Academic literature on the topic 'Moving Acoustic Source'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Moving Acoustic Source.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Moving Acoustic Source"

1

Hou, Jiacheng, and Zhongquan Charlie Zheng. "Simulation of near-ground signals from a flying source on UAV over a building structure." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A36. http://dx.doi.org/10.1121/10.0010577.

Full text
Abstract:
Acoustic signals near the ground generated by a moving source on a fly-by UAV are simulated around a house. The simulation is carried out using a time-domain acoustics solver that can simulate acoustic propagations with the specified moving source, ground properties, and building geometries. The source on a UAV is approximated by a broadband source moving at a constant speed. The long-range three-dimensional computation is developed with a ground as a rigid or porous medium and a residential house with realistic geometries. Time histories and histograms of the near-ground sensors at different locations around the house are analyzed with their different behaviors due to Doppler shift, ground effect, and acoustic interference from the house structures. Comparisons will be made with literature results and available measured data.
APA, Harvard, Vancouver, ISO, and other styles
2

Cevher, V., and J. H. McClellan. "Acoustic node calibration using a moving source." IEEE Transactions on Aerospace and Electronic Systems 42, no. 2 (April 2006): 585–600. http://dx.doi.org/10.1109/taes.2006.1642574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yin, Junhui, Chao Xiong, and Wenjie Wang. "Acoustic Localization for a Moving Source Based on Cross Array Azimuth." Applied Sciences 8, no. 8 (August 1, 2018): 1281. http://dx.doi.org/10.3390/app8081281.

Full text
Abstract:
Acoustic localization for a moving source plays a key role in engineering applications, such as wildlife conservation and health protection. Acoustic detection methods provide an alternative to traditional radar and infrared detection methods. Here, an acoustic locating method of array signal processing based on intersecting azimuth lines of two arrays is introduced. The locating algorithm and the precision simulation of a single array shows that such a single array has good azimuth precision and bad range estimation. Once another array of the same type is added, the moving acoustic source can be located precisely by intersecting azimuth lines. A low-speed vehicle is used as the simulated moving source for the locating experiments. The length selection of short correlation and moving path compensation are studied in the experiments. All results show that the proposed novel method locates the moving sound source with high precision (<5%), while requiring fewer instruments than current methods.
APA, Harvard, Vancouver, ISO, and other styles
4

Gaudette, Jason E., and James A. Simmons. "Linear time-invariant (LTI) modeling for aerial and underwater acoustics." Journal of the Acoustical Society of America 153, no. 3_supplement (March 1, 2023): A95. http://dx.doi.org/10.1121/10.0018285.

Full text
Abstract:
Most newcomers to acoustic signal processing understand that linear time-invariant (LTI) filters can remove out-of-band noise from time series signals. What many acoustics researchers may not realize is that LTI models can be applied much more broadly, including to non-linear and time-variant systems. This presentation covers an overview of the autoregressive (AR), moving-average (MA), and autoregressive moving-average (ARMA) family of LTI models and their many useful applications in acoustics. Examples include analytic time-frequency processing of multi-component echolocation signals, fractional-delay filtering for acoustic time series simulations, broadband acoustic array beamforming, adaptive filtering for noise cancelation, and system identification for acoustic equalizers (i.e., flattening the frequency response of a source-receiver pair). This talk serves as a brief tutorial and inspiration for researchers who want to expand their use of signal processing, especially those in the fields of animal bioacoustics, aerial acoustics, and underwater acoustics.
APA, Harvard, Vancouver, ISO, and other styles
5

Sam Hun, Hanisah, Siti Norulakmal Che Abu Bakar, and Anis Nazihah Mat Daud. "Acoustic Doppler effect experiment: integration of frequency sound generator, tracker and visual analyser." Physics Education 58, no. 2 (January 26, 2023): 025015. http://dx.doi.org/10.1088/1361-6552/acb129.

Full text
Abstract:
Abstract This study was conducted to design an acoustic Doppler effect experimental setup by integrating the frequency sound generator application, tracker and visual analyser. The experimental setup was evaluated by determining the frequency of the sound source in four cases; (a) a stationary observer and a moving sound source, (b) a stationary sound source and a moving observer, (c) a sound source and an observer are moving in the same direction and (d) a sound source and an observer are moving in the opposite direction. The findings showed that the percentage errors for the calculated values of the sound source frequency were less than 0.40% compared to the reference values for all four cases. Hence, the proposed acoustic Doppler effect experimental setup can be used to improve the acoustic Doppler effect concept among students.
APA, Harvard, Vancouver, ISO, and other styles
6

Whitaker, Steven, Andrew Barnard, George D. Anderson, and Timothy C. Havens. "Through-Ice Acoustic Source Tracking Using Vision Transformers with Ordinal Classification." Sensors 22, no. 13 (June 22, 2022): 4703. http://dx.doi.org/10.3390/s22134703.

Full text
Abstract:
Ice environments pose challenges for conventional underwater acoustic localization techniques due to their multipath and non-linear nature. In this paper, we compare different deep learning networks, such as Transformers, Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Vision Transformers (ViTs), for passive localization and tracking of single moving, on-ice acoustic sources using two underwater acoustic vector sensors. We incorporate ordinal classification as a localization approach and compare the results with other standard methods. We conduct experiments passively recording the acoustic signature of an anthropogenic source on the ice and analyze these data. The results demonstrate that Vision Transformers are a strong contender for tracking moving acoustic sources on ice. Additionally, we show that classification as a localization technique can outperform regression for networks more suited for classification, such as the CNN and ViTs.
APA, Harvard, Vancouver, ISO, and other styles
7

Lloyd, S. F., C. Jeong, H. N. Gharti, J. Vignola, and J. Tromp. "Spectral-Element Simulations of Acoustic Waves Induced by a Moving Underwater Source." Journal of Theoretical and Computational Acoustics 27, no. 03 (September 2019): 1850040. http://dx.doi.org/10.1142/s2591728518500408.

Full text
Abstract:
In this study, we model acoustic waves induced by moving acoustic sources in three-dimensional (3D) underwater settings based on a spectral-element method (SEM). Numerical experiments are conducted using the SEM software package SPECFEM3D_Cartesian, which facilitates fluid–solid coupling and absorbing boundary conditions. Examples presented in this paper include an unbounded fluid truncated by using absorbing boundaries, and a shallow-water waveguide modeled as a fluid–solid coupled system based on domain decomposition. In the numerical experiments, the SEM-computed pressures match their analytical counterparts. SEM solutions of pressures at points behind and ahead of modeled moving acoustic sources show a frequency shift, i.e., a Doppler effect, which matches the analytical solution. This paper contributes to the field of passive sonar-based detection of moving acoustic sources, and addresses the challenge of computing wave responses generated by side-scan sonar by using moving sources of continuous signals.
APA, Harvard, Vancouver, ISO, and other styles
8

Ghorbaniasl, Ghader, Zhongjie Huang, Leonidas Siozos-Rousoulis, and Chris Lacor. "Analytical acoustic pressure gradient prediction for moving medium problems." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, no. 2184 (December 2015): 20150342. http://dx.doi.org/10.1098/rspa.2015.0342.

Full text
Abstract:
In this paper, an acoustic pressure gradient formula capable of accounting for constant uniform flow effects is suggested. Acoustic pressure gradient calculation is key for acoustic scattering problems, because it may be used to evaluate the hardwall boundary condition. Realistic cases of rotating machines may be evaluated in a moving frame of reference and as such, an acoustic pressure gradient formula capable of accounting for constant uniform flow effects finds significant application. A frequency domain formulation was thus derived for periodic noise source motion located in a moving medium. The suggested formula is mathematically compact and easy to implement. It may offer us significant advantages when tonal noise emissions are dominant, thus finding application potential in acoustic scattering problems in rotating machines in a constant uniform flow. Moreover, the formula contains no Doppler factor, thus facilitating noise prediction for sources in supersonic motion.
APA, Harvard, Vancouver, ISO, and other styles
9

Valdivia, Nicolas P. "Near-field acoustic holography for underwater moving surfaces." Journal of the Acoustical Society of America 153, no. 3_supplement (March 1, 2023): A299. http://dx.doi.org/10.1121/10.0018923.

Full text
Abstract:
Near-field acoustic holography has been the standard technique to accurately image static structure vibration from nearby acoustic pressure measurements. The classical application bases the method on the stable solution of an integral surface representation of the acoustic pressure. In this work, we will be concerned with the extension of NAH to image a vibrating structure moving underwater. In an underwater medium, even at slow speeds, the action between the flow and structure produces many radiation sources that could severely limit the accuracy of the integral surface representation used for static NAH. Using the Lighthill acoustic analogy, we use an integral surface representation for the structure’s radiated sound and a quadrupole source that models the corresponding flow-induced sound. Finally, we will justify the validity of the proposed method for COMSOL numerically generated pressure data that results from the internal excitation of a cylindrical structure moving over an underwater medium. This work has been supported by the Office of Naval Research.
APA, Harvard, Vancouver, ISO, and other styles
10

ARIAS, E., C. H. G. BÉSSA, and N. F. SVAITER. "AN ANALOG FLUID MODEL FOR SOME TACHYONIC EFFECTS IN FIELD THEORY." Modern Physics Letters A 26, no. 31 (October 10, 2011): 2335–44. http://dx.doi.org/10.1142/s0217732311036784.

Full text
Abstract:
We consider the sound radiation from an acoustic point-like source moving along a supersonic ("space-like") trajectory in a fluid at rest. We call it an acoustic "tachyonic" source. We describe the radiation emitted by this supersonic source. After quantizing the acoustic perturbations, we present the distribution of phonons generated by this classical tachyonic source and the classical wave interference pattern.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Moving Acoustic Source"

1

Deffenbaugh, Max. "Optimal ocean acoustic tomography and navigation with moving sources." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38851.

Full text
Abstract:
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.
Includes bibliographical references (leaves 148-153).
by Max Deffenbaugh.
Sc.D.
APA, Harvard, Vancouver, ISO, and other styles
2

Strobio, Chen Lin [Verfasser], Wolfgang [Akademischer Betreuer] [Gutachter] Polifke, and Maria [Gutachter] Heckl. "Scattering and Generation of Acoustic and Entropy Waves across Moving and Fixed Heat Sources / Lin Strobio Chen ; Gutachter: Wolfgang Polifke, Maria Heckl ; Betreuer: Wolfgang Polifke." München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1142376257/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pignier, Nicolas. "Predicting the sound field from aeroacoustic sources on moving vehicles : Towards an improved urban environment." Doctoral thesis, KTH, Farkost och flyg, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205791.

