://dx.doi.org/10.14419/ijet.v7i1.7.10631.

Full text
Abstract:
Image compression helps to save the utilization of memory, data while transferring the images between nodes. Compression is one of the key technique in medical image. Both lossy and lossless compressions where used based on the application. In case of medical imaging each and every components of pixel is very important hence its nature to chose lossless compression medical images. MRI images are compressed after processing. Here in this paper we have used PPMA method to compress the MRI image. For retrieval of the compressed image content clustering method used.
APA, Harvard, Vancouver, ISO, and other styles
47

Basir, Otman, and Kalifa Shantta. "Automatic MRI Brain Tumor Segmentation Techniques: A Survey." IRA-International Journal of Applied Sciences (ISSN 2455-4499) 16, no. 2 (2021): 25. http://dx.doi.org/10.21013/jas.v16.n2.p2.

Full text
Abstract:
Image segmentation plays a crucial role in recognizing image signification for checking and mining medical image records. Brain tumor segmentation is a complicated assignment in medical image analysis. It is challenging to identify precisely and extract that a portion of the image has abnormal tissues for further diagnosis and analysis. The method of segmenting a tumor from a brain MRI image is a highly concentrated medical science community field, as MRI is non-invasive. In this survey, brain MRI images' latest brain tumor segmentation techniques are addressed a thoroughgoing literature review. Besides, surveys the several approved techniques regularly applied for brain tumor MRI segmentation. Also, highlighting variances among them and reviews their abilities, pros, and weaknesses. Various approaches to image segmentation are described and explicated with the modern participation of several investigators.
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, Hujun, Hui Gao, and Fei Jia. "The Value of Convolutional Neural Network-Based Magnetic Resonance Imaging Image Segmentation Algorithm to Guide Targeted Controlled Release of Doxorubicin Nanopreparation." Contrast Media & Molecular Imaging 2021 (July 26, 2021): 1–10. http://dx.doi.org/10.1155/2021/9032017.

Full text
Abstract:
There was an investigation of the auxiliary role of convolutional neural network- (CNN-) based magnetic resonance imaging (MRI) image segmentation algorithm in MRI image-guided targeted drug therapy of doxorubicin nanomaterials so that the value of drug-controlled release in liver cancer patients was evaluated. In this study, 80 patients with liver cancer were selected as the research objects. It was hoped that the CNN-based MRI image segmentation algorithm could be applied to the guided analysis of MRI images of the targeted controlled release of doxorubicin nanopreparation to analyze the imaging analysis effect of this algorithm on the targeted treatment of liver cancer with doxorubicin nanopreparation. The results of this study showed that the upgraded three-dimensional (3D) CNN-based MRI image segmentation had a better effect compared with the traditional CNN-based MRI image segmentation, with significant improvement in indicators such as accuracy, precision, sensitivity, and specificity, and the differences were all statistically marked ( p < 0.05 ). In the monitoring of the targeted drug therapy of doxorubicin nanopreparation for liver cancer patients, it was found that the MRI images of liver cancer patients processed by 3D CNN-based MRI image segmentation neural algorithm could be observed more intuitively and guided to accurately reach the target of liver cancer. The accuracy of targeted release determination of nanopreparation reached 80 ± 6.25%, which was higher markedly than that of the control group (66.6 ± 5.32%) ( p < 0.05 ). In a word, the MRI image segmentation algorithm based on CNN had good application potential in guiding patients with liver cancer for targeted therapy with doxorubicin nanopreparation, which was worth promoting in the adjuvant treatment of targeted drugs for cancer.
APA, Harvard, Vancouver, ISO, and other styles
49

Hoffmann, Nico, Florian Weidner, Peter Urban, et al. "Framework for 2D-3D image fusion of infrared thermography with preoperative MRI." Biomedical Engineering / Biomedizinische Technik 62, no. 6 (2017): 599–607. http://dx.doi.org/10.1515/bmt-2016-0075.

Full text
Abstract:
AbstractMultimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.
APA, Harvard, Vancouver, ISO, and other styles
50

Andotra, Abhinav Singh, and Sandeep Sharma. "MRI Image Enhancement: Optimized Filtering Mechanism for Achieving High Accuracy in Diagnose Process." Asian Journal of Computer Science and Technology 7, no. 1 (2018): 66–70. http://dx.doi.org/10.51983/ajcst-2018.7.1.1827.

Full text
Abstract:
Segmentation plays an important role in separating data from medicinal images and also helps in clinical findings. Segmentation is the way toward apportioning the image into different regions. MRI is utilized to extract images of delicate tissues of human body. It is utilized in analyzing the human organs without the requirement of surgery. For the most part MRI images contain a lot of noise caused by operator performance, equipment and the environment, which prompts genuine errors. MRI is a productive way in giving data in regards to the area of tumors and even the volume. The noise present in the MRI image can be evacuated by utilizing different de-noising procedures whichever is most appropriate method depending on the type of image obtained and afterward can be handled by any of the segmentation techniques. The noise in MRI images might be because of field strength, RF pulses, RF coil, voxel volume, or receiver bandwidth. In our proposed paper a review of different noise handling and filtering mechanism is conducted in order to enhance the quality of image. In this paper we modify the adaptive median filter by applying redundancy handling mechanism and enhance the contrast of image by applying histogram equivalence method.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography