Academic literature on the topic 'Moving Acoustic Source'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Moving Acoustic Source.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Moving Acoustic Source"
Hou, Jiacheng, and Zhongquan Charlie Zheng. "Simulation of near-ground signals from a flying source on UAV over a building structure." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A36. http://dx.doi.org/10.1121/10.0010577.
Full textCevher, V., and J. H. McClellan. "Acoustic node calibration using a moving source." IEEE Transactions on Aerospace and Electronic Systems 42, no. 2 (April 2006): 585–600. http://dx.doi.org/10.1109/taes.2006.1642574.
Full textYin, Junhui, Chao Xiong, and Wenjie Wang. "Acoustic Localization for a Moving Source Based on Cross Array Azimuth." Applied Sciences 8, no. 8 (August 1, 2018): 1281. http://dx.doi.org/10.3390/app8081281.
Full textGaudette, Jason E., and James A. Simmons. "Linear time-invariant (LTI) modeling for aerial and underwater acoustics." Journal of the Acoustical Society of America 153, no. 3_supplement (March 1, 2023): A95. http://dx.doi.org/10.1121/10.0018285.
Full textSam Hun, Hanisah, Siti Norulakmal Che Abu Bakar, and Anis Nazihah Mat Daud. "Acoustic Doppler effect experiment: integration of frequency sound generator, tracker and visual analyser." Physics Education 58, no. 2 (January 26, 2023): 025015. http://dx.doi.org/10.1088/1361-6552/acb129.
Full textWhitaker, Steven, Andrew Barnard, George D. Anderson, and Timothy C. Havens. "Through-Ice Acoustic Source Tracking Using Vision Transformers with Ordinal Classification." Sensors 22, no. 13 (June 22, 2022): 4703. http://dx.doi.org/10.3390/s22134703.
Full textLloyd, S. F., C. Jeong, H. N. Gharti, J. Vignola, and J. Tromp. "Spectral-Element Simulations of Acoustic Waves Induced by a Moving Underwater Source." Journal of Theoretical and Computational Acoustics 27, no. 03 (September 2019): 1850040. http://dx.doi.org/10.1142/s2591728518500408.
Full textGhorbaniasl, Ghader, Zhongjie Huang, Leonidas Siozos-Rousoulis, and Chris Lacor. "Analytical acoustic pressure gradient prediction for moving medium problems." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, no. 2184 (December 2015): 20150342. http://dx.doi.org/10.1098/rspa.2015.0342.
Full textValdivia, Nicolas P. "Near-field acoustic holography for underwater moving surfaces." Journal of the Acoustical Society of America 153, no. 3_supplement (March 1, 2023): A299. http://dx.doi.org/10.1121/10.0018923.
Full textARIAS, E., C. H. G. BÉSSA, and N. F. SVAITER. "AN ANALOG FLUID MODEL FOR SOME TACHYONIC EFFECTS IN FIELD THEORY." Modern Physics Letters A 26, no. 31 (October 10, 2011): 2335–44. http://dx.doi.org/10.1142/s0217732311036784.
Full textDissertations / Theses on the topic "Moving Acoustic Source"
Deffenbaugh, Max. "Optimal ocean acoustic tomography and navigation with moving sources." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38851.
Full textIncludes bibliographical references (leaves 148-153).
by Max Deffenbaugh.
Sc.D.
Strobio, Chen Lin [Verfasser], Wolfgang [Akademischer Betreuer] [Gutachter] Polifke, and Maria [Gutachter] Heckl. "Scattering and Generation of Acoustic and Entropy Waves across Moving and Fixed Heat Sources / Lin Strobio Chen ; Gutachter: Wolfgang Polifke, Maria Heckl ; Betreuer: Wolfgang Polifke." München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1142376257/34.
Full textPignier, Nicolas. "Predicting the sound field from aeroacoustic sources on moving vehicles : Towards an improved urban environment." Doctoral thesis, KTH, Farkost och flyg, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205791.