Full text
Abstract:
In a society where environmental noise is becoming a major health and economical concern, sound emissions are an increasingly critical design factor for vehicle manufacturers. With about a quarter of the European population living close to roads with heavy traffic, traffic noise in urban landscapes has to be addressed first. The current introduction of electric vehicles on the market and the need for sound systems to alert their presence is causing a shift in mentalities requiring engineering methods that will have to treat noise management problems from a broader perspective. That in which noise emissions need not only be considered as a by-product of the design but as an integrated part of it. Developing more sustainable ground transportation will require a better understanding of the sound field emitted in various realistic operating conditions, beyond the current requirements set by the standard pass-by test, which is performed in a free-field. A key aspect to improve this understanding is the development of efficient numerical tools to predict the generation and propagation of sound from moving vehicles. In the present thesis, a methodology is proposed aimed at evaluating the pass-by sound field generated by vehicle acoustic sources in a simplified urban environment, with a focus on flow sound sources. Although it can be argued that the aerodynamic noise is still a minor component of the total emitted noise in urban driving conditions, this share will certainly increase in the near future with the introduction of quiet electric engines and more noise-efficient tyres on the market. This work presents a complete modelling of the problem from sound generation to sound propagation and pass-by analysis in three steps. Firstly, computation of the flow around the geometry of interest; secondly, extraction of the sound sources generated by the flow, and thirdly, propagation of the sound generated by the moving sources to observers including reflections and scattering by nearby surfaces. In the first step, the flow is solved using compressible detached-eddy simulations. The identification of the sound sources in the second step is performed using direct numerical beamforming with linear programming deconvolution, with the phased array pressure data being extracted from the flow simulations. The outcome of this step is a set of uncorrelated monopole sources. Step three uses this set as input to a propagation method based on a point-to-point moving source Green's function and a modified Kirchhoff integral under the Kirchhoff approximation to compute reflections on built surfaces. The methodology is demonstrated on the example of the aeroacoustic noise generated by a NACA air inlet moving in a simplified urban setting. Using this methodology gives insights on the sound generating mechanisms, on the source characteristics and on the sound field generated by the sources when moving in a simplified urban environment.
I ett samhälle där buller håller på att bli ett stort hälsoproblem och en ekonomisk belastning, är ljudutsläpp en allt viktigare aspekt för fordonstillverkare. Då ungefär en fjärdedel av den europeiska befolkningen bor nära vägar med tung trafik, är åtgärder för minskat trafikbuller i stadsmiljö en hög prioritet. Introduktionen av elfordon på marknaden och behovet av ljudsystem för att varna omgivningen kräver också ett nytt synsätt och tekniska angreppssätt som behandlar bullerproblemen ur ett bredare perspektiv. Buller bör inte längre betraktas som en biprodukt av konstruktionen, utan som en integrerad del av den. Att utveckla mer hållbara marktransporter kommer att kräva en bättre förståelse av det utstrålade ljudfältet vid olika realistiska driftsförhållanden, utöver de nuvarande standardiserade kraven för förbifartstest som utförs i ett fritt fält. En viktig aspekt för att förbättra denna förståelse är utvecklingen av effektiva numeriska verktyg för att beräkna ljudalstring och ljudutbredning från fordon i rörelse. I denna avhandling föreslås en metodik som syftar till att utvärdera förbifartsljud som alstras av fordons akustiska källor i en förenklad stadsmiljö, här med fokus på strömningsgenererat ljud. Även om det aerodynamiska bullret är fortfarande en liten del av de totala bullret från vägfordon i urbana miljöer, kommer denna andel säkerligen att öka inom en snar framtid med införandet av tysta elektriska motorer och de bullerreducerande däck som introduceras på marknaden. I detta arbete presenteras en komplett modellering av problemet från ljudalstring till ljudutbredning och förbifartsanalys i tre steg. Utgångspunkten är beräkningar av strömningen kring geometrin av intresse; det andra steget är identifiering av ljudkällorna som genereras av strömningen, och det tredje steget rör ljudutbredning från rörliga källor till observatörer, inklusive effekten av reflektioner och spridning från närliggande ytor. I det första steget löses flödet genom detached-eddy simulation (DES) för kompressibel strömning. Identifiering av ljudkällor i det andra steget görs med direkt numerisk lobformning med avfaltning med hjälp av linjärprogrammering, där källdata extraheras från flödessimuleringarna. Resultatet av detta steg är en uppsättning av okorrelerade akustiska monopolkällor. Steg tre utnyttjar dessa källor som indata till en ljudutbredningsmodel baserad på beräkningar punkt-till-punkt med Greensfunktioner för rörliga källor, och med en modifierad Kirchhoff-integral under Kirchhoffapproximationen för att beräkna reflektioner mot byggda ytor. Metodiken demonstreras med exemplet med det aeroakustiska ljud som genereras av ett NACA-luftintag som rör sig i en förenklad urban miljö. Med hjälp av denna metod kan man få insikter om ljudalstringsmekanismer, om källegenskaper och om ljudfältet som genereras av källor när de rör sig i en förenklad stadsmiljö.

QC 20170425

APA, Harvard, Vancouver, ISO, and other styles
4

Oudompheng, Benoit. "Localisation et contribution de sources acoustiques de navire au passage par traitement d’antenne réduite." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT071/document.

