Dissertations / Theses on the topic 'MRI IMAGE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'MRI IMAGE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Al-Abdul, Salam Amal. "Image quality in MRI." Thesis, University of Exeter, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288250.
Full textCui, Xuelin. "Joint CT-MRI Image Reconstruction." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/86177.
Full textPh. D.
Medical imaging techniques play a central role in modern clinical diagnoses and treatments. Consequently, there is a constant demand to increase the overall quality of medical images. Since their inception, multimodal imaging techniques have received a great deal of attention for achieving enhanced imaging performance. Multimodal imaging techniques can provide more detailed diagnostic information by fusing medical images from different imaging modalities, thereby allowing clinical results to be more comprehensive to improve clinical interpretation. A new form of multimodal imaging technique, which combines the imaging procedures of computed tomography (CT) and magnetic resonance imaging (MRI), is known as the “omnitomography.” Both computed tomography and magnetic resonance imaging are the most commonly used medical imaging techniques today and their intrinsic properties are complementary. For example, computed tomography performs well for bones whereas the magnetic resonance imaging excels at contrasting soft tissues. Therefore, a multimodal imaging system built upon the fusion of these two modalities can potentially bring much more information to improve clinical diagnoses. However, the planned omni-tomography systems face enormous challenges, such as the limited ability to perform image reconstruction due to mechanical and hardware restrictions that result in significant undersampling of the raw data. Image reconstruction is a procedure required by both computed tomography and magnetic resonance imaging to convert raw data into final images. A general condition required to produce a decent quality of an image is that the number of samples of raw data must be sufficient and abundant. Therefore, undersampling on the omni-tomography system can cause significant degradation of the image quality or artifacts after image reconstruction. To overcome this drawback, we resort to compressed sensing techniques, which exploit the sparsity of the medical images, to perform iterative based image reconstruction for both computed tomography and magnetic resonance imaging. The sparsity of the images is found by applying sparse transform such as discrete gradient transform or wavelet transform in the image domain. With the sparsity and undersampled raw data, an iterative algorithm can largely compensate for the data inadequacy problem and it can reconstruct the final images from the undersampled raw data with minimal loss of quality. In addition, a novel “projection distance” is created to perform a joint reconstruction which further promotes the quality of the reconstructed images. Specifically, the projection distance exploits the structural similarities shared between the image of computed tomography and magnetic resonance imaging such that the insufficiency of raw data caused by undersampling is further accounted for. The improved performance of the proposed approach is demonstrated using a pair of undersampled body images and a pair of undersampled head images, each of which consists of an image of computed tomography and its magnetic resonance imaging counterpart. These images are tested using the proposed joint reconstruction method in this work, the conventional reconstructions such as filtered backprojection and Fourier transform, and reconstruction strategy without using multimodal imaging information (independent reconstruction). The results from this work show that the proposed method addressed these challenges by significantly improving the image quality from highly undersampled raw data. In particular, it improves about 5dB in signal-to-noise ratio and nearly 10% in structural similarity measurements compared to other methods. It achieves similar image quality by using less than 5% of the X-ray dose for computed tomography and 30% sampling rate for magnetic resonance imaging. It is concluded that, by using compressed sensing techniques and exploiting structural similarities, the planned joint computed tomography and magnetic resonance imaging system can perform imaging outstanding tasks with highly undersampled raw data.
Carmo, Bernardo S. "Image processing in echography and MRI." Thesis, University of Southampton, 2005. https://eprints.soton.ac.uk/194557/.
Full textGu, Wei Q. "Automated tracer-independent MRI/PET image registration." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ29596.pdf.
Full textIvarsson, Magnus. "Evaluation of 3D MRI Image Registration Methods." Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139075.
Full textLin, Xiangbo. "Knowledge-based image segmentation using deformable registration: application to brain MRI images." Reims, 2009. http://theses.univ-reims.fr/exl-doc/GED00001121.pdf.
Full textThe research goal of this thesis is a contribution to the intra-modality inter-subject non-rigid medical image registration and the segmentation of 3D brain MRI images in normal case. The well-known Demons non-rigid algorithm is studied, where the image intensities are used as matching features. A new force computation equation is proposed to solve the mismatch problem in some regions. The efficiency is shown through numerous evaluations on simulated and real data. For intensity based inter-subject registration, normalizing the image intensities is important for satisfying the intensity correspondence requirements. A non-rigid registration method combining both intensity and spatial normalizations is proposed. Topology constraints are introduced in the deformable model to preserve an expected property in homeomorphic targets registration. The solution comes from the correction of displacement points with negative Jacobian determinants. Based on the registration, a segmentation method of the internal brain structures is studied. The basic principle is represented by ontology of prior shape knowledge of target internal structure. The shapes are represented by a unified distance map computed from the atlas and the deformed atlas, and then integrated into the similarity metric of the cost function. A balance parameter is used to adjust the contributions of the intensity and shape measures. The influence of different parameters of the method and comparisons with other registration methods were performed. Very good results are obtained on the segmentation of different internal structures of the brain such as central nuclei and hippocampus
Soltaninejad, Mohammadreza. "Supervised learning-based multimodal MRI brain image analysis." Thesis, University of Lincoln, 2017. http://eprints.lincoln.ac.uk/30883/.
