To see the other types of publications on this topic, follow the link: MR Fingerprinting.

Journal articles on the topic 'MR Fingerprinting'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'MR Fingerprinting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Flassbeck, Sebastian, Simon Schmidt, Peter Bachert, Mark E. Ladd, and Sebastian Schmitter. "Flow MR fingerprinting." Magnetic Resonance in Medicine 81, no. 4 (December 2, 2018): 2536–50. http://dx.doi.org/10.1002/mrm.27588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pierre, Eric Y., Dan Ma, Yong Chen, Chaitra Badve, and Mark A. Griswold. "Multiscale reconstruction for MR fingerprinting." Magnetic Resonance in Medicine 75, no. 6 (June 30, 2015): 2481–92. http://dx.doi.org/10.1002/mrm.25776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Xiaodi, Zechen Zhou, Shiyang Chen, Shuo Chen, Rui Li, and Xiaoping Hu. "MR fingerprinting reconstruction with Kalman filter." Magnetic Resonance Imaging 41 (September 2017): 53–62. http://dx.doi.org/10.1016/j.mri.2017.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Buonincontri, Guido, and Stephen J. Sawiak. "MR fingerprinting with simultaneous B1 estimation." Magnetic Resonance in Medicine 76, no. 4 (October 28, 2015): 1127–35. http://dx.doi.org/10.1002/mrm.26009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cohen, Ouri, Bo Zhu, and Matthew S. Rosen. "MR fingerprinting Deep RecOnstruction NEtwork (DRONE)." Magnetic Resonance in Medicine 80, no. 3 (April 6, 2018): 885–94. http://dx.doi.org/10.1002/mrm.27198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Benjamin, Arnold Julian Vinoj, Pedro A. Gómez, Mohammad Golbabaee, Zaid Bin Mahbub, Tim Sprenger, Marion I. Menzel, Michael Davies, and Ian Marshall. "Multi-shot Echo Planar Imaging for accelerated Cartesian MR Fingerprinting: An alternative to conventional spiral MR Fingerprinting." Magnetic Resonance Imaging 61 (September 2019): 20–32. http://dx.doi.org/10.1016/j.mri.2019.04.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Yong, Yun Jiang, Shivani Pahwa, Dan Ma, Lan Lu, Michael D. Twieg, Katherine L. Wright, Nicole Seiberlich, Mark A. Griswold, and Vikas Gulani. "MR Fingerprinting for Rapid Quantitative Abdominal Imaging." Radiology 279, no. 1 (April 2016): 278–86. http://dx.doi.org/10.1148/radiol.2016152037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cauley, Stephen F., Kawin Setsompop, Dan Ma, Yun Jiang, Huihui Ye, Elfar Adalsteinsson, Mark A. Griswold, and Lawrence L. Wald. "Fast group matching for MR fingerprinting reconstruction." Magnetic Resonance in Medicine 74, no. 2 (August 28, 2014): 523–28. http://dx.doi.org/10.1002/mrm.25439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Anderson, Christian E., Charlie Y. Wang, Yuning Gu, Rebecca Darrah, Mark A. Griswold, Xin Yu, and Chris A. Flask. "Regularly incremented phase encoding – MR fingerprinting (RIPE‐MRF) for enhanced motion artifact suppression in preclinical cartesian MR fingerprinting." Magnetic Resonance in Medicine 79, no. 4 (August 10, 2017): 2176–82. http://dx.doi.org/10.1002/mrm.26865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zou, Lixian, Dong Liang, Huihui Ye, Shi Su, Yanjie Zhu, Xin Liu, Hairong Zheng, and Haifeng Wang. "Quantitative MR relaxation using MR fingerprinting with fractional-order signal evolution." Journal of Magnetic Resonance 330 (September 2021): 107042. http://dx.doi.org/10.1016/j.jmr.2021.107042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Budaházi, Árpád, and Zsanett Fantoly. "Brain Fingerprinting as a Criminalistics Technique and Method." Magyar Rendészet 19, no. 1 (2019): 35–49. http://dx.doi.org/10.32577/mr.2019.1.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Badve, C., A. Yu, S. Dastmalchian, M. Rogers, D. Ma, Y. Jiang, S. Margevicius, et al. "MR Fingerprinting of Adult Brain Tumors: Initial Experience." American Journal of Neuroradiology 38, no. 3 (December 29, 2016): 492–99. http://dx.doi.org/10.3174/ajnr.a5035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Springer, Elisabeth, Pedro Lima Cardoso, Bernhard Strasser, Wolfgang Bogner, Matthias Preusser, Georg Widhalm, Mathias Nittka, et al. "MR Fingerprinting—A Radiogenomic Marker for Diffuse Gliomas." Cancers 14, no. 3 (January 30, 2022): 723. http://dx.doi.org/10.3390/cancers14030723.