Full text
Abstract:
Le bruit rayonné par le trafic maritime étant la principale source de nuisance acoustique sous-marine dans les zones littorales, la Directive-Cadre Stratégie pour le Milieu Marin de la Commission Européenne promeut le développement de méthodes de surveillance et de réduction de l'impact du bruit du trafic maritime. Le besoin de disposer d'un système industriel d'imagerie du bruit rayonné par les navires de surface a motivé la présente étude, il permettra aux industriels du naval d'identifier quels éléments d'un navire rayonnent le plus de bruit.Dans ce contexte, ce travail de recherche porte sur la mise en place de méthodes d'imagerie acoustique sous-marine passive d'un navire de surface au passage au-dessus d'une antenne linéaire et fixe au nombre réduit d'hydrophones. Deux aspects de l'imagerie acoustique sont abordés : la localisation de sources acoustiques et l'identification de la contribution relative de chacune de ces sources dans la signature acoustique du navire.Tout d'abord, une étude bibliographique sur le rayonnement acoustique d'un navire de surface au passage est menée afin d'identifier les principales sources acoustiques et de pouvoir ensuite simuler des sources représentatives d'un navire. La propagation acoustique est simulée par la théorie des rayons et intègre le mouvement des sources. Ce simulateur de rayonnement acoustique de navire au passage est construit afin de valider les algorithmes d'imagerie acoustique proposés et de dimensionner une configuration expérimentale. Une étude sur l'influence du mouvement des sources sur les algorithmes d'imagerie acoustique a conduit à l'utilisation d'un algorithme de formation de voies pour sources mobiles pour la localisation des sources et une méthode de déconvolution pour accéder à l'identification de la contribution des sources. Les performances de ces deux méthodes sont évaluées en présence de bruit de mesure et d'incertitudes sur le modèle de propagation afin d'en connaître les limites. Une première amélioration de la méthode de formation de voies consiste en un traitement d'antenne à ouverture synthétique qui exploite le mouvement relatif entre le navire et l'antenne pour notamment améliorer la résolution en basses fréquences. Un traitement de correction acoustique de la trajectoire permet de corriger la trajectographie du navire au passage qui est souvent incertaine. Enfin, la dernière partie de cette thèse concerne une campagne de mesures de bruit de passage d'une maquette de navire de surface tractée en lac, ces mesures ont permis de valider les méthodes d'imagerie acoustique proposées ainsi que les améliorations proposées, dans un environnement réel maîtrisé
Since the surface ship radiated noise is the main contribution to the underwater acoustic noise in coastal waters, The Marine Framework Strategy Directive of the European Commission recommends the development of the monitoring and the reduction of the impact of the traffic noise. The need for developing an industrial system for the noise mapping of the surface ship have motivated this study, it will allow the naval industries to identify which part of the ship radiates the stronger noise level.In this context, this research work deals with the development of passive noise mapping methods of a surface ship passing-by above a static linear array with a reduced number of hydrophones. Two aspects of the noise mapping are considered: the localization of acoustic sources and the identification of the relative contribution of each source to the ship acoustic signature.First, a bibliographical study concerning the acoustic radiation of a passing-by surface ship is conducted in order to list the main acoustic sources and then to simulate representative ship sources. The acoustic propagation is simulated according to the ray theory and takes the source motion into account. The simulator of the acoustic radiation of a passing-by ship is built in order to validate the proposed noise mapping methods and to design an experimental set-up. A study about the influence of the source motion on the noise mapping methods led to the use of the beamforming method for moving sources for the source localization and a deconvolution method for the identification of the source contribution. The performances of both methods are assessed considering measurement noise and uncertainties about the propagation model in order to know their limitations. A first improvement of the beamforming method consists of a passive synthetic aperture array algorithm which benefits from the relative motion between the ship and the antenna in order to improve the spatial resolution at low frequencies. Then, an algorithm is proposed to acoustically correct the trajectography mismatches of a passing-by surface ship. Finally, the last part of this thesis concerns a pass-by experiment of a towed-ship model in a lake. These measurements allowed us to validate the proposed noise mapping methods and their proposed improvements, in a real and controlled environment
APA, Harvard, Vancouver, ISO, and other styles
5

Bottero, Alexis. "Simulation numérique en forme d'onde complète d'ondes T et de sources acoustiques en mouvement." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0325/document.

