Journal articles on the topic 'Mott-Schottky Catalyst'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mott-Schottky Catalyst.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huang, Yuan, Haoting Yan, Chenyang Zhang, Yize Wang, Qinhong Wei, and Renkun Zhang. "Interfacial Electronic Effects in Co@N-Doped Carbon Shells Heterojunction Catalyst for Semi-Hydrogenation of Phenylacetylene." Nanomaterials 11, no. 11 (October 20, 2021): 2776. http://dx.doi.org/10.3390/nano11112776.
Full textRen, Yongwang, Huizhong Xu, Beibei Han, and Jing Xu. "Construction of N-Doped Carbon-Modified Ni/SiO2 Catalyst Promoting Cinnamaldehyde Selective Hydrogenation." Molecules 28, no. 10 (May 17, 2023): 4136. http://dx.doi.org/10.3390/molecules28104136.
Full textZuraev, A. V., Y. V. Grigoriev, C. M. Verbilo, L. S. Ivashkevich, A. S. Lyakhov, and O. A. Ivashkevich. "PalladiumPolymer Nanocomposite: An Efficient Catalyst for Green Suzuki–Miyaura Cross-Coupling and Mott-Schottky Nitrobenzene Reduction Processes." Proceedings of the National Academy of Sciences of Belarus, Chemical Series 55, no. 2 (June 29, 2019): 196–204. http://dx.doi.org/10.29235/1561-8331-2019-55-2-196-204.
Full textSarkar, Bidushi, Debanjan Das, and Karuna Kar Nanda. "pH-dependent hydrogen evolution using spatially confined ruthenium on hollow N-doped carbon nanocages as a Mott–Schottky catalyst." Journal of Materials Chemistry A 9, no. 24 (2021): 13958–66. http://dx.doi.org/10.1039/d1ta02375f.
Full textXu, Zhixiao, and Xiaolei Wang. "Nickel-Molybdenum Carbide/Nitrogen-Doped Carbon Mott-Schottky Nanoarray for Water Spitting." ECS Meeting Abstracts MA2022-01, no. 55 (July 7, 2022): 2307. http://dx.doi.org/10.1149/ma2022-01552307mtgabs.
Full textJiao, Zhifeng, Zhaoyang Zhai, Xiaoning Guo, and Xiang-Yun Guo. "Visible-Light-Driven Photocatalytic Suzuki–Miyaura Coupling Reaction on Mott–Schottky-type Pd/SiC Catalyst." Journal of Physical Chemistry C 119, no. 6 (February 3, 2015): 3238–43. http://dx.doi.org/10.1021/jp512567h.
Full textArifin, Md Noor, Kaykobad Md Rezaul Karim, Hamidah Abdullah, and Maksudur R. Khan. "Synthesis of Titania Doped Copper Ferrite Photocatalyst and Its Photoactivity towards Methylene Blue Degradation under Visible Light Irradiation." Bulletin of Chemical Reaction Engineering & Catalysis 14, no. 1 (April 15, 2019): 219. http://dx.doi.org/10.9767/bcrec.14.1.3616.219-227.
Full textYan, Ruyu, Xinyi Liu, Haijie Zhang, Meng Ye, Zhenxing Wang, Jianjian Yi, Binxian Gu, and Qingsong Hu. "Carbon Quantum Dots Accelerating Surface Charge Transfer of 3D PbBiO2I Microspheres with Enhanced Broad Spectrum Photocatalytic Activity—Development and Mechanism Insight." Materials 16, no. 3 (January 27, 2023): 1111. http://dx.doi.org/10.3390/ma16031111.
Full textKarim, Kaykobad Md Rezaul, Huei Ruey Ong, Hamidah Abdullah, Abu Yousuf, Chin Kui Cheng, and Mohd Maksudur Rahman Khan. "Electrochemical Study of Copper Ferrite as a Catalyst for CO2 Photoelectrochemical Reduction." Bulletin of Chemical Reaction Engineering & Catalysis 13, no. 2 (June 11, 2018): 236. http://dx.doi.org/10.9767/bcrec.13.2.1317.236-244.
Full textZhang, Chaoqi, Ruifeng Du, Jordi Jacas Biendicho, Mingjie Yi, Ke Xiao, Dawei Yang, Ting Zhang, et al. "Tubular CoFeP@CN as a Mott–Schottky Catalyst with Multiple Adsorption Sites for Robust Lithium−Sulfur Batteries." Advanced Energy Materials 11, no. 24 (May 8, 2021): 2100432. http://dx.doi.org/10.1002/aenm.202100432.
Full textWang, Jiashi, Qinhong Wei, Qingxiang Ma, Zhongya Guo, Fangfang Qin, Zinfer R. Ismagilov, and Wenzhong Shen. "Constructing Co@N-doped graphene shell catalyst via Mott-Schottky effect for selective hydrogenation of 5-hydroxylmethylfurfural." Applied Catalysis B: Environmental 263 (April 2020): 118339. http://dx.doi.org/10.1016/j.apcatb.2019.118339.
Full textGoel, Bharat, Ved Vyas, Nancy Tripathi, Ajit Kumar Singh, Prashanth W. Menezes, Arindam Indra, and Shreyans K. Jain. "Amidation of Aldehydes with Amines under Mild Conditions Using Metal‐Organic Framework Derived NiO@Ni Mott‐Schottky Catalyst." ChemCatChem 12, no. 22 (September 7, 2020): 5743–49. http://dx.doi.org/10.1002/cctc.202001041.
Full textJiang, Jing, Wei Wei, Zhen Ren, Yang Luo, Xinzhi Wang, Ying Xu, Mingming Chang, and Lunhong Ai. "Facile construction of robust Ru-Co3O4 Mott-Schottky catalyst enabling efficient dehydrogenation of ammonia borane for hydrogen generation." Journal of Colloid and Interface Science 646 (September 2023): 25–33. http://dx.doi.org/10.1016/j.jcis.2023.04.181.
Full textYang, Guangying, Cheng Pan, Haitao Yang, and Nianjie Feng. "Carbon-supported nickel catalyst prepared from steam-exploded poplar by recovering Ni(II)." BioResources 16, no. 3 (June 15, 2021): 5481–93. http://dx.doi.org/10.15376/biores.16.3.5481-5493.
Full textHernández, Rafael, José Rosendo Hernández-Reséndiz, Marisela Cruz-Ramírez, Rodrigo Velázquez-Castillo, Luis Escobar-Alarcón, Luis Ortiz-Frade, and Karen Esquivel. "Au-TiO2 Synthesized by a Microwave- and Sonochemistry-Assisted Sol-Gel Method: Characterization and Application as Photocatalyst." Catalysts 10, no. 9 (September 13, 2020): 1052. http://dx.doi.org/10.3390/catal10091052.
Full textCheng, Saisai, Xufeng Meng, Ningzhao Shang, Shutao Gao, Cheng Feng, Chun Wang, and Zhi Wang. "Pd supported on g-C3N4 nanosheets: Mott–Schottky heterojunction catalyst for transfer hydrogenation of nitroarenes using formic acid as hydrogen source." New Journal of Chemistry 42, no. 3 (2018): 1771–78. http://dx.doi.org/10.1039/c7nj04268j.
Full textTamiru Mengistu, Mintesinot, Tadele Hunde Wondimu, Dinsefa Mensur Andoshe, Jung Yong Kim, Osman Ahmed Zelekew, Fekadu Gashaw Hone, Newaymedhin Aberra Tegene, Noto Susanto Gultom, and Ho Won Jang. "g -C3N4–Co3O4 Z-Scheme Junction with Green-Synthesized ZnO Photocatalyst for Efficient Degradation of Methylene Blue in Aqueous Solution." Bioinorganic Chemistry and Applications 2023 (June 5, 2023): 1–14. http://dx.doi.org/10.1155/2023/2948342.
Full textHenríquez, Rodrigo, Paula Salazar Nogales, Paula Grez Moreno, Eduardo Muñoz Cartagena, Patricio Leyton Bongiorno, Elena Navarrete-Astorga, and Enrique A. Dalchiele. "One-Step Hydrothermal Synthesis of Cu2ZnSnS4 Nanoparticles as an Efficient Visible Light Photocatalyst for the Degradation of Congo Red Azo Dye." Nanomaterials 13, no. 11 (May 25, 2023): 1731. http://dx.doi.org/10.3390/nano13111731.
Full textGahlawat, Soniya, Nusrat Rashid, and Pravin P. Ingole. "n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance." Zeitschrift für Physikalische Chemie 232, no. 9-11 (August 28, 2018): 1551–66. http://dx.doi.org/10.1515/zpch-2018-1140.
Full textZainab K. Ali and Mazin A. Mahdi. "Preparation of Silicon Nanowires Photocathode for Photoelectrochemical Water Splitting." Iraqi Journal of Physics 20, no. 4 (December 1, 2022): 66–81. http://dx.doi.org/10.30723/ijp.v20i4.1070.
Full textWu, Peiwen, Zili Wu, David R. Mullins, Shi-Ze Yang, Xue Han, Yafen Zhang, Guo Shiou Foo, et al. "Promoting Pt catalysis for CO oxidation via the Mott–Schottky effect." Nanoscale 11, no. 40 (2019): 18568–74. http://dx.doi.org/10.1039/c9nr04055b.
Full textKgoetlana, Charlie M., Soraya P. Malinga, and Langelihle N. Dlamini. "Photocatalytic Degradation of Chlorpyrifos with Mn-WO3/SnS2 Heterostructure." Catalysts 10, no. 6 (June 21, 2020): 699. http://dx.doi.org/10.3390/catal10060699.
Full textWon, Dong-Il, Jong-Su Lee, Ha-Yeon Cheong, Minji Cho, Won-Jo Jung, Ho-Jin Son, Chyongjin Pac, and Sang Ook Kang. "Organic–inorganic hybrid photocatalyst for carbon dioxide reduction." Faraday Discussions 198 (2017): 337–51. http://dx.doi.org/10.1039/c6fd00222f.
Full textZhang, Guangqiang, Hong Su, and Yan Zhang. "Construction of Glutinous Rice Potpourri-like MOTT−Schottky Ni/CeO2 Heterojunction Nanosheets for Robust Electrochemical Water Reduction." Energies 15, no. 24 (December 13, 2022): 9443. http://dx.doi.org/10.3390/en15249443.
Full textLee, Siaw Foon, Eva Jimenez-Relinque, Isabel Martinez, and Marta Castellote. "Effects of Mott–Schottky Frequency Selection and Other Controlling Factors on Flat-Band Potential and Band-Edge Position Determination of TiO2." Catalysts 13, no. 6 (June 13, 2023): 1000. http://dx.doi.org/10.3390/catal13061000.
Full textMatsuzawa, Koichi, Atsushi Nozaka, and Akimitsu Ishihara. "(Digital Presentation) Mo Added Zr Oxide-Based Thin Film for Oxygen Evolution Catalyst in Alkaline Solution." ECS Meeting Abstracts MA2022-01, no. 34 (July 7, 2022): 1347. http://dx.doi.org/10.1149/ma2022-01341347mtgabs.
Full textWang, Lu, Yue Zhao, Linghao Liu, Ziyi Zheng, Zijun Liu, Fuhao Zhang, Lin Wang, and Zhuangjun Fan. "Acetylene functionalized covalent triazine frameworks with AuPd nanoparticles as photocatalysts for hydrogen evolution from formic acid." IOP Conference Series: Earth and Environmental Science 1171, no. 1 (April 1, 2023): 012024. http://dx.doi.org/10.1088/1755-1315/1171/1/012024.
Full textMureseanu, Mihaela, Nicoleta Cioatera, and Gabriela Carja. "Fe-Ce/Layered Double Hydroxide Heterostructures and Their Derived Oxides: Electrochemical Characterization and Light-Driven Catalysis for the Degradation of Phenol from Water." Nanomaterials 13, no. 6 (March 8, 2023): 981. http://dx.doi.org/10.3390/nano13060981.
Full textPermporn, Darika, Rattabal Khunphonoi, Jetsadakorn Wilamat, Pongtanawat Khemthong, Prae Chirawatkul, Teera Butburee, Weradesh Sangkhun, et al. "Insight into the Roles of Metal Loading on CO2 Photocatalytic Reduction Behaviors of TiO2." Nanomaterials 12, no. 3 (January 29, 2022): 474. http://dx.doi.org/10.3390/nano12030474.
Full textXu, Zhixiao, Song Jin, Min Ho Seo, and Xiaolei Wang. "Hierarchical Ni-Mo2C/N-doped carbon Mott-Schottky array for water electrolysis." Applied Catalysis B: Environmental 292 (September 2021): 120168. http://dx.doi.org/10.1016/j.apcatb.2021.120168.
Full textCai, Yi-Yu, Xin-Hao Li, Ya-Nan Zhang, Xiao Wei, Kai-Xue Wang, and Jie-Sheng Chen. "Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based Mott-Schottky Photocatalyst." Angewandte Chemie International Edition 52, no. 45 (September 23, 2013): 11822–25. http://dx.doi.org/10.1002/anie.201304652.
Full textPeng, Lingxin, Liang Su, Xu Yu, Rongyan Wang, Xiangzhi Cui, Han Tian, Shaowen Cao, Bao Yu Xia, and Jianlin Shi. "Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution." Applied Catalysis B: Environmental 308 (July 2022): 121229. http://dx.doi.org/10.1016/j.apcatb.2022.121229.
Full textKang, Yao, Shuo Wang, Kwan San Hui, Shuxing Wu, Duc Anh Dinh, Xi Fan, Feng Bin, et al. "Surface reconstruction establishing Mott-Schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction." Nano Research 15, no. 4 (December 12, 2021): 2952–60. http://dx.doi.org/10.1007/s12274-021-3917-7.
Full textYuan, Menglei, Junwu Chen, Yiling Bai, Zhanjun Liu, Jingxian Zhang, Tongkun Zhao, Qin Wang, Shuwei Li, Hongyan He, and Guangjin Zhang. "Unveiling Electrochemical Urea Synthesis by Co‐Activation of CO 2 and N 2 with Mott–Schottky Heterostructure Catalysts." Angewandte Chemie 133, no. 19 (April 8, 2021): 11005–13. http://dx.doi.org/10.1002/ange.202101275.
Full textYuan, Menglei, Junwu Chen, Yiling Bai, Zhanjun Liu, Jingxian Zhang, Tongkun Zhao, Qin Wang, Shuwei Li, Hongyan He, and Guangjin Zhang. "Unveiling Electrochemical Urea Synthesis by Co‐Activation of CO 2 and N 2 with Mott–Schottky Heterostructure Catalysts." Angewandte Chemie International Edition 60, no. 19 (April 8, 2021): 10910–18. http://dx.doi.org/10.1002/anie.202101275.
Full textZhang, Zhicheng, Wei Cai, Shaopeng Rong, Hongxia Qu, and Huifang Xie. "Hollow CuFe2O4/MgFe2O4 Heterojunction Boost Photocatalytic Oxidation Activity for Organic Pollutants." Catalysts 12, no. 8 (August 18, 2022): 910. http://dx.doi.org/10.3390/catal12080910.
Full textLi, Zhen, Zhuoyang Gao, Bingwen Li, Lili Zhang, Rong Fu, Yan Li, Xiaoyue Mu, and Lu Li. "Fe-Pt nanoclusters modified Mott-Schottky photocatalysts for enhanced ammonia synthesis at ambient conditions." Applied Catalysis B: Environmental 262 (March 2020): 118276. http://dx.doi.org/10.1016/j.apcatb.2019.118276.
Full textShang, Wenxue, Yi Xiao, Airu Yu, Hongxia Shen, Qiong Cheng, Yantao Sun, Liqiu Zhang, Lichun Liu, and Lihua Li. "Visible-Light-Enhanced Electrocatalytic Hydrogen Evolution Using Electrodeposited Molybdenum Oxide." Journal of The Electrochemical Society 169, no. 3 (March 1, 2022): 034529. http://dx.doi.org/10.1149/1945-7111/ac5d94.
Full textZhang, Shengbo, Mei Li, Jiankang Zhao, Hua Wang, Xinli Zhu, Jinyu Han, and Xiao Liu. "Plasmonic AuPd-based Mott-Schottky photocatalyst for synergistically enhanced hydrogen evolution from formic acid and aldehyde." Applied Catalysis B: Environmental 252 (September 2019): 24–32. http://dx.doi.org/10.1016/j.apcatb.2019.04.013.
Full textDong, Qing, Gangjian Li, Fangfang Liu, Jianwei Ren, Hui Wang, and Rongfang Wang. "Cu nanoclusters activating ultrafine Fe3N nanoparticles via the Mott-Schottky effect for rechargeable zinc-air batteries." Applied Catalysis B: Environmental 326 (June 2023): 122415. http://dx.doi.org/10.1016/j.apcatb.2023.122415.
Full textIsmael, Mohammed, and Michael Wark. "Perovskite-type LaFeO3: Photoelectrochemical Properties and Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation." Catalysts 9, no. 4 (April 8, 2019): 342. http://dx.doi.org/10.3390/catal9040342.
Full textThanh Thuy, Chau Thi, Gyuho Shin, Lee Jieun, Hyung Do Kim, Ganesh Koyyada, and Jae Hong Kim. "Self-Doped Carbon Dots Decorated TiO2 Nanorods: A Novel Synthesis Route for Enhanced Photoelectrochemical Water Splitting." Catalysts 12, no. 10 (October 20, 2022): 1281. http://dx.doi.org/10.3390/catal12101281.
Full textWei, Qinhong, Jiashi Wang, and Wenzhong Shen. "Atomically dispersed Feδ+ anchored on nitrogen-rich carbon for enhancing benzyl alcohol oxidation through Mott-Schottky effect." Applied Catalysis B: Environmental 292 (September 2021): 120195. http://dx.doi.org/10.1016/j.apcatb.2021.120195.
Full textZhang, Pengfei, Yaoda Liu, Tingting Liang, Edison Huixiang Ang, Xu Zhang, Fei Ma, and Zhengfei Dai. "Nitrogen-doped carbon wrapped Co-Mo2C dual Mott–Schottky nanosheets with large porosity for efficient water electrolysis." Applied Catalysis B: Environmental 284 (May 2021): 119738. http://dx.doi.org/10.1016/j.apcatb.2020.119738.
Full textHe, Tianwei, Gurpreet Kour, Xin Mao, and Aijun Du. "Cuδ+ active sites stabilization through Mott-Schottky effect for promoting highly efficient conversion of carbon monoxide into n-propanol." Journal of Catalysis 382 (February 2020): 49–56. http://dx.doi.org/10.1016/j.jcat.2019.12.015.
Full textLi, Zhen, Ligong Zhai, Tingting Ma, Jinfeng Zhang, and Zhenghua Wang. "Efficient and Stable Catalytic Hydrogen Evolution of ZrO2/CdSe-DETA Nanocomposites under Visible Light." Catalysts 12, no. 11 (November 8, 2022): 1385. http://dx.doi.org/10.3390/catal12111385.
Full textLiu, Bo, Tong Xu, Chunping Li, and Jie Bai. "Activating Pd nanoparticles via the Mott-Schottky effect in Ni doped CeO2 nanotubes for enhanced catalytic Suzuki reaction." Molecular Catalysis 528 (August 2022): 112452. http://dx.doi.org/10.1016/j.mcat.2022.112452.
Full textNkwachukwu, Oluchi V., Charles Muzenda, Babatope O. Ojo, Busisiwe N. Zwane, Babatunde A. Koiki, Benjamin O. Orimolade, Duduzile Nkosi, Nonhlangabezo Mabuba, and Omotayo A. Arotiba. "Photoelectrochemical Degradation of Organic Pollutants on a La3+ Doped BiFeO3 Perovskite." Catalysts 11, no. 9 (September 2, 2021): 1069. http://dx.doi.org/10.3390/catal11091069.
Full textKoh, Tae Sik, Periyasamy Anushkkaran, Jun Beom Hwang, Sun Hee Choi, Weon-Sik Chae, Hyun Hwi Lee, and Jum Suk Jang. "Magnetron Sputtered Al Co-Doped with Zr-Fe2O3 Photoanode with Fortuitous Al2O3 Passivation Layer to Lower the Onset Potential for Photoelectrochemical Solar Water Splitting." Catalysts 12, no. 11 (November 18, 2022): 1467. http://dx.doi.org/10.3390/catal12111467.
Full textZhang, Quan, Fang Luo, Xue Long, Xinxin Yu, Konggang Qu, and Zehui Yang. "N, P doped carbon nanotubes confined WN-Ni Mott-Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries." Applied Catalysis B: Environmental 298 (December 2021): 120511. http://dx.doi.org/10.1016/j.apcatb.2021.120511.
Full text