Full text
Abstract:
(1) Background: Advanced MR imaging (MRI) of brain tumors is mainly based on qualitative contrast images. MR Fingerprinting (MRF) offers a novel approach. The purpose of this study was to use MRF-derived T1 and T2 relaxation maps to differentiate diffuse gliomas according to isocitrate dehydrogenase (IDH) mutation. (2) Methods: Twenty-four patients with histologically verified diffuse gliomas (14 IDH-mutant, four 1p/19q-codeleted, 10 IDH-wildtype) were enrolled. MRF T1 and T2 relaxation times were compared to apparent diffusion coefficient (ADC), relative cerebral blood volume (rCBV) within solid tumor, peritumoral edema, and normal-appearing white matter (NAWM), using contrast-enhanced MRI, diffusion-, perfusion-, and susceptibility-weighted imaging. For perfusion imaging, a T2* weighted perfusion sequence with leakage correction was used. Correlations of MRF T1 and T2 times with two established conventional sequences for T1 and T2 mapping were assessed (a fast double inversion recovery-based MR sequence (‘MP2RAGE’) for T1 quantification and a multi-contrast spin echo-based sequence for T2 quantification). (3) Results: MRF T1 and T2 relaxation times were significantly higher in the IDH-mutant than in IDH-wildtype gliomas within the solid part of the tumor (p = 0.024 for MRF T1, p = 0.041 for MRF T2). MRF T1 and T2 relaxation times were significantly higher in the IDH-wildtype than in IDH-mutant gliomas within peritumoral edema less than or equal to 1cm adjacent to the tumor (p = 0.038 for MRF T1 mean, p = 0.010 for MRF T2 mean). In the solid part of the tumor, there was a high correlation between MRF and conventionally measured T1 and T2 values (r = 0.913, p < 0.001 for T1, r = 0.775, p < 0.001 for T2), as well as between MRF and ADC values (r = 0.813, p < 0.001 for T2, r = 0.697, p < 0.001 for T1). The correlation was weak between the MRF and rCBV values (r = −0.374, p = 0.005 for T2, r = −0.181, p = 0.181 for T1). (4) Conclusions: MRF enables fast, single-sequence based, multi-parametric, quantitative tissue characterization of diffuse gliomas and may have the potential to differentiate IDH-mutant from IDH-wildtype gliomas.
APA, Harvard, Vancouver, ISO, and other styles
14

Cohen, Ouri, and Matthew S. Rosen. "Algorithm comparison for schedule optimization in MR fingerprinting." Magnetic Resonance Imaging 41 (September 2017): 15–21. http://dx.doi.org/10.1016/j.mri.2017.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chen, Yong, Ananya Panda, Shivani Pahwa, Jesse I. Hamilton, Sara Dastmalchian, Debra F. McGivney, Dan Ma, et al. "Three-dimensional MR Fingerprinting for Quantitative Breast Imaging." Radiology 290, no. 1 (January 2019): 33–40. http://dx.doi.org/10.1148/radiol.2018180836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Assländer, Jakob, Steffen J. Glaser, and Jürgen Hennig. "Pseudo Steady-State Free Precession for MR-Fingerprinting." Magnetic Resonance in Medicine 77, no. 3 (April 15, 2016): 1151–61. http://dx.doi.org/10.1002/mrm.26202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang, Qiang, Pan Su, Zhensen Chen, Ying Liao, Shuo Chen, Rui Guo, Haikun Qi, et al. "Deep learning–based MR fingerprinting ASL ReconStruction (DeepMARS)." Magnetic Resonance in Medicine 84, no. 2 (February 4, 2020): 1024–34. http://dx.doi.org/10.1002/mrm.28166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