Full text
Abstract:
Cette thèse mêle observations, simulations et développement d'outils numériques haute performance dans le domaine de l’acoustique sous-marine, et notamment pour l’étude des ondes T. Après une revue de la littérature sur les ondes T, nous avons analysé des données réelles enregistrées en Italie. Afin de modéliser le phénomène nous avons développé un solveur éléments spectraux axisymétriques dans le domaine temporel, que nous présentons et validons. Nous présentons également une étude paramétrique de l'influence de la pente du plancher océanique dans un scénario typique de génération/conversion d'une onde T. L'énergie et la durée de ces ondes s’avère être particulièrement sensible à l'environnement. En particulier nous avons vu que les pentes et les caractéristiques du fond marin jouaient un rôle capital. Nos études confirment qu’aux distances régionales le profil de vitesse dans l'océan s'avère n'être qu'un paramètre de deuxième ordre. Pour en évaluer l’impact nous avons développé une procédure pour le calcul de cartes de perte de transmission et de dispersion à partir de simulations numériques en forme d'onde complète dans le domaine temporel. Dans un second temps nous montrons qu'un bateau commercial de taille moyenne peut créer par diffraction des ondes T d'une d'amplitude conséquente et de faible dispersion. Ce mode de génération d'onde T, encore non documenté, doit être particulièrement fréquent dans les zones où le trafic maritime est important et pourrait expliquer certaines ondes T abyssales encore incomprises. Pour finir, nous présentons des outils numériques pour calculer le champ acoustique créé par une source en mouvement
This thesis combines observations, simulations and development of high performance numerical tools in the field of underwater acoustics, and in particular for the study of T-waves. After a literature review on T-waves, we analysed real data recorded in Italy. In order to model the phenomenon we have developed an axisymmetric spectral element solver in the time domain, which we present and validate. We also present a parametric study of the influence of seafloor slope in a typical scenario of generation / conversion of a T-wave. The energy and duration of these waves is particularly sensitive to the environment. In particular, we have seen that the slopes and characteristics of the seabed are of crucial importance. Our studies confirm that at regional distances the ocean speed profile is only a second order parameter. To evaluate its impact we have developed a procedure for the calculation of transmission and dispersion loss maps from full waveform numerical simulations in the time domain. In a second step we show that a medium-sized commercial boat can create T-waves of a significant amplitude and of low dispersion by diffraction. This T-wave generation mode, still undocumented, must be particularly frequent in areas where maritime traffic is dense and could explain some abyssal T-waves still misunderstood. Finally, we present numerical tools for calculating the acoustic field created by a moving source
APA, Harvard, Vancouver, ISO, and other styles
6

Pelluri, Sai Gunaranjan. "Joint Spectro-Temporal Analysis of Moving Acoustic Sources." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4279.

Full text
Abstract:
Signals generated by fast moving acoustic sources are both challenging for analysis as well as rich in information. The motion is conceptually relative between the source and receiver i.e., either one of them is moving or both are moving. Thus, the receiver would gather information about the relative motion as well as the nature of source itself. For example, direction, velocity, acceleration, number of different sources, friend/foe, etc. are all information that can be gathered. All these parameters are inherently embedded in the received signal. Given the rich information content inherent in the signal, we address the task of extracting maximum information from minimum receivers, even a single micro- phone recording. By using more sensors with specific configurations, we can improve characterization of the moving acoustic source even better. When we have a moving source generating a signal, naturally the Doppler effect comes into picture; the received signal becomes non-stationary with respect to its spectral content, even if the generated signal is stationary. This non-stationarity in the signal provides information about motion of the source. Oechslin et al. [24], through a series of experiments, demonstrated the role of Doppler effect as a fundamental principle for identification of direction of moving sound source. The authors illustrated the sufficiency of the Doppler effect to distinguish between an approaching or receding moving sound source. An interesting finding from their experiments is that observers are more sensitive to approaching sound sources than to those receding. This compelling result can be used to hypothesize interactions in biological systems, particularly the ones between predator-prey. Thus, the biological systems, with a minimal number of auditory sensors (2 ears), are able to extract valuable information from the source signal sufficient for their survival. With the above motivation, we explore restricting the number of microphones used to estimate source parameters to a minimum. Since the Doppler effect manifests as time-varying frequency content in the signal, we use this non-stationarity to estimate source parameters. The thesis also addresses the issue of disambiguating the inherent source signal non-stationarity and the non-stationarity introduced due to the motion dynamics of the source. We also show analytically that these two kinds of non- stationarities can be decoupled under certain conditions. We next explore various methods of instantaneous frequency (IF) estimation from the received signal. In particular, we use non-stationary signal processing tools such as the AM-FM model, time-frequency representations (TFRs), time varying- linear prediction (TV-LP) to aid the signal analysis. We explore in detail the effectiveness of chirplettransform and its variants with regard to the IF estimation and also discuss about the time-frequency resolution properties. We propose a new variant of the chirp let transform for multi-component non- stationary signals such as Doppler signals. We conclude the thesis by summarising our research contributions and throwing open various problems for pursuing further research in this field.
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Tzy-Rong, and 林資榕. "Inversion of a moving acoustic source in a semi-infinite plane." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/33145704918825653408.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Moving Acoustic Source"