Full textDaga, P. "Towards efficient neurosurgery : image analysis for interventional MRI." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1449559/.
Full textChi, Wenjun. "MRI image analysis for abdominal and pelvic endometriosis." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:27efaa89-85cd-4f8b-ab67-b786986c42e3.
Full textHagio, Tomoe, and Tomoe Hagio. "Parametric Mapping and Image Analysis in Breast MRI." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621809.
Full textWang, Kang. "Image Transfer Between Magnetic Resonance Images and Speech Diagrams." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41533.
Full textDale, Brian M. "Optimal Design of MR Image Acquisition Techniques." Case Western Reserve University School of Graduate Studies / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=case1081556784.
Full textMcGraw, Tim E. "Neuronal fiber tracking in DT-MRI." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE0000573.
Full textThayer, David A. "Imaging Techniques and Hardware for Inhomogeneous MRI." Diss., CLICK HERE for online access, 2004. http://contentdm.lib.byu.edu/ETD/image/etd535.pdf.
Full textStacke, Karin. "Automatic Brain Segmentation into Substructures Using Quantitative MRI." Thesis, Linköpings universitet, Datorseende, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128900.
Full textLethmate, Ralf. "Novel radial scan strategies and image reconstruction in MRI." Lyon 1, 2001. http://www.theses.fr/2001LYO10272.
Full textWilliams, Glenda Patricia. "Development and clinical application of techniques for the image processing and registration of serially acquired medical images." Thesis, University of South Wales, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326718.
Full textMaitree, Rapeepan, Gloria J. Guzman Perez-Carrillo, Joshua S. Shimony, H. Michael Gach, Anupama Chundury, Michael Roach, H. Harold Li, and Deshan Yang. "Adaptive anatomical preservation optimal denoising for radiation therapy daily MRI." SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2017. http://hdl.handle.net/10150/626083.
Full textMcGraw, Tim E. "Denoising, segmentation and visualization of diffusion weighted MRI." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011618.
Full textSjölund, Jens. "MRI based radiotherapy planning and pulse sequence optimization." Licentiate thesis, Linköpings universitet, Medicinsk informatik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-115796.
Full textWilm, Bertram Jakob. "Diffusion-weighted MRI : volume selection, field monitoring and image reconstruction /." [S.l.] : [s.n.], 2009. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18318.
Full textChandrashekara, Raghavendra. "Analysis of cardiac motion using MRI and nonrigid image registration." Thesis, Imperial College London, 2005. http://hdl.handle.net/10044/1/11456.
Full textSuh, Doug Young. "Knowledge-based boundary detection system : on MRI cardiac image sequences." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/13291.
Full textCallaghan, Martina. "PadeÌ methods for image reconstruction and feature extraction in MRI." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416865.
Full textShen, Shan. "MRI brain tumour classification using image processing and data mining." Thesis, University of Strathclyde, 2004. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21543.
Full textZou, Xin. "Compression and Decompression of Color MRI Image by Huffman Coding." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17029.
Full textSong, Yang. "Semi-Automatic Registration Utility for MR Brain Imaging of Small Animals." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-theses/148.
Full textMahbod, Amirreza. "Structural Brain MRI Segmentation Using Machine Learning Technique." Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189985.
Full textLarsson, Jonatan. "Implementation and evaluation of motion correction for quantitative MRI." Thesis, Linköpings universitet, Medicinsk informatik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-61331.
Full textMing, Kevin. "Towards in vitro MRI based analysis of spinal cord injury." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2290.
Full textJoos, Louis. "Deformable 3D Brain MRI Registration with Deep Learning." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262852.
Full textJonsson, Joakim. "Integration of MRI into the radiotherapy workflow." Doctoral thesis, Umeå universitet, Radiofysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-68959.