Full textI ett samhälle där buller håller på att bli ett stort hälsoproblem och en ekonomisk belastning, är ljudutsläpp en allt viktigare aspekt för fordonstillverkare. Då ungefär en fjärdedel av den europeiska befolkningen bor nära vägar med tung trafik, är åtgärder för minskat trafikbuller i stadsmiljö en hög prioritet. Introduktionen av elfordon på marknaden och behovet av ljudsystem för att varna omgivningen kräver också ett nytt synsätt och tekniska angreppssätt som behandlar bullerproblemen ur ett bredare perspektiv. Buller bör inte längre betraktas som en biprodukt av konstruktionen, utan som en integrerad del av den. Att utveckla mer hållbara marktransporter kommer att kräva en bättre förståelse av det utstrålade ljudfältet vid olika realistiska driftsförhållanden, utöver de nuvarande standardiserade kraven för förbifartstest som utförs i ett fritt fält. En viktig aspekt för att förbättra denna förståelse är utvecklingen av effektiva numeriska verktyg för att beräkna ljudalstring och ljudutbredning från fordon i rörelse. I denna avhandling föreslås en metodik som syftar till att utvärdera förbifartsljud som alstras av fordons akustiska källor i en förenklad stadsmiljö, här med fokus på strömningsgenererat ljud. Även om det aerodynamiska bullret är fortfarande en liten del av de totala bullret från vägfordon i urbana miljöer, kommer denna andel säkerligen att öka inom en snar framtid med införandet av tysta elektriska motorer och de bullerreducerande däck som introduceras på marknaden. I detta arbete presenteras en komplett modellering av problemet från ljudalstring till ljudutbredning och förbifartsanalys i tre steg. Utgångspunkten är beräkningar av strömningen kring geometrin av intresse; det andra steget är identifiering av ljudkällorna som genereras av strömningen, och det tredje steget rör ljudutbredning från rörliga källor till observatörer, inklusive effekten av reflektioner och spridning från närliggande ytor. I det första steget löses flödet genom detached-eddy simulation (DES) för kompressibel strömning. Identifiering av ljudkällor i det andra steget görs med direkt numerisk lobformning med avfaltning med hjälp av linjärprogrammering, där källdata extraheras från flödessimuleringarna. Resultatet av detta steg är en uppsättning av okorrelerade akustiska monopolkällor. Steg tre utnyttjar dessa källor som indata till en ljudutbredningsmodel baserad på beräkningar punkt-till-punkt med Greensfunktioner för rörliga källor, och med en modifierad Kirchhoff-integral under Kirchhoffapproximationen för att beräkna reflektioner mot byggda ytor. Metodiken demonstreras med exemplet med det aeroakustiska ljud som genereras av ett NACA-luftintag som rör sig i en förenklad urban miljö. Med hjälp av denna metod kan man få insikter om ljudalstringsmekanismer, om källegenskaper och om ljudfältet som genereras av källor när de rör sig i en förenklad stadsmiljö.
QC 20170425
Oudompheng, Benoit. "Localisation et contribution de sources acoustiques de navire au passage par traitement d’antenne réduite." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT071/document.