1

Deffenbaugh, Max. Optimal ocean acoustic tomography and navigation with moving sources. Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Moving Acoustic Source"

1

Leroy-Hebert, S., and A. Plaisant. "The Multipath Coherence Function for Correlated Random Channels and a Moving Source." In Underwater Acoustic Data Processing, 93–97. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ouedraogo, Wendyam Serge Boris, Bertrand Rivet, and Christian Jutten. "On the Suppression of Noise from a Fast Moving Acoustic Source Using Multimodality." In Latent Variable Analysis and Signal Separation, 454–61. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22482-4_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Koh, H. I., and W. H. You. "Rail Vehicle Noise Source Identification Using Moving Frame Acoustical Holography." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 555–62. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-53927-8_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berthelot, Yves H., and Ilene J. Busch-Vishniac. "Optical Generation of Sound: Experiments with a Moving Thermoacoustic Source. The Problem of Oblique Incidence of the Laser Beam." In Progress in Underwater Acoustics, 603–10. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1871-2_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mo, P., X. Wang, and W. Jiang. "A Frequency Compensation Method to Smooth Frequency Fluctuation for Locating Moving Acoustic Sources." In Fluid-Structure-Sound Interactions and Control, 365–70. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7542-1_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Antes, H., and M. Jäger. "On Stability and Efficiency of 3D Acoustic BE Procedures for Moving Noise Sources." In Computational Mechanics ’95, 3056–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79654-8_504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Acoustics of Moving Sources moving source." In Formulas of Acoustics, 993–1000. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-76833-3_274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Moving Thermoradiation Sources Of Sound." In Radiation Acoustics. CRC Press, 2004. http://dx.doi.org/10.1201/9780203402702.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"- Moving sound sources and receivers." In Acoustics in Moving Inhomogeneous Media, 178–203. CRC Press, 2015. http://dx.doi.org/10.1201/b18922-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Moving Acoustic Source"

1

Pelluri, Sai Gunaranian, and T. V. Sreenivas. "Disambiguation of Source and Trajectory Non-Stationarities of a Moving Acoustic Source." In 2018 Twenty Fourth National Conference on Communications (NCC). IEEE, 2018. http://dx.doi.org/10.1109/ncc.2018.8599942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xiros, Nikolaos I. "A Nonlinear Signal Analysis Scheme for Localization of a Moving Acoustic Source." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10763.