MacAskill, Christina J., Michael Markley, Susan Farr, Ashlee Parsons, Jacob R. Perino, Kimberly McBennett, Katherine Kutney, et al. "Rapid B1-Insensitive MR Fingerprinting for Quantitative Kidney Imaging." Radiology 300, no. 2 (August 2021): 380–87. http://dx.doi.org/10.1148/radiol.2021202302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ropella-Panagis, Kathleen M., Nicole Seiberlich, and Vikas Gulani. "Magnetic Resonance Fingerprinting: Implications and Opportunities for PET/MR." IEEE Transactions on Radiation and Plasma Medical Sciences 3, no. 4 (July 2019): 388–99. http://dx.doi.org/10.1109/trpms.2019.2897425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sommer, K., T. Amthor, M. Doneva, P. Koken, J. Meineke, and P. Börnert. "Towards predicting the encoding capability of MR fingerprinting sequences." Magnetic Resonance Imaging 41 (September 2017): 7–14. http://dx.doi.org/10.1016/j.mri.2017.06.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Su, Pan, Deng Mao, Peiying Liu, Yang Li, Marco C. Pinho, Babu G. Welch, and Hanzhang Lu. "Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL." Magnetic Resonance in Medicine 78, no. 5 (December 26, 2016): 1812–23. http://dx.doi.org/10.1002/mrm.26587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Fang, Zhenghan, Yong Chen, Sheng‐Che Hung, Xiaoxia Zhang, Weili Lin, and Dinggang Shen. "Submillimeter MR fingerprinting using deep learning–based tissue quantification." Magnetic Resonance in Medicine 84, no. 2 (December 19, 2019): 579–91. http://dx.doi.org/10.1002/mrm.28136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Budaházi, Árpád, Zsanett Fantoly, Brigitta Kakuszi, István Bitter, and Pál Czobor. "The Options and Limitations of the Brain Fingerprinting Lie Detection Method in the Criminal Proceeding." Magyar Rendészet 18, no. 5 (2018): 43–56. http://dx.doi.org/10.32577/mr.2018.5.3.

Full text
Abstract:
The aim of this study is to introduce the new lie detection method of brain fingerprinting already introduced in the United States of America. According to some scholars, the method of a brain-focused instrumental credibility examination of testimonies still unknown in Hungary is highly reliable, establishing their concept on their belief that the human brain does not lie. First of all, we shall examine the possibilities lying in the measure, and second of all, we shall introduce the doubts causing the delay of its admission in Hungary.
APA, Harvard, Vancouver, ISO, and other styles
24

Budaházi, Árpád, Zsanett Fantoly, Brigitta Kakuszi, István Bitter, and Pál Czobor. "The Options and Limitations of the Brain Fingerprinting Lie Detection Method in the Criminal Proceeding." Magyar Rendészet 18, no. 5 (2018): 43–56. http://dx.doi.org/10.32577/mr.2018.5.3.

Full text
Abstract:
The aim of this study is to introduce the new lie detection method of brain fingerprinting already introduced in the United States of America. According to some scholars, the method of a brain-focused instrumental credibility examination of testimonies still unknown in Hungary is highly reliable, establishing their concept on their belief that the human brain does not lie. First of all, we shall examine the possibilities lying in the measure, and second of all, we shall introduce the doubts causing the delay of its admission in Hungary.
APA, Harvard, Vancouver, ISO, and other styles
25

Laustsen, Christoffer. "Renal MR Fingerprinting: A Novel Solution to a Complex Problem." Radiology 300, no. 2 (August 2021): 388–89. http://dx.doi.org/10.1148/radiol.2021210924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Cruz, Gastao, Haikun Qi, Olivier Jaubert, Thomas Kuestner, Torben Schneider, Rene Michael Botnar, and Claudia Prieto. "Generalized low‐rank nonrigid motion‐corrected reconstruction for MR fingerprinting." Magnetic Resonance in Medicine 87, no. 2 (October 2, 2021): 746–63. http://dx.doi.org/10.1002/mrm.29027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Buonincontri, Guido, Rolf F. Schulte, Mirco Cosottini, and Michela Tosetti. "Spiral MR fingerprinting at 7 T with simultaneous B1 estimation." Magnetic Resonance Imaging 41 (September 2017): 1–6. http://dx.doi.org/10.1016/j.mri.2017.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wright, Katherine L., Yun Jiang, Dan Ma, Douglas C. Noll, Mark A. Griswold, Vikas Gulani, and Luis Hernandez-Garcia. "Estimation of perfusion properties with MR Fingerprinting Arterial Spin Labeling." Magnetic Resonance Imaging 50 (July 2018): 68–77. http://dx.doi.org/10.1016/j.mri.2018.03.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Prayer, Daniela. "MR Fingerprinting: An Advance for Patients with Temporal Lobe Epilepsy." Radiology 288, no. 3 (September 2018): 813–14. http://dx.doi.org/10.1148/radiol.2018180865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jiang, Yun, Dan Ma, Renate Jerecic, Jeffrey Duerk, Nicole Seiberlich, Vikas Gulani, and Mark A. Griswold. "MR fingerprinting using the quick echo splitting NMR imaging technique." Magnetic Resonance in Medicine 77, no. 3 (February 28, 2016): 979–88. http://dx.doi.org/10.1002/mrm.26173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mehta, Bhairav Bipin, Dan Ma, Eric Yann Pierre, Yun Jiang, Simone Coppo, and Mark Alan Griswold. "Image reconstruction algorithm for motion insensitive MR Fingerprinting (MRF): MORF." Magnetic Resonance in Medicine 80, no. 6 (May 6, 2018): 2485–500. http://dx.doi.org/10.1002/mrm.27227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Keil, Vera C. "Neue Methoden in der Neuroradiologie: MR-Fingerprinting und synthetische Bildgebung." Radiologie up2date 23, no. 02 (June 2023): 101–16. http://dx.doi.org/10.1055/a-2010-0600.

Full text
Abstract:
ZusammenfassungWas bedeutet „synthetische Bildgebung“? Ist es eine bestimmte Form der Akquisition oder kann man auch durch Postprocessing von Standard-MRT-Aufnahmen synthetische Bilder erzeugen? Welche Rolle spielt künstliche Intelligenz hierbei? Antworten auf die Fragen, welche synthetischen Verfahren es gibt und wofür diese bereits bei neuroradiologischen Fragestellungen genutzt werden, liefert dieser Übersichtsartikel.
APA, Harvard, Vancouver, ISO, and other styles
33