Full textSince the surface ship radiated noise is the main contribution to the underwater acoustic noise in coastal waters, The Marine Framework Strategy Directive of the European Commission recommends the development of the monitoring and the reduction of the impact of the traffic noise. The need for developing an industrial system for the noise mapping of the surface ship have motivated this study, it will allow the naval industries to identify which part of the ship radiates the stronger noise level.In this context, this research work deals with the development of passive noise mapping methods of a surface ship passing-by above a static linear array with a reduced number of hydrophones. Two aspects of the noise mapping are considered: the localization of acoustic sources and the identification of the relative contribution of each source to the ship acoustic signature.First, a bibliographical study concerning the acoustic radiation of a passing-by surface ship is conducted in order to list the main acoustic sources and then to simulate representative ship sources. The acoustic propagation is simulated according to the ray theory and takes the source motion into account. The simulator of the acoustic radiation of a passing-by ship is built in order to validate the proposed noise mapping methods and to design an experimental set-up. A study about the influence of the source motion on the noise mapping methods led to the use of the beamforming method for moving sources for the source localization and a deconvolution method for the identification of the source contribution. The performances of both methods are assessed considering measurement noise and uncertainties about the propagation model in order to know their limitations. A first improvement of the beamforming method consists of a passive synthetic aperture array algorithm which benefits from the relative motion between the ship and the antenna in order to improve the spatial resolution at low frequencies. Then, an algorithm is proposed to acoustically correct the trajectography mismatches of a passing-by surface ship. Finally, the last part of this thesis concerns a pass-by experiment of a towed-ship model in a lake. These measurements allowed us to validate the proposed noise mapping methods and their proposed improvements, in a real and controlled environment
Bottero, Alexis. "Simulation numérique en forme d'onde complète d'ondes T et de sources acoustiques en mouvement." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0325/document.
Full textThis thesis combines observations, simulations and development of high performance numerical tools in the field of underwater acoustics, and in particular for the study of T-waves. After a literature review on T-waves, we analysed real data recorded in Italy. In order to model the phenomenon we have developed an axisymmetric spectral element solver in the time domain, which we present and validate. We also present a parametric study of the influence of seafloor slope in a typical scenario of generation / conversion of a T-wave. The energy and duration of these waves is particularly sensitive to the environment. In particular, we have seen that the slopes and characteristics of the seabed are of crucial importance. Our studies confirm that at regional distances the ocean speed profile is only a second order parameter. To evaluate its impact we have developed a procedure for the calculation of transmission and dispersion loss maps from full waveform numerical simulations in the time domain. In a second step we show that a medium-sized commercial boat can create T-waves of a significant amplitude and of low dispersion by diffraction. This T-wave generation mode, still undocumented, must be particularly frequent in areas where maritime traffic is dense and could explain some abyssal T-waves still misunderstood. Finally, we present numerical tools for calculating the acoustic field created by a moving source
Pelluri, Sai Gunaranjan. "Joint Spectro-Temporal Analysis of Moving Acoustic Sources." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4279.
Full textLin, Tzy-Rong, and 林資榕. "Inversion of a moving acoustic source in a semi-infinite plane." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/33145704918825653408.
Full textBooks on the topic "Moving Acoustic Source"
Deffenbaugh, Max. Optimal ocean acoustic tomography and navigation with moving sources. Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1997.
Find full textBook chapters on the topic "Moving Acoustic Source"
Leroy-Hebert, S., and A. Plaisant. "The Multipath Coherence Function for Correlated Random Channels and a Moving Source." In Underwater Acoustic Data Processing, 93–97. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_8.
Full textOuedraogo, Wendyam Serge Boris, Bertrand Rivet, and Christian Jutten. "On the Suppression of Noise from a Fast Moving Acoustic Source Using Multimodality." In Latent Variable Analysis and Signal Separation, 454–61. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22482-4_53.
Full textKoh, H. I., and W. H. You. "Rail Vehicle Noise Source Identification Using Moving Frame Acoustical Holography." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 555–62. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-53927-8_66.
Full textBerthelot, Yves H., and Ilene J. Busch-Vishniac. "Optical Generation of Sound: Experiments with a Moving Thermoacoustic Source. The Problem of Oblique Incidence of the Laser Beam." In Progress in Underwater Acoustics, 603–10. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1871-2_71.
Full textMo, P., X. Wang, and W. Jiang. "A Frequency Compensation Method to Smooth Frequency Fluctuation for Locating Moving Acoustic Sources." In Fluid-Structure-Sound Interactions and Control, 365–70. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7542-1_55.
Full textAntes, H., and M. Jäger. "On Stability and Efficiency of 3D Acoustic BE Procedures for Moving Noise Sources." In Computational Mechanics ’95, 3056–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79654-8_504.
Full text"Acoustics of Moving Sources moving source." In Formulas of Acoustics, 993–1000. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-76833-3_274.
Full text"Moving Thermoradiation Sources Of Sound." In Radiation Acoustics. CRC Press, 2004. http://dx.doi.org/10.1201/9780203402702.ch8.
Full text"- Moving sound sources and receivers." In Acoustics in Moving Inhomogeneous Media, 178–203. CRC Press, 2015. http://dx.doi.org/10.1201/b18922-10.
Full textConference papers on the topic "Moving Acoustic Source"
Pelluri, Sai Gunaranian, and T. V. Sreenivas. "Disambiguation of Source and Trajectory Non-Stationarities of a Moving Acoustic Source." In 2018 Twenty Fourth National Conference on Communications (NCC). IEEE, 2018. http://dx.doi.org/10.1109/ncc.2018.8599942.
Full textXiros, Nikolaos I. "A Nonlinear Signal Analysis Scheme for Localization of a Moving Acoustic Source." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10763.
Full textSimon, Gyula. "Acoustic Moving Source Localization using Sparse Time Difference of Arrival Measurements." In 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo). IEEE, 2022. http://dx.doi.org/10.1109/cinti-macro57952.2022.10029405.
Full textPelluri, Sai Gunaranjan, and T. V. Sreenivas. "Parameter estimation of a moving acoustic source: Linear chirplet transform vs WVD." In 2017 Twenty-third National Conference on Communications (NCC). IEEE, 2017. http://dx.doi.org/10.1109/ncc.2017.8077119.
Full textChen, Yu, Shuqing Ma, Yanqun Wu, and Zhou Meng. "Passive range localization of the acoustic moving source using the demon spectrum." In 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2017. http://dx.doi.org/10.1109/icspcc.2017.8242424.
Full textFe, Joao, Sergio D. Correia, Slavisa Tomic, and Marko Beko. "Kalman Filtering for Tracking a Moving Acoustic Source based on Energy Measurements." In 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). IEEE, 2021. http://dx.doi.org/10.1109/iceccme52200.2021.9590919.
Full textKusyi, O. V., P. Stevrin, N. N. Voitovich, and O. F. Zamorska. "Reconstruction of irregular waveguide geometry using a moving source." In Proceedings of 9th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. IEEE, 2004. http://dx.doi.org/10.1109/diped.2004.242803.
Full textGuo, Xiaole, Kunde Yang, Qiulong Yang, Shaohao Zhu, Ran Cao, and Yuanliang Ma. "Tracking-positioning of sound speed profiles and moving acoustic source in shallow water." In 2016 Techno-Ocean (Techno-Ocean). IEEE, 2016. http://dx.doi.org/10.1109/techno-ocean.2016.7890680.
Full textSheng, Xueli, Chaoping Dong, and Longxiang Guo. "Moving Acoustic Source Transmission Trial in the Marginal Ice Zone of the Arctic." In 2021 OES China Ocean Acoustics (COA). IEEE, 2021. http://dx.doi.org/10.1109/coa50123.2021.9520067.
Full textLee, Seongkyu, Kenneth Brentner, and Philip Morris. "Prediction of Acoustic Scattering in the Time Domain Using a Moving Equivalent Source Method." In 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-3177.
Full textReports on the topic "Moving Acoustic Source"
Reuter, Michael. Characterization and Simulation of an Acoustic Source Moving through an Oceanic Waveguide. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada285688.
Full textReuter, M. Spectral Correlation Properties of Time Series Due To An Acoustic Source Moving Through An Oceanic Waveguide. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada306014.
Full textKozick, Richard J., and Brian M. Sadler. Tracking Moving Acoustic Sources With a Network of Sensors. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada410115.
Full textMiller, James H., and Gopu R. Potty. Modeling and Measuring Variability in 3-D Acoustic Normal Mode Propagation in Shallow Water Near Ocean Fronts Using Fixed and Moving Sources and Receivers. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573346.
Full text