Full text
Abstract:
The synthesis of coupled systems including linear propagation media and nonlinear lumped subsystems is investigated. The resulting coupled system is expected to exhibit improved dynamic behavior. Such improvements are sought after by designing exclusively the lumped nonlinear subsystem and not by modifying the propagation medium. The lumped subsystem can be static or dynamic as well as passive or active. The design method is based on the Volterra-Wiener theory of nonlinear systems combined with the Linear Fractional Transformation employed for the analysis of uncertain linear systems. Although the techniques are applicable to a variety of practical engineering and physical systems, this work addresses acoustic source localization. Indeed, a moving acoustic source can be considered to nonlinearly modify the characteristics of a carrier acoustic wave. Such an acoustic carrier might be a monochromatic or polychromatic tone as well as other broadband signals such as band-limited white or colored noise. The sound source position signal is propagated through a nonlinear operator and then, under noise-free environment assumptions, determines the sound pressure level at the receiver location. In this paper, the proposed method is applied to the simplified case of a one-dimensional acoustic cavity defined by totally reflective barriers. Furthermore, the lossless wave equation is assumed to govern the sound pressure level in the homogeneous domain of interest. However, even in this simple scenario, only the additional assumptions of negligible source velocity and acceleration allow the derivation of an expression for the sound pressure level containing exclusively source displacement. In this context, simulation data series or analytical solutions, approximate or exact, are post-processed in order to determine the Volterra kernels, which effectively are a convenient extension of the impulse response concept in the nonlinear case, of the operator connecting source displacement to sound pressure level at the receiver. The outcome is Linear Time Invariant models depicting the dominant sound propagation dynamics. Then the synthesis stage is based on the properties of interconnected nonlinear systems that are described in the Volterra-Wiener framework. By using such properties, the signal processing algorithm for the estimation of the acoustic source position based on the received sound pressure level is finally developed.
APA, Harvard, Vancouver, ISO, and other styles
3

Simon, Gyula. "Acoustic Moving Source Localization using Sparse Time Difference of Arrival Measurements." In 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo). IEEE, 2022. http://dx.doi.org/10.1109/cinti-macro57952.2022.10029405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pelluri, Sai Gunaranjan, and T. V. Sreenivas. "Parameter estimation of a moving acoustic source: Linear chirplet transform vs WVD." In 2017 Twenty-third National Conference on Communications (NCC). IEEE, 2017. http://dx.doi.org/10.1109/ncc.2017.8077119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Yu, Shuqing Ma, Yanqun Wu, and Zhou Meng. "Passive range localization of the acoustic moving source using the demon spectrum." In 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2017. http://dx.doi.org/10.1109/icspcc.2017.8242424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fe, Joao, Sergio D. Correia, Slavisa Tomic, and Marko Beko. "Kalman Filtering for Tracking a Moving Acoustic Source based on Energy Measurements." In 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). IEEE, 2021. http://dx.doi.org/10.1109/iceccme52200.2021.9590919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kusyi, O. V., P. Stevrin, N. N. Voitovich, and O. F. Zamorska. "Reconstruction of irregular waveguide geometry using a moving source." In Proceedings of 9th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. IEEE, 2004. http://dx.doi.org/10.1109/diped.2004.242803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guo, Xiaole, Kunde Yang, Qiulong Yang, Shaohao Zhu, Ran Cao, and Yuanliang Ma. "Tracking-positioning of sound speed profiles and moving acoustic source in shallow water." In 2016 Techno-Ocean (Techno-Ocean). IEEE, 2016. http://dx.doi.org/10.1109/techno-ocean.2016.7890680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sheng, Xueli, Chaoping Dong, and Longxiang Guo. "Moving Acoustic Source Transmission Trial in the Marginal Ice Zone of the Arctic." In 2021 OES China Ocean Acoustics (COA). IEEE, 2021. http://dx.doi.org/10.1109/coa50123.2021.9520067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Seongkyu, Kenneth Brentner, and Philip Morris. "Prediction of Acoustic Scattering in the Time Domain Using a Moving Equivalent Source Method." In 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-3177.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Moving Acoustic Source"

1

Reuter, Michael. Characterization and Simulation of an Acoustic Source Moving through an Oceanic Waveguide. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada285688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reuter, M. Spectral Correlation Properties of Time Series Due To An Acoustic Source Moving Through An Oceanic Waveguide. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada306014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kozick, Richard J., and Brian M. Sadler. Tracking Moving Acoustic Sources With a Network of Sensors. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada410115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miller, James H., and Gopu R. Potty. Modeling and Measuring Variability in 3-D Acoustic Normal Mode Propagation in Shallow Water Near Ocean Fronts Using Fixed and Moving Sources and Receivers. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography