Academic literature on the topic 'Mouse carcinoma cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mouse carcinoma cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mouse carcinoma cells"
Li, Rongshan, Jorge L. Yao, Patricia A. Bourne, P. Anthony di Sant'Agnese, and Jiaoti Huang. "Frequent Expression of Human Carcinoma-Associated Antigen, a Mucin-Type Glycoprotein, in Cells of Prostatic Carcinoma." Archives of Pathology & Laboratory Medicine 128, no. 12 (December 1, 2004): 1412–17. http://dx.doi.org/10.5858/2004-128-1412-feohca.
Full textSleigh, Merilyn J. "Differentiation and proliferation in mouse embryonal carcinoma cells." BioEssays 14, no. 11 (November 1992): 769–75. http://dx.doi.org/10.1002/bies.950141109.
Full textPaterno, G. D., C. N. Adra, and M. W. McBurney. "X chromosome reactivation in mouse embryonal carcinoma cells." Molecular and Cellular Biology 5, no. 10 (October 1985): 2705–12. http://dx.doi.org/10.1128/mcb.5.10.2705.
Full textPaterno, G. D., C. N. Adra, and M. W. McBurney. "X chromosome reactivation in mouse embryonal carcinoma cells." Molecular and Cellular Biology 5, no. 10 (October 1985): 2705–12. http://dx.doi.org/10.1128/mcb.5.10.2705-2712.1985.
Full textLUO, Huaxing, Yingxue HAO, Bo TANG, Dongzhu ZENG, Yan SHI, and Peiwu YU. "Mouse forestomach carcinoma cells immunosuppress macrophages through TGF-?1." Turkish Journal of Gastroenterology 23, no. 6 (December 1, 2012): 658–65. http://dx.doi.org/10.4318/tjg.2012.0563.
Full textBatth, Balvinder K., Rachana Tripathi, and Usha K. Srinivas. "Curcumin-induced differentiation of mouse embryonal carcinoma PCC4 cells." Differentiation 68, no. 2-3 (October 2001): 133–40. http://dx.doi.org/10.1046/j.1432-0436.2001.680207.x.
Full textPierce, G. Barry, Juan Arechaga, Alan Jones, Andrea Lewellyn, and Robert S. Wells. "The fate of embryonal-carcinoma cells in mouse blastocysts." Differentiation 33, no. 3 (February 1987): 247–53. http://dx.doi.org/10.1111/j.1432-0436.1987.tb01564.x.
Full textLockett, Trevor J., and Merilyn J. Sleigh. "Oncogene expression in differentiating F9 mouse embryonal carcinoma cells." Experimental Cell Research 173, no. 2 (December 1987): 370–78. http://dx.doi.org/10.1016/0014-4827(87)90277-1.
Full textSimonneau, Michel, Bernard Eddé, Jean-François Nicolas, and Hedwig Jakob. "Single channel currents in mouse embryonal multipotential carcinoma cells." Cell Differentiation 17, no. 1 (July 1985): 21–28. http://dx.doi.org/10.1016/0045-6039(85)90534-2.
Full textHassan, Bardes B., Lucas A. Altstadt, Wessel P. Dirksen, Said M. Elshafae, and Thomas J. Rosol. "Canine Thyroid Cancer: Molecular Characterization and Cell Line Growth in Nude Mice." Veterinary Pathology 57, no. 2 (February 21, 2020): 227–40. http://dx.doi.org/10.1177/0300985819901120.
Full textDissertations / Theses on the topic "Mouse carcinoma cells"
Tassios, Panayotis. "Control of transcription in embryonal carcinoma cells." Thesis, University College London (University of London), 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283568.
Full textPaterno, Gary David. "X chromosome inactivation in mouse embryonal carcinoma cells." Thesis, University of Ottawa (Canada), 1985. http://hdl.handle.net/10393/4629.
Full textBell, S. M. "The cellular immune response to murine embryonal carcinoma cells." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354817.
Full textSheardown, Steven Andrew. "The developmental genetics of mouse embryonal stem cells and embryonal carcinoma cells." Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/24310.
Full textRehbini, Ohoud Mohammedsabri M. "The role of high mobility nucleosomal binding protein (Hmgn2) in undifferentiated mouse epiblast carcinoma stem cells." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7190/.
Full textThompson, Alexandra Inés. "Investigation of the role of hepatic stellate cells in acute liver failure and hepatocarcinogenesis." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28936.
Full textAghsani, Parisa. "Effects of a plant extract from Ruptiliocarpon caracolito on the growth and differentiation of P19 mouse embryonal carcinoma cells." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26560.
Full textMejetta, Stefania 1984. "1)Jarid2 regulates mouse epidermal stem cell activation and differentiation ; 2)Tumor heterogeneity and metastasis-initiation in human squamous cell carcinoma." Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/283482.
Full textJarid2 es necesario para la localización genómica del complejo represor polycomb repressive complex-2 (PRC2) en células stem embrionarias. Sin embargo, la función de Jarid2 en las últimas fases del desarrollo embrionario y su papel en la función de los tejidos adultos no ha sido aún caracterizada en profundidad. En esta primera parte de mi tesis doctoral, mostramos que la deleción de Jarid2 en la piel de ratón no afecta al desarrollo de la epidermis, pero reduce la proliferación y potencia la diferenciación de las células progenitoras epidermales en neonatos. La piel de los ratones neonatos Jarid2-KO muestra niveles reducidos de la marca represora de la cromatina, H3K27me3, en genes necesarios para la diferenciación de las células progenitoras. En cambio, en piel adulta la depleción de Jarid2 no afecta la diferenciación de la epidermis, pero sí que resulta en una reducción del número de células stem activas de los folículos pilosos, lo que desemboca en el retraso del crecimiento de los folículos. Por lo tanto, nuestros resultados demuestran que Jarid2 es necesario para la activación y diferenciación de diferentes células stem del compartimento queratinocítico de la piel necesarios para mantener la homeostasis epidermal. Diversos tipos de tumores sólidos humanos y de ratón, incluyendo carcinomas de células escamosas (SCCs del inglés: Squamous Cell Carcinomas), contienen una población de células madre cancerosas (CSCs del inglés Cancer Stem Cells). Las CSCs se caracterizan porque pueden iniciar y propagar el tumor; sin embargo, se conoce muy poco sobre su capacidad de alcanzar órganos lejos del tumor primario y de formar metastasis. Las CSCs pueden ser muy heterogéneas tanto a nivel funcional como molecular, y se ha propuesto que podrían existir diferentes subclones sea para mantener el tumor primario, sea para formar metástasis. No obstante, no se conoce por ahora ni la identidad de estas poblaciones heterogéneas de CSCs, ni sus características a nivel funcional o molecular. Usando un nuevo sistema de xenoinjerto que hemos desarrollado en nuestro laboratorio para estudiar SCC de cabeza y cuello, hemos identificado una población que es capaz de retener el marcaje con el tiempo (LRC de inglés: Label-retaining Cells), dentro de la población total de CSSs, definidas como células dentro del tumor que muestran alta expression de CD44 y alta actividad de Aldh1. En contra de lo que esperábamos, las LRC del tumor tienen dificultad para iniciar tumores por sí solas y son más sensibles a tratamientos de quimioterapia cuando las comparamos con otras células más proliferativas. Por otra parte, las LRC del tumor se pueden definir con un transcriptoma único que ha sido relacionado anteriormente con hueso y pulmón, que son dos de los órganos donde los SCC forman metástasis preferentemente. Esto sugiere que podrían estar involucradas en la colonización de órganos alejados del SCC primario. Hemos identificado también moléculas de superficie, incluyendo CD36 y CD37, que se expresan exclusivamente en las LRC de tumor y que se pueden usar como marcadores para aislar y caracterizar las LRC de SCCs primarios humanos. Basándonos en estos marcadores, hemos podido demostrar que la presencia o no de esta población en el tumor primario predice la formación de metástasis en pacientes con SCC cutáneos. Además, diversos marcadores que hemos identificado como únicos en LRC de tumor, son diana de fármacos ya usados en la actualidad en ensayos clínicos para tratamiento de otras enfermedades. En la actualidad estamos probando si alguno de estos tratamientos puede ser efectivo para prevenir o reducir el potencial de formar metástasis en SCC.
Zeng, Yi [Verfasser], and Stefan [Akademischer Betreuer] Endres. "Gene expression profiles of T cells after adoptive transfer in a mouse model of pancreatic carcinoma / Yi Zeng ; Betreuer: Stefan Endres." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1126407313/34.
Full textHall, Charles. "Ex vivo reprogramming of tumor-reactive immune cells from FVBN202 mice bearing lung metastatic mammary carcinoma: an immunotherapeutic opportunity revealed against recurrence." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3176.
Full textBook chapters on the topic "Mouse carcinoma cells"
Nakashima, Toshiro, and Masamichi Kojiro. "Tissue Culture of Hepatocellular Carcinoma Cells and Hetero-Transplantation to the Nude Mouse." In Hepatocellular Carcinoma, 227–43. Tokyo: Springer Japan, 1987. http://dx.doi.org/10.1007/978-4-431-68334-6_15.
Full textMezger, Valérie, Vincent Legagneux, Charles Babinet, Michel Morange, and Oliver Bensaude. "Heat Shock Protein Synthesis in Preimplantation Mouse Embryos and Embryonal Carcinoma Cells." In Results and Problems in Cell Differentiation, 153–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-46712-0_11.
Full textGlaves, D., L. Weiss, and F. Vidal-Vanaclocha. "Site-associated differences in endogenous lectin expression by mouse colon carcinoma cells." In Lectins and Cancer, 137–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76739-5_10.
Full textZhao, Botao, Bing Huang, Wei Li, and Youxin Jin. "MicroRNA Expression Profiling During Neural Differentiation of Mouse Embryonic Carcinoma P19 Cells." In MicroRNA Protocols, 105–16. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-083-0_9.
Full textHohjoh, Hirohiko. "MicroRNA Expression During Neuronal Differentiation of Human Teratocarcinoma NTera2D1 and Mouse Embryonic Carcinoma P19 Cells." In MicroRNA Protocols, 257–69. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-083-0_20.
Full textIsemura, Mamoru, Masaki Sazuka, Hirokazu Imazawa, Tsutomu Nakayama, Tadataka Noro, Yoshiyuki Nakamura, and Yukihiko Hara. "Inhibitory Effects of Green Tea Infusion on In Vitro Invasion and In Vivo Metastasis of Mouse Lung Carcinoma Cells." In Food Factors for Cancer Prevention, 134–37. Tokyo: Springer Japan, 1997. http://dx.doi.org/10.1007/978-4-431-67017-9_26.
Full textHasegawa, Ryohei, Yoshifumi Miyakawa, and Hidetaka Sato. "Squamous Cell Carcinoma, Skin, Mouse." In Integument and Mammary Glands, 31–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83749-4_5.
Full textFrith, Charles H. "Transitional Cell Carcinoma, Urinary Tract, Mouse." In Urinary System, 331–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-96956-0_41.
Full textFrith, Charles H. "Transitional Cell Carcinoma, Urinary Tract, Mouse." In Urinary System, 393–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80335-2_38.
Full textHeath, James E. "Adenoma and Carcinoma, Thyroid Follicular Cell, Mouse." In Endocrine System, 254–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-60996-1_28.
Full textConference papers on the topic "Mouse carcinoma cells"
Li, Yan, Harshul Pandit, Xuanyi Li, Suping Li, Jingwen Zhang, Guozhen Cui, and Robert C. Martin. "Abstract 4069: Abolish cancer progenitor cells in a mouse model of diabetes associated hepatocellular carcinoma." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4069.
Full textOstroumov, D., J. Wingerath, N. Woller, E. Gürlevik, MP Manns, T. Longerich, S. Kubicka, F. Kühnel, and TC Wirth. "Analysis of T cell exhaustion in tumor-specific CD8 T cells utilizing an orthotopic hepatocellular carcinoma mouse model." In 35. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0038-1677223.
Full textLi, Dan, Nan Li, Yifan Zhang, Haiying Fu, Zhijian Duan, Alissa Hummer, Hongjia Yang, et al. "Abstract 2311: Analysis of glypican 3-targeted chimeric antigen receptor T cells in hepatocellular carcinoma cell and mouse models." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-2311.
Full textLi, Dan, Nan Li, Yifan Zhang, Haiying Fu, Zhijian Duan, Alissa Hummer, Hongjia Yang, et al. "Abstract 2311: Analysis of glypican 3-targeted chimeric antigen receptor T cells in hepatocellular carcinoma cell and mouse models." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-2311.
Full textLiu, Ping, Xiaomin Ren, and Lisa X. Xu. "Alternate Cooling and Heating Thermal Physical Treatment: An Effective Strategy Against MDSCs in 4T1 Mouse Mammary Carcinoma." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80229.
Full textKasuga, Akiyoshi, Takashi Semba, Hiromasa Takaishi, Takanori Kanai, Hideyuki Saya, and Yoshimi Arima. "Abstract 4083: Intrahepatic cholangiocarcinoma and gallbladder carcinoma mouse model based on transplantation of syngeneic tumor-initiating cells." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4083.
Full textSalmanzadeh, Alireza, Harsha Kittur, Michael B. Sano, Mark A. Stremler, P. Christopher Roberts, Eva M. Schmelz, and Rafael V. Davalos. "Investigating Dielectrophoretic Signature of Mouse Ovarian Surface Epithelial Cells, Macrophages and Fibroblasts." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80872.
Full textNagaoka, Tadahiro, Kazuhide Watanabe, Monica Gonzales, Nadia Castro, Maria-Cristina Rangel, Kelly Rollman, Jeffrey S. Rubin, David S. Salomon, and Caterina Bianco. "Abstract 1053: Modulation of Wnt/β-catenin signaling pathway by Cripto-1 in mouse embryonal carcinoma F9 cells." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1053.
Full textZacharski, L., V. Memoli, and S. Rousseau. "THROMBIN-SPECIFIC SITESOF FIBRINOGEN IN SMALL CELL CARCINOMA OF THE LUNG." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643670.
Full textPandit, Harshul, Yan Li, Guozhen Cui, Suping Li, Salina Li, and Robert C. Martin. "Abstract 1909: Non-alcoholic steatohepatitis promotes EpCAM positive cancer stem cells mediated tumorigenesis in immunocompetent mouse model of hepatocellular carcinoma." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1909.
Full text