Keil, Vera Catharina. "Neue Methoden in der Neuroradiologie: MR-Fingerprinting und synthetische Bildgebung." Neurologie up2date 06, no. 04 (December 2023): 325–41. http://dx.doi.org/10.1055/a-2181-0117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vaccaro, M., and A. Napolitano. "SC07.02 SINGLE-SITE REPRODUCIBILITY IN PULSEQ-DESIGNED MR FINGERPRINTING SEQUENCES." Physica Medica 125 (September 2024): 103457. http://dx.doi.org/10.1016/j.ejmp.2024.103457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Marriott, Anna, Chris Bowen, James Rioux, and Kimberly Brewer. "Simultaneous quantification of SPIO and gadolinium contrast agents using MR fingerprinting." Magnetic Resonance Imaging 79 (June 2021): 121–29. http://dx.doi.org/10.1016/j.mri.2021.03.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Badve, Chaitra, Sara Dastmalchian, Ozden Kilinc, Debra McGivney, Dan Ma, Mark Griswold, Jeffrey Sunshine, Vikas Gulani, Jill Barnholtz-Sloan, and Andrew Sloan. "NIMG-90. TEXTURE ANALYSIS OF MR FINGERPRINTING IN ADULT BRAIN TUMORS." Neuro-Oncology 19, suppl_6 (November 2017): vi162. http://dx.doi.org/10.1093/neuonc/nox168.659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Chen, Yong, Zhenghan Fang, Sheng-Che Hung, Wei-Tang Chang, Dinggang Shen, and Weili Lin. "High-resolution 3D MR Fingerprinting using parallel imaging and deep learning." NeuroImage 206 (February 2020): 116329. http://dx.doi.org/10.1016/j.neuroimage.2019.116329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Körzdörfer, Gregor, Rainer Kirsch, Kecheng Liu, Josef Pfeuffer, Bernhard Hensel, Yun Jiang, Dan Ma, et al. "Reproducibility and Repeatability of MR Fingerprinting Relaxometry in the Human Brain." Radiology 292, no. 2 (August 2019): 429–37. http://dx.doi.org/10.1148/radiol.2019182360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cao, Xiaozhi, Congyu Liao, Zhixing Wang, Ying Chen, Huihui Ye, Hongjian He, and Jianhui Zhong. "Robust sliding-window reconstruction for Accelerating the acquisition of MR fingerprinting." Magnetic Resonance in Medicine 78, no. 4 (November 7, 2016): 1579–88. http://dx.doi.org/10.1002/mrm.26521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Assländer, Jakob, Martijn A. Cloos, Florian Knoll, Daniel K. Sodickson, Jürgen Hennig, and Riccardo Lattanzi. "Low rank alternating direction method of multipliers reconstruction for MR fingerprinting." Magnetic Resonance in Medicine 79, no. 1 (March 5, 2017): 83–96. http://dx.doi.org/10.1002/mrm.26639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yang, Mingrui, Dan Ma, Yun Jiang, Jesse Hamilton, Nicole Seiberlich, Mark A. Griswold, and Debra McGivney. "Low rank approximation methods for MR fingerprinting with large scale dictionaries." Magnetic Resonance in Medicine 79, no. 4 (August 13, 2017): 2392–400. http://dx.doi.org/10.1002/mrm.26867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kratzer, Fabian J., Sebastian Flassbeck, Armin M. Nagel, Nicolas G. R. Behl, Benjamin R. Knowles, Peter Bachert, Mark E. Ladd, and Sebastian Schmitter. "Sodium relaxometry using 23 Na MR fingerprinting: A proof of concept." Magnetic Resonance in Medicine 84, no. 5 (June 18, 2020): 2577–91. http://dx.doi.org/10.1002/mrm.28316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mostardeiro, Thomaz R., Ananya Panda, Robert J. Witte, Norbert G. Campeau, Kiaran P. McGee, Yi Sui, and Aiming Lu. "Whole-brain 3D MR fingerprinting brain imaging: clinical validation and feasibility to patients with meningioma." Magnetic Resonance Materials in Physics, Biology and Medicine 34, no. 5 (May 4, 2021): 697–706. http://dx.doi.org/10.1007/s10334-021-00924-1.