Full textModern strålterapi av cancer baseras nästan helt på datortomografiska (CT) bilder. CT bilder tas med hjälp av röntgenfotoner, och återger därför hur det avbildade materialet växelverkar med strålning. Denna information används för att utföra noggranna dosberäkningar i ett dosplaneringssystem, och data från CT bilder lämpar sig också väl för att skapa digitalt rekonstruerade röntgenbilder vilka kan användas för att verifiera patientens position vid behandling. Bildgivande magnetresonanstomografi (MRI) har många egenskaper som är intressanta för radioterapi. Mjukdelskontrasten i MR bilder är överlägsen CT, och det är möjligt att i stor utstäckning variera sekvensparametrar för att synliggöra olika anatomiska och funktionella attribut hos ett organ. Dessa bägge egenskaper kan bidra till ökad noggrannhet i strålbehandling av cancer. Att använda enbart MR bilder som planeringsunderlag för radioterapi är dock problematiskt. MR data reflekterar magnetiska attribut hos protoner, och har därför ingen koppling till materialets egenskaper då det gäller strålningsväxelverkan. Dessutom är det komplicerat att avbilda ben med MR; ben uppträder som områden av signalförlust i bilderna, på samma sätt som luft gör. Detta gör det svårt att utföra noggranna dosberäkningar och positionera patienten vid behandling. Många moderna kliniker använder redan idag MR tillsammans med CT under dosplanering. Bilderna registreras till ett gemensamt koordinatsystem i en process som kallas bildfusion. I dessa fall används MR bilderna primärt som underlag för utlinjering av tumör, eller target, och CT bilderna används som grund för dosberäkningar. Denna metod är dock inte ideal, då bildregistreringen kan införa systematiska geometriska fel i behandlingen. Detta på grund av att tumörer ofta är fria att röra sig relativt patientens skelett och yttre kontur, och många bildregistreringsalgoritmer tar hänsyn till hela bildvolymen. Arbetet som presenteras i denna avhandling syftar till att undersöka möjligheterna med arbetsflöden som baseras helt på MR data utan bildregistrering, samt arbetsflöden som använder bildregistrerings-algoritmer som är bättre anpassade för tumörer som kan röra sig i förhållande till patientens övriga anatomi, som till exempel prostatacancer.
Axberg, Elin, and Ida Klerstad. "Similarity models for atlas-based segmentation of whole-body MRI volumes." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-172792.
Full textSaputra, Michael Wijaya. "Water and Fat Image Reconstruction from MRI Raw Multi Coil Data." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-372138.
Full textJärrendahl, Hannes. "Automatic Detection of Anatomical Landmarks in Three-Dimensional MRI." Thesis, Linköpings universitet, Datorseende, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130944.
Full textHeinrich, Mattias Paul. "Deformable lung registration for pulmonary image analysis of MRI and CT scans." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:570112d9-c995-46df-86c0-15ce4ab928ff.
Full textLai, Matteo. "Conditional MR image synthesis with Auxiliary Progressive Growing GANs." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Find full textBhat, Danish. "Image Registration and Analysis within quantitative MRI to improve estimation of brain parenchymal fraction." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-132973.
Full textGraff, Christian George. "Parameter Estimation in Magnetic Resonance Imaging." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195912.
Full textUsta, Fatma. "Image Processing Methods for Myocardial Scar Analysis from 3D Late-Gadolinium Enhanced Cardiac Magnetic Resonance Images." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37920.
Full textSmith, Norman Ronald. "Fast and automatic techniques for 3D visualization of MRI data." Thesis, Imperial College London, 1998. http://hdl.handle.net/10044/1/11916.
Full textFan, Mingdong. "THREE INITIATIVES ADDRESSING MRI PROBLEMS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1585863940821908.
Full textAli, Syed Farooq. "Comparative Studies of Contouring Algorithms for Cardiac Image Segmentation." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1325183438.
Full textDavis, Warren B. "The Claustrum in Autism and Typically Developing Male Children: A Quantitative MRI Study." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2628.pdf.
Full textShang, Weijian. "Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-dissertations/49.
Full textRibolla, Marco. "Development of an Image Registration Procedure : Matching of Brain MRI Data Sets." Thesis, Linköpings universitet, Biomedicinsk instrumentteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81457.
Full textFreeborough, Peter Anthony. "Image analysis tools and texture classification and their applications in clinical MRI." Thesis, Imperial College London, 1997. http://hdl.handle.net/10044/1/12021.
Full textLindahl, Jens. "Correlation between PET/MRI image features andpathological subtypes for localized prostate cancer." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184885.
Full textShi, Wenzhe. "An image segmentation and registration approach to cardiac function analysis using MRI." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/10548.
Full textSchwarz, Jolanda M. [Verfasser]. "Advanced Image Reconstruction Methods for Ultra-High Field MRI / Jolanda M. Schwarz." Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1218474947/34.
Full text