Full text
Abstract:
Abstract Purpose MR fingerprinting (MRF) is a MR technique that allows assessment of tissue relaxation times. The purpose of this study is to evaluate the clinical application of this technique in patients with meningioma. Materials and methods A whole-brain 3D isotropic 1mm3 acquisition under a 3.0T field strength was used to obtain MRF T1 and T2-based relaxometry values in 4:38 s. The accuracy of values was quantified by scanning a quantitative MR relaxometry phantom. In vivo evaluation was performed by applying the sequence to 20 subjects with 25 meningiomas. Regions of interest included the meningioma, caudate head, centrum semiovale, contralateral white matter and thalamus. For both phantom and subjects, mean values of both T1 and T2 estimates were obtained. Statistical significance of differences in mean values between the meningioma and other brain structures was tested using a Friedman’s ANOVA test. Results MR fingerprinting phantom data demonstrated a linear relationship between measured and reference relaxometry estimates for both T1 (r2 = 0.99) and T2 (r2 = 0.97). MRF T1 relaxation times were longer in meningioma (mean ± SD 1429 ± 202 ms) compared to thalamus (mean ± SD 1054 ± 58 ms; p = 0.004), centrum semiovale (mean ± SD 825 ± 42 ms; p < 0.001) and contralateral white matter (mean ± SD 799 ± 40 ms; p < 0.001). MRF T2 relaxation times were longer for meningioma (mean ± SD 69 ± 27 ms) as compared to thalamus (mean ± SD 27 ± 3 ms; p < 0.001), caudate head (mean ± SD 39 ± 5 ms; p < 0.001) and contralateral white matter (mean ± SD 35 ± 4 ms; p < 0.001) Conclusions Phantom measurements indicate that the proposed 3D-MRF sequence relaxometry estimations are valid and reproducible. For in vivo, entire brain coverage was obtained in clinically feasible time and allows quantitative assessment of meningioma in clinical practice.
APA, Harvard, Vancouver, ISO, and other styles
44

Wang, Mandi, Jose A. U. Perucho, Peng Cao, Varut Vardhanabhuti, Di Cui, Yiang Wang, Pek-Lan Khong, Edward S. Hui, and Elaine Y. P. Lee. "Repeatability of MR fingerprinting in normal cervix and utility in cervical carcinoma." Quantitative Imaging in Medicine and Surgery 11, no. 9 (September 2021): 3990–4003. http://dx.doi.org/10.21037/qims-20-1382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Campbell-Washburn, Adrienne E., Yun Jiang, Gregor Körzdörfer, Mathias Nittka, and Mark A. Griswold. "Feasibility of MR fingerprinting using a high-performance 0.55 T MRI system." Magnetic Resonance Imaging 81 (September 2021): 88–93. http://dx.doi.org/10.1016/j.mri.2021.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Badve, Chaitra, Ozden Kilinc, Louisa Onyewadume, Sara Dastmalchian, Dan Ma, Samuel Frankel, Gregory O’Connor, et al. "NIMG-15. VOLUMETRIC 3D MR FINGERPRINTING OF ADULT BRAIN TUMORS: INITIAL RESULTS." Neuro-Oncology 19, suppl_6 (November 2017): vi145. http://dx.doi.org/10.1093/neuonc/nox168.593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yu, Alice C., Chaitra Badve, Lee E. Ponsky, Shivani Pahwa, Sara Dastmalchian, Matthew Rogers, Yun Jiang, et al. "Development of a Combined MR Fingerprinting and Diffusion Examination for Prostate Cancer." Radiology 283, no. 3 (June 2017): 729–38. http://dx.doi.org/10.1148/radiol.2017161599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liao, Congyu, Kang Wang, Xiaozhi Cao, Yueping Li, Dengchang Wu, Huihui Ye, Qiuping Ding, Hongjian He, and Jianhui Zhong. "Detection of Lesions in Mesial Temporal Lobe Epilepsy by Using MR Fingerprinting." Radiology 288, no. 3 (September 2018): 804–12. http://dx.doi.org/10.1148/radiol.2018172131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cao, Xiaozhi, Huihui Ye, Congyu Liao, Qing Li, Hongjian He, and Jianhui Zhong. "Fast 3D brain MR fingerprinting based on multi‐axis spiral projection trajectory." Magnetic Resonance in Medicine 82, no. 1 (March 18, 2019): 289–301. http://dx.doi.org/10.1002/mrm.27726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nagtegaal, Martijn, Peter Koken, Thomas Amthor, and Mariya Doneva. "Fast multi‐component analysis using a joint sparsity constraint for MR fingerprinting." Magnetic Resonance in Medicine 83, no. 2 (August 16, 2019): 521–34. http://dx.doi.org/10.1002/mrm.27947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography